5164
|
1 // Template sparse array class |
|
2 /* |
|
3 |
7017
|
4 Copyright (C) 2004, 2005, 2006, 2007 David Bateman |
7016
|
5 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004 Andy Adler |
|
6 |
|
7 This file is part of Octave. |
5164
|
8 |
|
9 Octave is free software; you can redistribute it and/or modify it |
|
10 under the terms of the GNU General Public License as published by the |
7016
|
11 Free Software Foundation; either version 3 of the License, or (at your |
|
12 option) any later version. |
5164
|
13 |
|
14 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
17 for more details. |
|
18 |
|
19 You should have received a copy of the GNU General Public License |
7016
|
20 along with Octave; see the file COPYING. If not, see |
|
21 <http://www.gnu.org/licenses/>. |
5164
|
22 |
|
23 */ |
|
24 |
|
25 #ifdef HAVE_CONFIG_H |
|
26 #include <config.h> |
|
27 #endif |
|
28 |
|
29 #include <cassert> |
|
30 #include <climits> |
|
31 |
|
32 #include <iostream> |
5765
|
33 #include <sstream> |
5164
|
34 #include <vector> |
|
35 |
|
36 #include "Array.h" |
|
37 #include "Array-util.h" |
|
38 #include "Range.h" |
|
39 #include "idx-vector.h" |
|
40 #include "lo-error.h" |
|
41 #include "quit.h" |
|
42 |
|
43 #include "Sparse.h" |
|
44 #include "sparse-sort.h" |
|
45 #include "oct-spparms.h" |
|
46 |
|
47 template <class T> |
|
48 T& |
5275
|
49 Sparse<T>::SparseRep::elem (octave_idx_type _r, octave_idx_type _c) |
5164
|
50 { |
5275
|
51 octave_idx_type i; |
5164
|
52 |
5604
|
53 if (nzmx > 0) |
5164
|
54 { |
|
55 for (i = c[_c]; i < c[_c + 1]; i++) |
|
56 if (r[i] == _r) |
|
57 return d[i]; |
|
58 else if (r[i] > _r) |
|
59 break; |
|
60 |
|
61 // Ok, If we've gotten here, we're in trouble.. Have to create a |
|
62 // new element in the sparse array. This' gonna be slow!!! |
5869
|
63 if (c[ncols] == nzmx) |
5164
|
64 { |
|
65 (*current_liboctave_error_handler) |
5275
|
66 ("Sparse::SparseRep::elem (octave_idx_type, octave_idx_type): sparse matrix filled"); |
5164
|
67 return *d; |
|
68 } |
|
69 |
5275
|
70 octave_idx_type to_move = c[ncols] - i; |
5164
|
71 if (to_move != 0) |
|
72 { |
5275
|
73 for (octave_idx_type j = c[ncols]; j > i; j--) |
5164
|
74 { |
|
75 d[j] = d[j-1]; |
|
76 r[j] = r[j-1]; |
|
77 } |
|
78 } |
|
79 |
5275
|
80 for (octave_idx_type j = _c + 1; j < ncols + 1; j++) |
5164
|
81 c[j] = c[j] + 1; |
|
82 |
|
83 d[i] = 0.; |
|
84 r[i] = _r; |
|
85 |
|
86 return d[i]; |
|
87 } |
|
88 else |
|
89 { |
|
90 (*current_liboctave_error_handler) |
5275
|
91 ("Sparse::SparseRep::elem (octave_idx_type, octave_idx_type): sparse matrix filled"); |
5164
|
92 return *d; |
|
93 } |
|
94 } |
|
95 |
|
96 template <class T> |
|
97 T |
5275
|
98 Sparse<T>::SparseRep::celem (octave_idx_type _r, octave_idx_type _c) const |
5164
|
99 { |
5604
|
100 if (nzmx > 0) |
5275
|
101 for (octave_idx_type i = c[_c]; i < c[_c + 1]; i++) |
5164
|
102 if (r[i] == _r) |
|
103 return d[i]; |
|
104 return T (); |
|
105 } |
|
106 |
|
107 template <class T> |
|
108 void |
|
109 Sparse<T>::SparseRep::maybe_compress (bool remove_zeros) |
|
110 { |
5604
|
111 octave_idx_type ndel = nzmx - c[ncols]; |
5275
|
112 octave_idx_type nzero = 0; |
5164
|
113 |
|
114 if (remove_zeros) |
5604
|
115 for (octave_idx_type i = 0; i < nzmx - ndel; i++) |
5164
|
116 if (d[i] == T ()) |
|
117 nzero++; |
|
118 |
|
119 if (!ndel && !nzero) |
|
120 return; |
|
121 |
|
122 if (!nzero) |
|
123 { |
5604
|
124 octave_idx_type new_nzmx = nzmx - ndel; |
|
125 |
|
126 T *new_data = new T [new_nzmx]; |
|
127 for (octave_idx_type i = 0; i < new_nzmx; i++) |
5164
|
128 new_data[i] = d[i]; |
|
129 delete [] d; |
|
130 d = new_data; |
|
131 |
5604
|
132 octave_idx_type *new_ridx = new octave_idx_type [new_nzmx]; |
|
133 for (octave_idx_type i = 0; i < new_nzmx; i++) |
5164
|
134 new_ridx[i] = r[i]; |
|
135 delete [] r; |
|
136 r = new_ridx; |
|
137 } |
|
138 else |
|
139 { |
5604
|
140 octave_idx_type new_nzmx = nzmx - ndel - nzero; |
|
141 |
|
142 T *new_data = new T [new_nzmx]; |
|
143 octave_idx_type *new_ridx = new octave_idx_type [new_nzmx]; |
5275
|
144 |
|
145 octave_idx_type ii = 0; |
|
146 octave_idx_type ic = 0; |
|
147 for (octave_idx_type j = 0; j < ncols; j++) |
5164
|
148 { |
5275
|
149 for (octave_idx_type k = ic; k < c[j+1]; k++) |
5164
|
150 if (d[k] != T ()) |
|
151 { |
|
152 new_data [ii] = d[k]; |
|
153 new_ridx [ii++] = r[k]; |
|
154 } |
|
155 ic = c[j+1]; |
|
156 c[j+1] = ii; |
|
157 } |
|
158 |
|
159 delete [] d; |
|
160 d = new_data; |
|
161 |
|
162 delete [] r; |
|
163 r = new_ridx; |
|
164 } |
|
165 |
5604
|
166 nzmx -= ndel + nzero; |
5164
|
167 } |
|
168 |
|
169 template <class T> |
|
170 void |
5275
|
