Mercurial > hg > octave-thorsten
view scripts/statistics/distributions/logncdf.m @ 15361:b4c32f245da7 draft default tip
GUI: Settings take immediate effect on the m-editor
* main-window.cc (main_window::construct): connect settings change to file-editor
* file-editor.h (file-editor::notice_settings): new notice settings method
* file-editor.cc (file-editor::notice_settings): new notice settings method
and pass-through to all file-editor-tabs
* file-editor-tab.h (file-editor::notice_settings): new notice settings method
* file-editor-tab.c (file_editor_tab::file_editor_tab): removed all settings to
file-editor::notice_settings
(file-editor::update_lexer): fix in case settings is 0 (should never happen)
(file-editor::notice_settings): all settings moved here
author | Thorsten Liebig <thorsten.liebig@gmx.de> |
---|---|
date | Tue, 11 Sep 2012 22:19:51 +0200 |
parents | 39a2e91a246e |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} logncdf (@var{x}) ## @deftypefnx {Function File} {} logncdf (@var{x}, @var{mu}, @var{sigma}) ## For each element of @var{x}, compute the cumulative distribution ## function (CDF) at @var{x} of the lognormal distribution with ## parameters @var{mu} and @var{sigma}. If a random variable follows this ## distribution, its logarithm is normally distributed with mean ## @var{mu} and standard deviation @var{sigma}. ## ## Default values are @var{mu} = 1, @var{sigma} = 1. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: CDF of the log normal distribution function cdf = logncdf (x, mu = 0, sigma = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (!isscalar (mu) || !isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("logncdf: X, MU, and SIGMA must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("logncdf: X, MU, and SIGMA must not be complex"); endif if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")) cdf = zeros (size (x), "single"); else cdf = zeros (size (x)); endif k = isnan (x) | !(sigma > 0) | !(sigma < Inf); cdf(k) = NaN; k = (x == Inf) & (sigma > 0) & (sigma < Inf); cdf(k) = 1; k = (x > 0) & (x < Inf) & (sigma > 0) & (sigma < Inf); if (isscalar (mu) && isscalar (sigma)) cdf(k) = stdnormal_cdf ((log (x(k)) - mu) / sigma); else cdf(k) = stdnormal_cdf ((log (x(k)) - mu(k)) ./ sigma(k)); endif endfunction %!shared x,y %! x = [-1 0 1 e Inf]; %! y = [0, 0, 0.5, 1/2+1/2*erf(1/2), 1]; %!assert (logncdf (x, zeros (1,5), sqrt(2)*ones (1,5)), y, eps) %!assert (logncdf (x, 0, sqrt(2)*ones (1,5)), y, eps) %!assert (logncdf (x, zeros (1,5), sqrt(2)), y, eps) %!assert (logncdf (x, [0 1 NaN 0 1], sqrt(2)), [0 0 NaN y(4:5)], eps) %!assert (logncdf (x, 0, sqrt(2)*[0 NaN Inf 1 1]), [NaN NaN NaN y(4:5)], eps) %!assert (logncdf ([x(1:3) NaN x(5)], 0, sqrt(2)), [y(1:3) NaN y(5)], eps) %% Test class of input preserved %!assert (logncdf ([x, NaN], 0, sqrt(2)), [y, NaN], eps) %!assert (logncdf (single ([x, NaN]), 0, sqrt(2)), single ([y, NaN]), eps ("single")) %!assert (logncdf ([x, NaN], single (0), sqrt(2)), single ([y, NaN]), eps ("single")) %!assert (logncdf ([x, NaN], 0, single (sqrt(2))), single ([y, NaN]), eps ("single")) %% Test input validation %!error logncdf () %!error logncdf (1,2) %!error logncdf (1,2,3,4) %!error logncdf (ones (3), ones (2), ones (2)) %!error logncdf (ones (2), ones (3), ones (2)) %!error logncdf (ones (2), ones (2), ones (3)) %!error logncdf (i, 2, 2) %!error logncdf (2, i, 2) %!error logncdf (2, 2, i)