Mercurial > hg > xsplines
changeset 1:a8a6e95b85b4
talk: fix typos
author | Jordi Gutiérrez Hermoso <jordigh@octave.org> |
---|---|
date | Fri, 24 Aug 2018 10:56:58 -0400 |
parents | 11ac175098d1 |
children | b94d24316ea8 |
files | talk/talk.tex |
diffstat | 1 files changed, 3 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/talk/talk.tex +++ b/talk/talk.tex @@ -211,7 +211,7 @@ To get convexity, (partition of unity) will normalise each blending function, i.e. \[ - F_t(t) := \frac{f_k(t)}{\sum_{k=0}^n f_k(t)} + F_k(t) := \frac{f_k(t)}{\sum_{k=0}^n f_k(t)} \] giving a \emph{rational function} (a fraction of polynomials). \end{frame} @@ -400,7 +400,7 @@ \begin{frame}{Polynomial requirements again} This time use two polynomials, \(g(u)\) for the positive part and - \(h(h)\) for the negative part. + \(h(u)\) for the negative part. \pause If we pick the domain of \(h(u)\) to be from \(-1\) to \(0\) @@ -409,7 +409,7 @@ \pause 12 conditions on continuity, tangent line, and curvature: \begin{align*} - h(-1) &= 0 & h'(-1) &= q & h''(-1) &= 0 \\ + h(-1) &= 0 & h'(-1) &= 0 & h''(-1) &= 0 \\ h(0) &= 0 & h'(0) &= q & h''(0) &= 4q \\ g(0) &= 0 & g'(0) &= q & g''(0) &= 4q \\ g(1) &= 1 & g'(1) &= 0 & g''(1) &= -2p