171 Sparse<T>::SparseRep::change_length (octave_idx_type nz) |
5164
|
172 { |
5604
|
173 if (nz != nzmx) |
5164
|
174 { |
5604
|
175 octave_idx_type min_nzmx = (nz < nzmx ? nz : nzmx); |
5275
|
176 |
|
177 octave_idx_type * new_ridx = new octave_idx_type [nz]; |
5604
|
178 for (octave_idx_type i = 0; i < min_nzmx; i++) |
5164
|
179 new_ridx[i] = r[i]; |
|
180 |
|
181 delete [] r; |
|
182 r = new_ridx; |
|
183 |
|
184 T * new_data = new T [nz]; |
5604
|
185 for (octave_idx_type i = 0; i < min_nzmx; i++) |
5164
|
186 new_data[i] = d[i]; |
|
187 |
|
188 delete [] d; |
|
189 d = new_data; |
|
190 |
5604
|
191 if (nz < nzmx) |
5275
|
192 for (octave_idx_type i = 0; i <= ncols; i++) |
5164
|
193 if (c[i] > nz) |
|
194 c[i] = nz; |
|
195 |
5604
|
196 nzmx = nz; |
5164
|
197 } |
|
198 } |
|
199 |
|
200 template <class T> |
|
201 template <class U> |
|
202 Sparse<T>::Sparse (const Sparse<U>& a) |
|
203 : dimensions (a.dimensions), idx (0), idx_count (0) |
|
204 { |
5681
|
205 if (a.nnz () == 0) |
5164
|
206 rep = new typename Sparse<T>::SparseRep (rows (), cols()); |
|
207 else |
|
208 { |
5681
|
209 rep = new typename Sparse<T>::SparseRep (rows (), cols (), a.nnz ()); |
5164
|
210 |
5681
|
211 octave_idx_type nz = a.nnz (); |
5275
|
212 octave_idx_type nc = cols (); |
|
213 for (octave_idx_type i = 0; i < nz; i++) |
5164
|
214 { |
|
215 xdata (i) = T (a.data (i)); |
|
216 xridx (i) = a.ridx (i); |
|
217 } |
5275
|
218 for (octave_idx_type i = 0; i < nc + 1; i++) |
5164
|
219 xcidx (i) = a.cidx (i); |
|
220 } |
|
221 } |
|
222 |
|
223 template <class T> |
5275
|
224 Sparse<T>::Sparse (octave_idx_type nr, octave_idx_type nc, T val) |
5630
|
225 : dimensions (dim_vector (nr, nc)), idx (0), idx_count (0) |
5164
|
226 { |
5630
|
227 if (val != T ()) |
5164
|
228 { |
5630
|
229 rep = new typename Sparse<T>::SparseRep (nr, nc, nr*nc); |
|
230 |
|
231 octave_idx_type ii = 0; |
|
232 xcidx (0) = 0; |
|
233 for (octave_idx_type j = 0; j < nc; j++) |
5164
|
234 { |
5630
|
235 for (octave_idx_type i = 0; i < nr; i++) |
|
236 { |
|
237 xdata (ii) = val; |
|
238 xridx (ii++) = i; |
|
239 } |
|
240 xcidx (j+1) = ii; |
|
241 } |
|
242 } |
|
243 else |
|
244 { |
|
245 rep = new typename Sparse<T>::SparseRep (nr, nc, 0); |
|
246 for (octave_idx_type j = 0; j < nc+1; j++) |
|
247 xcidx(j) = 0; |
5164
|
248 } |
|
249 } |
|
250 |
|
251 template <class T> |
|
252 Sparse<T>::Sparse (const dim_vector& dv) |
|
253 : dimensions (dv), idx (0), idx_count (0) |
|
254 { |
|
255 if (dv.length() != 2) |
|
256 (*current_liboctave_error_handler) |
|
257 ("Sparse::Sparse (const dim_vector&): dimension mismatch"); |
|
258 else |
|
259 rep = new typename Sparse<T>::SparseRep (dv(0), dv(1)); |
|
260 } |
|
261 |
|
262 template <class T> |
|
263 Sparse<T>::Sparse (const Sparse<T>& a, const dim_vector& dv) |
|
264 : dimensions (dv), idx (0), idx_count (0) |
|
265 { |
|
266 |
|
267 // Work in unsigned long long to avoid overflow issues with numel |
|
268 unsigned long long a_nel = static_cast<unsigned long long>(a.rows ()) * |
|
269 static_cast<unsigned long long>(a.cols ()); |
|
270 unsigned long long dv_nel = static_cast<unsigned long long>(dv (0)) * |
|
271 static_cast<unsigned long long>(dv (1)); |
|
272 |
|
273 if (a_nel != dv_nel) |
|
274 (*current_liboctave_error_handler) |
|
275 ("Sparse::Sparse (const Sparse&, const dim_vector&): dimension mismatch"); |
|
276 else |
|
277 { |
|
278 dim_vector old_dims = a.dims(); |
5681
|
279 octave_idx_type new_nzmx = a.nnz (); |
5275
|
280 octave_idx_type new_nr = dv (0); |
|
281 octave_idx_type new_nc = dv (1); |
|
282 octave_idx_type old_nr = old_dims (0); |
|
283 octave_idx_type old_nc = old_dims (1); |
5164
|
284 |
5604
|
285 rep = new typename Sparse<T>::SparseRep (new_nr, new_nc, new_nzmx); |
5164
|
286 |
5275
|
287 octave_idx_type kk = 0; |
5164
|
288 xcidx(0) = 0; |
5275
|
289 for (octave_idx_type i = 0; i < old_nc; i++) |
|
290 for (octave_idx_type j = a.cidx(i); j < a.cidx(i+1); j++) |
5164
|
291 { |
5275
|
292 octave_idx_type tmp = i * old_nr + a.ridx(j); |
|
293 octave_idx_type ii = tmp % new_nr; |
|
294 octave_idx_type jj = (tmp - ii) / new_nr; |
|
295 for (octave_idx_type k = kk; k < jj; k++) |
5164
|
296 xcidx(k+1) = j; |
|
297 kk = jj; |
|
298 xdata(j) = a.data(j); |
|
299 xridx(j) = ii; |
|
300 } |
5275
|
301 for (octave_idx_type k = kk; k < new_nc; k++) |
5604
|
302 xcidx(k+1) = new_nzmx; |
5164
|
303 } |
|
304 } |
|
305 |
|
306 template <class T> |
5275
|
307 Sparse<T>::Sparse (const Array<T>& a, const Array<octave_idx_type>& r, |
|
308 const Array<octave_idx_type>& c, octave_idx_type nr, |
|
309 octave_idx_type nc, bool sum_terms) |
5164
|
310 : dimensions (dim_vector (nr, nc)), idx (0), idx_count (0) |
|
311 { |
5275
|
312 octave_idx_type a_len = a.length (); |
|
313 octave_idx_type r_len = r.length (); |
|
314 octave_idx_type c_len = c.length (); |
5164
|
315 bool ri_scalar = (r_len == 1); |
|
316 bool ci_scalar = (c_len == 1); |
|
317 bool cf_scalar = (a_len == 1); |
|
318 |
|
319 if ((a_len != r_len && !cf_scalar && !ri_scalar) || |
|
320 (a_len != c_len && !cf_scalar && !ci_scalar) || |
|
321 (r_len != c_len && !ri_scalar && !ci_scalar) || nr < 0 || nc < 0) |
|
322 { |
|
323 (*current_liboctave_error_handler) |
5275
|
324 ("Sparse::Sparse (const Array<T>&, const Array<octave_idx_type>&, ...): dimension mismatch"); |
5164
|
325 rep = nil_rep (); |
|
326 dimensions = dim_vector (0, 0); |
|
327 } |
|
328 else |
|
329 { |
5604
|
330 octave_idx_type max_nzmx = (r_len > c_len ? r_len : c_len); |
|
331 |
|
332 OCTAVE_LOCAL_BUFFER (octave_sparse_sort_idxl *, sidx, max_nzmx); |
|
333 OCTAVE_LOCAL_BUFFER (octave_sparse_sort_idxl, sidxX, max_nzmx); |
|
334 |
|
335 for (octave_idx_type i = 0; i < max_nzmx; i++) |
5164
|
336 sidx[i] = &sidxX[i]; |
|
337 |
5604
|
338 octave_idx_type actual_nzmx = 0; |
5164
|
339 OCTAVE_QUIT; |
5604
|
340 for (octave_idx_type i = 0; i < max_nzmx; i++) |
5164
|
341 { |
5275
|
342 octave_idx_type rowidx = (ri_scalar ? r(0) : r(i)); |
|
343 octave_idx_type colidx = (ci_scalar ? c(0) : c(i)); |
5164
|
344 if (rowidx < nr && rowidx >= 0 && |
|
345 colidx < nc && colidx >= 0 ) |
|
346 { |
|
347 if ( a (cf_scalar ? 0 : i ) != T ()) |
|
348 { |
5604
|
349 sidx[actual_nzmx]->r = rowidx; |
|
350 sidx[actual_nzmx]->c = colidx; |
|
351 sidx[actual_nzmx]->idx = i; |
|
352 actual_nzmx++; |
5164
|
353 } |
|
354 } |
|
355 else |
|
356 { |
|
357 (*current_liboctave_error_handler) |
|
358 ("Sparse::Sparse : index (%d,%d) out of range", |
|
359 rowidx + 1, colidx + 1); |
|
360 rep = nil_rep (); |
|
361 dimensions = dim_vector (0, 0); |
|
362 return; |
|
363 } |
|
364 } |
|
365 |
5604
|
366 if (actual_nzmx == 0) |
5164
|
367 rep = new typename Sparse<T>::SparseRep (nr, nc); |
|
368 else |
|
369 { |
|
370 OCTAVE_QUIT; |
|
371 octave_sort<octave_sparse_sort_idxl *> |
7433
|
372 lsort (octave_sparse_sidxl_comp); |
|
373 |
|
374 lsort.sort (sidx, actual_nzmx); |
5164
|
375 OCTAVE_QUIT; |
|
376 |
|
377 // Now count the unique non-zero values |
5604
|
378 octave_idx_type real_nzmx = 1; |
|
379 for (octave_idx_type i = 1; i < actual_nzmx; i++) |
5164
|
380 if (sidx[i-1]->r != sidx[i]->r || sidx[i-1]->c != sidx[i]->c) |
5604
|
381 real_nzmx++; |
|
382 |
|
383 rep = new typename Sparse<T>::SparseRep (nr, nc, real_nzmx); |
5164
|
384 |
5275
|
385 octave_idx_type cx = 0; |
|
386 octave_idx_type prev_rval = -1; |
|
387 octave_idx_type prev_cval = -1; |
|
388 octave_idx_type ii = -1; |
5164
|
389 xcidx (0) = 0; |
5604
|
390 for (octave_idx_type i = 0; i < actual_nzmx; i++) |
5164
|
391 { |
|
392 OCTAVE_QUIT; |
5275
|
393 octave_idx_type iidx = sidx[i]->idx; |
|
394 octave_idx_type rval = sidx[i]->r; |
|
395 octave_idx_type cval = sidx[i]->c; |
5164
|
396 |
|
397 if (prev_cval < cval || (prev_rval < rval && prev_cval == cval)) |
|
398 { |
5275
|
399 octave_idx_type ci = static_cast<octave_idx_type> (c (ci_scalar ? 0 : iidx)); |
5164
|
400 ii++; |
|
401 while (cx < ci) |
|
402 xcidx (++cx) = ii; |
|
403 xdata(ii) = a (cf_scalar ? 0 : iidx); |
5275
|
404 xridx(ii) = static_cast<octave_idx_type> (r (ri_scalar ? 0 : iidx)); |
5164
|
405 } |
|
406 else |
|
407 { |
|
408 if (sum_terms) |
|
409 xdata(ii) += a (cf_scalar ? 0 : iidx); |
|
410 else |
|
411 xdata(ii) = a (cf_scalar ? 0 : iidx); |
|
412 } |
|
413 prev_rval = rval; |
|
414 prev_cval = cval; |
|
415 } |
|
416 |
|
417 while (cx < nc) |
|
418 xcidx (++cx) = ii + 1; |
|
419 } |
|
420 } |
|
421 } |
|
422 |
|
423 template <class T> |
|
424 Sparse<T>::Sparse (const Array<T>& a, const Array<double>& r, |
5275
|
425 const Array<double>& c, octave_idx_type nr, |
|
426 octave_idx_type nc, bool sum_terms) |
5164
|
427 : dimensions (dim_vector (nr, nc)), idx (0), idx_count (0) |
|
428 { |
5275
|
429 octave_idx_type a_len = a.length (); |
|
430 octave_idx_type r_len = r.length (); |
|
431 octave_idx_type c_len = c.length (); |
5164
|
432 bool ri_scalar = (r_len == 1); |
|
433 bool ci_scalar = (c_len == 1); |
|
434 bool cf_scalar = (a_len == 1); |
|
435 |
|
436 if ((a_len != r_len && !cf_scalar && !ri_scalar) || |
|
437 (a_len != c_len && !cf_scalar && !ci_scalar) || |
|
438 (r_len != c_len && !ri_scalar && !ci_scalar) || nr < 0 || nc < 0) |
|
439 { |
|
440 (*current_liboctave_error_handler) |
|
441 ("Sparse::Sparse (const Array<T>&, const Array<double>&, ...): dimension mismatch"); |
|
442 rep = nil_rep (); |
|
443 dimensions = dim_vector (0, 0); |
|
444 } |
|
445 else |
|
446 { |
5604
|
447 octave_idx_type max_nzmx = (r_len > c_len ? r_len : c_len); |
5164
|
448 |
5604
|
449 OCTAVE_LOCAL_BUFFER (octave_sparse_sort_idxl *, sidx, max_nzmx); |
|
450 OCTAVE_LOCAL_BUFFER (octave_sparse_sort_idxl, sidxX, max_nzmx); |
|
451 |
|
452 for (octave_idx_type i = 0; i < max_nzmx; i++) |
5164
|
453 sidx[i] = &sidxX[i]; |
|
454 |
5604
|
455 octave_idx_type actual_nzmx = 0; |
5164
|
456 OCTAVE_QUIT; |
|
457 |
5604
|
458 for (octave_idx_type i = 0; i < max_nzmx; i++) |
5164
|
459 { |
5275
|
460 octave_idx_type rowidx = static_cast<octave_idx_type> (ri_scalar ? r(0) : r(i)); |
|
461 octave_idx_type colidx = static_cast<octave_idx_type> (ci_scalar ? c(0) : c(i)); |
5164
|
462 if (rowidx < nr && rowidx >= 0 && |
|
463 colidx < nc && colidx >= 0 ) |
|
464 { |
|
465 if ( a (cf_scalar ? 0 : i ) != T ()) |
|
466 { |
5604
|
467 sidx[actual_nzmx]->r = rowidx; |
|
468 sidx[actual_nzmx]->c = colidx; |
|
469 sidx[actual_nzmx]->idx = i; |
|
470 actual_nzmx++; |
5164
|
471 } |
|
472 } |
|
473 else |
|
474 { |
|
475 (*current_liboctave_error_handler) |
|
476 ("Sparse::Sparse : index (%d,%d) out of range", |
|
477 rowidx + 1, colidx + 1); |
|
478 rep = nil_rep (); |
|
479 dimensions = dim_vector (0, 0); |
|
480 return; |
|
481 } |
|
482 } |
|
483 |
5604
|
484 if (actual_nzmx == 0) |
5164
|
485 rep = new typename Sparse<T>::SparseRep (nr, nc); |
|
486 else |
|
487 { |
|
488 OCTAVE_QUIT; |
|
489 octave_sort<octave_sparse_sort_idxl *> |
7433
|
490 lsort (octave_sparse_sidxl_comp); |
|
491 |
|
492 lsort.sort (sidx, actual_nzmx); |
5164
|
493 OCTAVE_QUIT; |
|
494 |
|
495 // Now count the unique non-zero values |
5604
|
496 octave_idx_type real_nzmx = 1; |
|
497 for (octave_idx_type i = 1; i < actual_nzmx; i++) |
5164
|
498 if (sidx[i-1]->r != sidx[i]->r || sidx[i-1]->c != sidx[i]->c) |
5604
|
499 real_nzmx++; |
|
500 |
|
501 rep = new typename Sparse<T>::SparseRep (nr, nc, real_nzmx); |
5164
|
502 |
5275
|
503 octave_idx_type cx = 0; |
|
504 octave_idx_type prev_rval = -1; |
|
505 octave_idx_type prev_cval = -1; |
|
506 octave_idx_type ii = -1; |
5164
|
507 xcidx (0) = 0; |
5604
|
508 for (octave_idx_type i = 0; i < actual_nzmx; i++) |
5164
|
509 { |
|
510 OCTAVE_QUIT; |
5275
|
511 octave_idx_type iidx = sidx[i]->idx; |
|
512 octave_idx_type rval = sidx[i]->r; |
|
513 octave_idx_type cval = sidx[i]->c; |
5164
|
514 |
|
515 if (prev_cval < cval || (prev_rval < rval && prev_cval == cval)) |
|
516 { |
5275
|
517 octave_idx_type ci = static_cast<octave_idx_type> (c (ci_scalar ? 0 : iidx)); |
5164
|
518 ii++; |
|
519 |
|
520 while (cx < ci) |
|
521 xcidx (++cx) = ii; |
|
522 xdata(ii) = a (cf_scalar ? 0 : iidx); |
5275
|
523 xridx(ii) = static_cast<octave_idx_type> (r (ri_scalar ? 0 : iidx)); |
5164
|
524 } |
|
525 else |
|
526 { |
|
527 if (sum_terms) |
|
528 xdata(ii) += a (cf_scalar ? 0 : iidx); |
|
529 else |
|
530 xdata(ii) = a (cf_scalar ? 0 : iidx); |
|
531 } |
|
532 prev_rval = rval; |
|
533 prev_cval = cval; |
|
534 } |
|
535 |
|
536 while (cx < nc) |
|
537 xcidx (++cx) = ii + 1; |
|
538 } |
|
539 } |
|
540 } |
|
541 |
|
542 template <class T> |
|
543 Sparse<T>::Sparse (const Array2<T>& a) |
|
544 : dimensions (a.dims ()), idx (0), idx_count (0) |
|
545 { |
5275
|
546 octave_idx_type nr = rows (); |
|
547 octave_idx_type nc = cols (); |
|
548 octave_idx_type len = a.length (); |
5604
|
549 octave_idx_type new_nzmx = 0; |
5164
|
550 |
|
551 // First count the number of non-zero terms |
5275
|
552 for (octave_idx_type i = 0; i < len; i++) |
5164
|
553 if (a(i) != T ()) |
5604
|
554 new_nzmx++; |
|
555 |
|
556 rep = new typename Sparse<T>::SparseRep (nr, nc, new_nzmx); |
5164
|
557 |
5275
|
558 octave_idx_type ii = 0; |
5164
|
559 xcidx(0) = 0; |
5275
|
560 for (octave_idx_type j = 0; j < nc; j++) |
5164
|
561 { |
5275
|
562 for (octave_idx_type i = 0; i < nr; i++) |
5164
|
563 if (a.elem (i,j) != T ()) |
|
564 { |
|
565 xdata(ii) = a.elem (i,j); |
|
566 xridx(ii++) = i; |
|
567 } |
|
568 xcidx(j+1) = ii; |
|
569 } |
|
570 } |
|
571 |
|
572 template <class T> |
|
573 Sparse<T>::Sparse (const Array<T>& a) |
|
574 : dimensions (a.dims ()), idx (0), idx_count (0) |
|
575 { |
|
576 if (dimensions.length () > 2) |
|
577 (*current_liboctave_error_handler) |
|
578 ("Sparse::Sparse (const Array<T>&): dimension mismatch"); |
|
579 else |
|
580 { |
5275
|
581 octave_idx_type nr = rows (); |
|
582 octave_idx_type nc = cols (); |
|
583 octave_idx_type len = a.length (); |
5604
|
584 octave_idx_type new_nzmx = 0; |
5164
|
585 |
|
586 // First count the number of non-zero terms |
5275
|
587 for (octave_idx_type i = 0; i < len; i++) |
5164
|
588 if (a(i) != T ()) |
5604
|
589 new_nzmx++; |
|
590 |
|
591 rep = new typename Sparse<T>::SparseRep (nr, nc, new_nzmx); |
5164
|
592 |
5275
|
593 octave_idx_type ii = 0; |
5164
|
594 xcidx(0) = 0; |
5275
|
595 for (octave_idx_type j = 0; j < nc; j++) |
5164
|
596 { |
5275
|
597 for (octave_idx_type i = 0; i < nr; i++) |
5164
|
598 if (a.elem (i,j) != T ()) |
|
599 { |
|
600 xdata(ii) = a.elem (i,j); |
|
601 xridx(ii++) = i; |
|
602 } |
|
603 xcidx(j+1) = ii; |
|
604 } |
|
605 } |
|
606 } |
|
607 |
|
608 template <class T> |
|
609 Sparse<T>::~Sparse (void) |
|
610 { |
|
611 if (--rep->count <= 0) |
|
612 delete rep; |
|
613 |
|
614 delete [] idx; |
|
615 } |
|
616 |
|
617 template <class T> |
5275
|
618 octave_idx_type |
|
619 Sparse<T>::compute_index (const Array<octave_idx_type>& ra_idx) const |
5164
|
620 { |
5275
|
621 octave_idx_type retval = -1; |
|
622 |
|
623 octave_idx_type n = dimensions.length (); |
5164
|
624 |
|
625 if (n > 0 && n == ra_idx.length ()) |
|
626 { |
|
627 retval = ra_idx(--n); |
|
628 |
|
629 while (--n >= 0) |
|
630 { |
|
631 retval *= dimensions(n); |
|
632 retval += ra_idx(n); |
|
633 } |
|
634 } |
|
635 else |
|
636 (*current_liboctave_error_handler) |
|
637 ("Sparse<T>::compute_index: invalid ra_idxing operation"); |
|
638 |
|
639 return retval; |
|
640 } |
|
641 |
|
642 template <class T> |
|
643 T |
5275
|
644 Sparse<T>::range_error (const char *fcn, octave_idx_type n) const |
5164
|
645 { |
|
646 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
|
647 return T (); |
|
648 } |
|
649 |
|
650 template <class T> |
|
651 T& |
5275
|
652 Sparse<T>::range_error (const char *fcn, octave_idx_type n) |
5164
|
653 { |
|
654 (*current_liboctave_error_handler) ("%s (%d): range error", fcn, n); |
|
655 static T foo; |
|
656 return foo; |
|
657 } |
|
658 |
|
659 template <class T> |
|
660 T |
5275
|
661 Sparse<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) const |
5164
|
662 { |
|
663 (*current_liboctave_error_handler) |
|
664 ("%s (%d, %d): range error", fcn, i, j); |
|
665 return T (); |
|
666 } |
|
667 |
|
668 template <class T> |
|
669 T& |
5275
|
670 Sparse<T>::range_error (const char *fcn, octave_idx_type i, octave_idx_type j) |
5164
|
671 { |
|
672 (*current_liboctave_error_handler) |
|
673 ("%s (%d, %d): range error", fcn, i, j); |
|
674 static T foo; |
|
675 return foo; |
|
676 } |
|
677 |
|
678 template <class T> |
|
679 T |
5275
|
680 Sparse<T>::range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) const |
5164
|
681 { |
5765
|
682 std::ostringstream buf; |
5164
|
683 |
|
684 buf << fcn << " ("; |
|
685 |
5275
|
686 octave_idx_type n = ra_idx.length (); |
5164
|
687 |
|
688 if (n > 0) |
|
689 buf << ra_idx(0); |
|
690 |
5275
|
691 for (octave_idx_type i = 1; i < n; i++) |
5164
|
692 buf << ", " << ra_idx(i); |
|
693 |
|
694 buf << "): range error"; |
5765
|
695 |
|
696 std::string buf_str = buf.str (); |
|
697 |
|
698 (*current_liboctave_error_handler) (buf_str.c_str ()); |
5164
|
699 |
|
700 return T (); |
|
701 } |
|
702 |
|
703 template <class T> |
|
704 T& |
5275
|
705 Sparse<T>::range_error (const char *fcn, const Array<octave_idx_type>& ra_idx) |
5164
|
706 { |
5765
|
707 std::ostringstream buf; |
5164
|
708 |
|
709 buf << fcn << " ("; |
|
710 |
5275
|
711 octave_idx_type n = ra_idx.length (); |
5164
|
712 |
|
713 if (n > 0) |
|
714 buf << ra_idx(0); |
|
715 |
5275
|
716 for (octave_idx_type i = 1; i < n; i++) |
5164
|
717 buf << ", " << ra_idx(i); |
|
718 |
|
719 buf << "): range error"; |
|
720 |
5765
|
721 std::string buf_str = buf.str (); |
|
722 |
|
723 (*current_liboctave_error_handler) (buf_str.c_str ()); |
5164
|
724 |
|
725 static T foo; |
|
726 return foo; |
|
727 } |
|
728 |
|
729 template <class T> |
|
730 Sparse<T> |
|
731 Sparse<T>::reshape (const dim_vector& new_dims) const |
|
732 { |
|
733 Sparse<T> retval; |
6689
|
734 dim_vector dims2 = new_dims; |
|
735 |
|
736 if (dims2.length () > 2) |
5164
|
737 { |
6814
|
738 (*current_liboctave_warning_handler) |
|
739 ("reshape: sparse reshape to N-d array smashes dims"); |
|
740 |
6689
|
741 for (octave_idx_type i = 2; i < dims2.length(); i++) |
6814
|
742 dims2(1) *= dims2(i); |
|
743 |
6689
|
744 dims2.resize (2); |
|
745 } |
|
746 |
|
747 if (dimensions != dims2) |
|
748 { |
|
749 if (dimensions.numel () == dims2.numel ()) |
5164
|
750 { |
5681
|
751 octave_idx_type new_nnz = nnz (); |
6689
|
752 octave_idx_type new_nr = dims2 (0); |
|
753 octave_idx_type new_nc = dims2 (1); |
5275
|
754 octave_idx_type old_nr = rows (); |
|
755 octave_idx_type old_nc = cols (); |
5681
|
756 retval = Sparse<T> (new_nr, new_nc, new_nnz); |
5164
|
757 |
5275
|
758 octave_idx_type kk = 0; |
5164
|
759 retval.xcidx(0) = 0; |
5275
|
760 for (octave_idx_type i = 0; i < old_nc; i++) |
|
761 for (octave_idx_type j = cidx(i); j < cidx(i+1); j++) |
5164
|
762 { |
5275
|
763 octave_idx_type tmp = i * old_nr + ridx(j); |
|
764 octave_idx_type ii = tmp % new_nr; |
|
765 octave_idx_type jj = (tmp - ii) / new_nr; |
|
766 for (octave_idx_type k = kk; k < jj; k++) |
5164
|
767 retval.xcidx(k+1) = j; |
|
768 kk = jj; |
|
769 retval.xdata(j) = data(j); |
|
770 retval.xridx(j) = ii; |
|
771 } |
5275
|
772 for (octave_idx_type k = kk; k < new_nc; k++) |
5681
|
773 retval.xcidx(k+1) = new_nnz; |
5164
|
774 } |
|
775 else |
|
776 (*current_liboctave_error_handler) ("reshape: size mismatch"); |
|
777 } |
|
778 else |
|
779 retval = *this; |
|
780 |
|
781 return retval; |
|
782 } |
|
783 |
|
784 template <class T> |
|
785 Sparse<T> |
5275
|
786 Sparse<T>::permute (const Array<octave_idx_type>& perm_vec, bool) const |
5164
|
787 { |
6813
|
788 // The only valid permutations of a sparse array are [1, 2] and [2, 1]. |
|
789 |
|
790 bool fail = false; |
6817
|
791 bool trans = false; |
6813
|
792 |
|
793 if (perm_vec.length () == 2) |
5164
|
794 { |
6813
|
795 if (perm_vec(0) == 0 && perm_vec(1) == 1) |
|
796 /* do nothing */; |
|
797 else if (perm_vec(0) == 1 && perm_vec(1) == 0) |
6817
|
798 trans = true; |
5164
|
799 else |
6813
|
800 fail = true; |
5164
|
801 } |
|
802 else |
6813
|
803 fail = true; |
|
804 |
|
805 if (fail) |
|
806 (*current_liboctave_error_handler) |
|
807 ("permutation vector contains an invalid element"); |
|
808 |
6817
|
809 return trans ? this->transpose () : *this; |
5164
|
810 } |
|
811 |
|
812 template <class T> |
|
813 void |
|
814 Sparse<T>::resize_no_fill (const dim_vector& dv) |
|
815 { |
5275
|
816 octave_idx_type n = dv.length (); |
5164
|
817 |
|
818 if (n != 2) |
|
819 { |
|
820 (*current_liboctave_error_handler) ("sparse array must be 2-D"); |
|
821 return; |
|
822 } |
|
823 |
|
824 resize_no_fill (dv(0), dv(1)); |
|
825 } |
|
826 |
|
827 template <class T> |
|
828 void |
5275
|
829 Sparse<T>::resize_no_fill (octave_idx_type r, octave_idx_type c) |
5164
|
830 { |
|
831 if (r < 0 || c < 0) |
|
832 { |
|
833 (*current_liboctave_error_handler) |
|
834 ("can't resize to negative dimension"); |
|
835 return; |
|
836 } |
|
837 |
|
838 if (ndims () == 0) |
|
839 dimensions = dim_vector (0, 0); |
|
840 |
|
841 if (r == dim1 () && c == dim2 ()) |
|
842 return; |
|
843 |
5731
|
844 typename Sparse<T>::SparseRep *old_rep = rep; |
|
845 |
5275
|
846 octave_idx_type nc = cols (); |
|
847 octave_idx_type nr = rows (); |
5164
|
848 |
5681
|
849 if (nnz () == 0 || r == 0 || c == 0) |
5164
|
850 // Special case of redimensioning to/from a sparse matrix with |
|
851 // no elements |
|
852 rep = new typename Sparse<T>::SparseRep (r, c); |
|
853 else |
|
854 { |
5275
|
855 octave_idx_type n = 0; |
5164
|
856 Sparse<T> tmpval; |
|
857 if (r >= nr) |
|
858 { |
|
859 if (c > nc) |
5731
|
860 n = xcidx(nc); |
5164
|
861 else |
5731
|
862 n = xcidx(c); |
5164
|
863 |
|
864 tmpval = Sparse<T> (r, c, n); |
|
865 |
|
866 if (c > nc) |
|
867 { |
6101
|
868 for (octave_idx_type i = 0; i < nc + 1; i++) |
5731
|
869 tmpval.cidx(i) = xcidx(i); |
6101
|
870 for (octave_idx_type i = nc + 1; i < c + 1; i++) |
5164
|
871 tmpval.cidx(i) = tmpval.cidx(i-1); |
|
872 } |
|
873 else if (c <= nc) |
6101
|
874 for (octave_idx_type i = 0; i < c + 1; i++) |
5731
|
875 tmpval.cidx(i) = xcidx(i); |
5164
|
876 |
5275
|
877 for (octave_idx_type i = 0; i < n; i++) |
5164
|
878 { |
5731
|
879 tmpval.data(i) = xdata(i); |
|
880 tmpval.ridx(i) = xridx(i); |
5164
|
881 } |
|
882 } |
|
883 else |
|
884 { |
|
885 // Count how many non zero terms before we do anything |
6101
|
886 octave_idx_type min_nc = (c < nc ? c : nc); |
|
887 for (octave_idx_type i = 0; i < min_nc; i++) |
5731
|
888 for (octave_idx_type j = xcidx(i); j < xcidx(i+1); j++) |
|
889 if (xridx(j) < r) |
5164
|
890 n++; |
|
891 |
|
892 if (n) |
|
893 { |
|
894 // Now that we know the size we can do something |
|
895 tmpval = Sparse<T> (r, c, n); |
|
896 |
|
897 tmpval.cidx(0); |
6101
|
898 for (octave_idx_type i = 0, ii = 0; i < min_nc; i++) |
5164
|
899 { |
5731
|
900 for (octave_idx_type j = xcidx(i); j < xcidx(i+1); j++) |
|
901 if (xridx(j) < r) |
5164
|
902 { |
5731
|
903 tmpval.data(ii) = xdata(j); |
|
904 tmpval.ridx(ii++) = xridx(j); |
5164
|
905 } |
|
906 tmpval.cidx(i+1) = ii; |
|
907 } |
6101
|
908 if (c > min_nc) |
|
909 for (octave_idx_type i = nc; i < c; i++) |
|
910 tmpval.cidx(i+1) = tmpval.cidx(i); |
5164
|
911 } |
|
912 else |
|
913 tmpval = Sparse<T> (r, c); |
|
914 } |
|
915 |
|
916 rep = tmpval.rep; |
|
917 rep->count++; |
|
918 } |
|
919 |
|
920 dimensions = dim_vector (r, c); |
|
921 |
|
922 if (--old_rep->count <= 0) |
|
923 delete old_rep; |
|
924 } |
|
925 |
|
926 template <class T> |
|
927 Sparse<T>& |
5275
|
928 Sparse<T>::insert (const Sparse<T>& a, octave_idx_type r, octave_idx_type c) |
5164
|
929 { |
5275
|
930 octave_idx_type a_rows = a.rows (); |
|
931 octave_idx_type a_cols = a.cols (); |
|
932 octave_idx_type nr = rows (); |
|
933 octave_idx_type nc = cols (); |
5164
|
934 |
|
935 if (r < 0 || r + a_rows > rows () || c < 0 || c + a_cols > cols ()) |
|
936 { |
|
937 (*current_liboctave_error_handler) ("range error for insert"); |
|
938 return *this; |
|
939 } |
|
940 |
|
941 // First count the number of elements in the final array |
5681
|
942 octave_idx_type nel = cidx(c) + a.nnz (); |
5164
|
943 |
|
944 if (c + a_cols < nc) |
|
945 nel += cidx(nc) - cidx(c + a_cols); |
|
946 |
5275
|
947 for (octave_idx_type i = c; i < c + a_cols; i++) |
|
948 for (octave_idx_type j = cidx(i); j < cidx(i+1); j++) |
5164
|
949 if (ridx(j) < r || ridx(j) >= r + a_rows) |
|
950 nel++; |
|
951 |
|
952 Sparse<T> tmp (*this); |
|
953 --rep->count; |
|
954 rep = new typename Sparse<T>::SparseRep (nr, nc, nel); |
|
955 |
5275
|
956 for (octave_idx_type i = 0; i < tmp.cidx(c); i++) |
5164
|
957 { |
|
958 data(i) = tmp.data(i); |
|
959 ridx(i) = tmp.ridx(i); |
|
960 } |
5275
|
961 for (octave_idx_type i = 0; i < c + 1; i++) |
5164
|
962 cidx(i) = tmp.cidx(i); |
|
963 |
5275
|
964 octave_idx_type ii = cidx(c); |
|
965 |
|
966 for (octave_idx_type i = c; i < c + a_cols; i++) |
5164
|
967 { |
|
968 OCTAVE_QUIT; |
|
969 |
5275
|
970 for (octave_idx_type j = tmp.cidx(i); j < tmp.cidx(i+1); j++) |
5164
|
971 if (tmp.ridx(j) < r) |
|
972 { |
|
973 data(ii) = tmp.data(j); |
|
974 ridx(ii++) = tmp.ridx(j); |
|
975 } |
|
976 |
|
977 OCTAVE_QUIT; |
|
978 |
5275
|
979 for (octave_idx_type j = a.cidx(i-c); j < a.cidx(i-c+1); j++) |
5164
|
980 { |
|
981 data(ii) = a.data(j); |
|
982 ridx(ii++) = r + a.ridx(j); |
|
983 } |
|
984 |
|
985 OCTAVE_QUIT; |
|
986 |
5275
|
987 for (octave_idx_type j = tmp.cidx(i); j < tmp.cidx(i+1); j++) |
5164
|
988 if (tmp.ridx(j) >= r + a_rows) |
|
989 { |
|
990 data(ii) = tmp.data(j); |
|
991 ridx(ii++) = tmp.ridx(j); |
|
992 } |
|
993 |
|
994 cidx(i+1) = ii; |
|
995 } |
|
996 |
5275
|
997 for (octave_idx_type i = c + a_cols; i < nc; i++) |
5164
|
998 { |
5275
|
999 for (octave_idx_type j = tmp.cidx(i); j < tmp.cidx(i+1); j++) |
5164
|
1000 { |
|
1001 data(ii) = tmp.data(j); |
|
1002 ridx(ii++) = tmp.ridx(j); |
|
1003 } |
|
1004 cidx(i+1) = ii; |
|
1005 } |
|
1006 |
|
1007 return *this; |
|
1008 } |
|
1009 |
|
1010 template <class T> |
|
1011 Sparse<T>& |
5275
|
1012 Sparse<T>::insert (const Sparse<T>& a, const Array<octave_idx_type>& ra_idx) |
5164
|
1013 { |
|
1014 |
|
1015 if (ra_idx.length () != 2) |
|
1016 { |
|
1017 (*current_liboctave_error_handler) ("range error for insert"); |
|
1018 return *this; |
|
1019 } |
|
1020 |
|
1021 return insert (a, ra_idx (0), ra_idx (1)); |
|
1022 } |
|
1023 |
|
1024 template <class T> |
|
1025 Sparse<T> |
|
1026 Sparse<T>::transpose (void) const |
|
1027 { |
|
1028 assert (ndims () == 2); |
|
1029 |
5275
|
1030 octave_idx_type nr = rows (); |
|
1031 octave_idx_type nc = cols (); |
5648
|
1032 octave_idx_type nz = nnz (); |
5164
|
1033 Sparse<T> retval (nc, nr, nz); |
|
1034 |
5648
|
1035 OCTAVE_LOCAL_BUFFER (octave_idx_type, w, nr + 1); |
|
1036 for (octave_idx_type i = 0; i < nr; i++) |
|
1037 w[i] = 0; |
|
1038 for (octave_idx_type i = 0; i < nz; i++) |
|
1039 w[ridx(i)]++; |
|
1040 nz = 0; |
|
1041 for (octave_idx_type i = 0; i < nr; i++) |
5164
|
1042 { |
5648
|
1043 retval.xcidx(i) = nz; |
|
1044 nz += w[i]; |
|
1045 w[i] = retval.xcidx(i); |
5164
|
1046 } |
5648
|
1047 retval.xcidx(nr) = nz; |
|
1048 w[nr] = nz; |
|
1049 |
|
1050 for (octave_idx_type j = 0; j < nc; j++) |
|
1051 for (octave_idx_type k = cidx(j); k < cidx(j+1); k++) |
|
1052 { |
|
1053 octave_idx_type q = w [ridx(k)]++; |
|
1054 retval.xridx (q) = j; |
|
1055 retval.xdata (q) = data (k); |
|
1056 } |
5164
|
1057 |
|
1058 return retval; |
|
1059 } |
|
1060 |
|
1061 template <class T> |
|
1062 void |
|
1063 Sparse<T>::clear_index (void) |
|
1064 { |
|
1065 delete [] idx; |
|
1066 idx = 0; |
|
1067 idx_count = 0; |
|
1068 } |
|
1069 |
|
1070 template <class T> |
|
1071 void |
|
1072 Sparse<T>::set_index (const idx_vector& idx_arg) |
|
1073 { |
5275
|
1074 octave_idx_type nd = ndims (); |
5164
|
1075 |
|
1076 if (! idx && nd > 0) |
|
1077 idx = new idx_vector [nd]; |
|
1078 |
|
1079 if (idx_count < nd) |
|
1080 { |
|
1081 idx[idx_count++] = idx_arg; |
|
1082 } |
|
1083 else |
|
1084 { |
|
1085 idx_vector *new_idx = new idx_vector [idx_count+1]; |
|
1086 |
5275
|
1087 for (octave_idx_type i = 0; i < idx_count; i++) |
5164
|
1088 new_idx[i] = idx[i]; |
|
1089 |
|
1090 new_idx[idx_count++] = idx_arg; |
|
1091 |
|
1092 delete [] idx; |
|
1093 |
|
1094 idx = new_idx; |
|
1095 } |
|
1096 } |
|
1097 |
|
1098 template <class T> |
|
1099 void |
|
1100 Sparse<T>::maybe_delete_elements (idx_vector& idx_arg) |
|
1101 { |
5275
|
1102 octave_idx_type nr = dim1 (); |
|
1103 octave_idx_type nc = dim2 (); |
5164
|
1104 |
|
1105 if (nr == 0 && nc == 0) |
|
1106 return; |
|
1107 |
5275
|
1108 octave_idx_type n; |
5164
|
1109 if (nr == 1) |
|
1110 n = nc; |
|
1111 else if (nc == 1) |
|
1112 n = nr; |
|
1113 else |
|
1114 { |
|
1115 // Reshape to row vector for Matlab compatibility. |
|
1116 |
|
1117 n = nr * nc; |
|
1118 nr = 1; |
|
1119 nc = n; |
|
1120 } |
|
1121 |
|
1122 if (idx_arg.is_colon_equiv (n, 1)) |
|
1123 { |
|
1124 // Either A(:) = [] or A(idx) = [] with idx enumerating all |
|
1125 // elements, so we delete all elements and return [](0x0). To |
|
1126 // preserve the orientation of the vector, you have to use |
|
1127 // A(idx,:) = [] (delete rows) or A(:,idx) (delete columns). |
|
1128 |
|
1129 resize_no_fill (0, 0); |
|
1130 return; |
|
1131 } |
|
1132 |
|
1133 idx_arg.sort (true); |
|
1134 |
5275
|
1135 octave_idx_type num_to_delete = idx_arg.length (n); |
5164
|
1136 |
|
1137 if (num_to_delete != 0) |
|
1138 { |
5275
|
1139 octave_idx_type new_n = n; |
5681
|
1140 octave_idx_type new_nnz = nnz (); |
5275
|
1141 |
|
1142 octave_idx_type iidx = 0; |
5164
|
1143 |
|
1144 const Sparse<T> tmp (*this); |
|
1145 |
5275
|
1146 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1147 { |
|
1148 OCTAVE_QUIT; |
|
1149 |
|
1150 if (i == idx_arg.elem (iidx)) |
|
1151 { |
|
1152 iidx++; |
|
1153 new_n--; |
|
1154 |
|
1155 if (tmp.elem (i) != T ()) |
5681
|
1156 new_nnz--; |
5164
|
1157 |
|
1158 if (iidx == num_to_delete) |
|
1159 break; |
|
1160 } |
|
1161 } |
|
1162 |
|
1163 if (new_n > 0) |
|
1164 { |
|
1165 rep->count--; |
|
1166 |
|
1167 if (nr == 1) |
5681
|
1168 rep = new typename Sparse<T>::SparseRep (1, new_n, new_nnz); |
5164
|
1169 else |
5681
|
1170 rep = new typename Sparse<T>::SparseRep (new_n, 1, new_nnz); |
5164
|
1171 |
5275
|
1172 octave_idx_type ii = 0; |
|
1173 octave_idx_type jj = 0; |
5164
|
1174 iidx = 0; |
5275
|
1175 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1176 { |
|
1177 OCTAVE_QUIT; |
|
1178 |
|
1179 if (iidx < num_to_delete && i == idx_arg.elem (iidx)) |
|
1180 iidx++; |
|
1181 else |
|
1182 { |
|
1183 T el = tmp.elem (i); |
|
1184 if (el != T ()) |
|
1185 { |
|
1186 data(ii) = el; |
|
1187 ridx(ii++) = jj; |
|
1188 } |
|
1189 jj++; |
|
1190 } |
|
1191 } |
|
1192 |
|
1193 dimensions.resize (2); |
|
1194 |
|
1195 if (nr == 1) |
|
1196 { |
|
1197 ii = 0; |
|
1198 cidx(0) = 0; |
5275
|
1199 for (octave_idx_type i = 0; i < new_n; i++) |
5164
|
1200 { |
|
1201 OCTAVE_QUIT; |
|
1202 if (ridx(ii) == i) |
|
1203 ridx(ii++) = 0; |
|
1204 cidx(i+1) = ii; |
|
1205 } |
|
1206 |
|
1207 dimensions(0) = 1; |
|
1208 dimensions(1) = new_n; |
|
1209 } |
|
1210 else |
|
1211 { |
|
1212 cidx(0) = 0; |
5681
|
1213 cidx(1) = new_nnz; |
5164
|
1214 dimensions(0) = new_n; |
|
1215 dimensions(1) = 1; |
|
1216 } |
|
1217 } |
|
1218 else |
|
1219 (*current_liboctave_error_handler) |
|
1220 ("A(idx) = []: index out of range"); |
|
1221 } |
|
1222 } |
|
1223 |
|
1224 template <class T> |
|
1225 void |
|
1226 Sparse<T>::maybe_delete_elements (idx_vector& idx_i, idx_vector& idx_j) |
|
1227 { |
|
1228 assert (ndims () == 2); |
|
1229 |
5275
|
1230 octave_idx_type nr = dim1 (); |
|
1231 octave_idx_type nc = dim2 (); |
5164
|
1232 |
|
1233 if (nr == 0 && nc == 0) |
|
1234 return; |
|
1235 |
|
1236 if (idx_i.is_colon ()) |
|
1237 { |
|
1238 if (idx_j.is_colon ()) |
|
1239 { |
|
1240 // A(:,:) -- We are deleting columns and rows, so the result |
|
1241 // is [](0x0). |
|
1242 |
|
1243 resize_no_fill (0, 0); |
|
1244 return; |
|
1245 } |
|
1246 |
|
1247 if (idx_j.is_colon_equiv (nc, 1)) |
|
1248 { |
|
1249 // A(:,j) -- We are deleting columns by enumerating them, |
|
1250 // If we enumerate all of them, we should have zero columns |
|
1251 // with the same number of rows that we started with. |
|
1252 |
|
1253 resize_no_fill (nr, 0); |
|
1254 return; |
|
1255 } |
|
1256 } |
|
1257 |
|
1258 if (idx_j.is_colon () && idx_i.is_colon_equiv (nr, 1)) |
|
1259 { |
|
1260 // A(i,:) -- We are deleting rows by enumerating them. If we |
|
1261 // enumerate all of them, we should have zero rows with the |
|
1262 // same number of columns that we started with. |
|
1263 |
|
1264 resize_no_fill (0, nc); |
|
1265 return; |
|
1266 } |
|
1267 |
|
1268 if (idx_i.is_colon_equiv (nr, 1)) |
|
1269 { |
|
1270 if (idx_j.is_colon_equiv (nc, 1)) |
|
1271 resize_no_fill (0, 0); |
|
1272 else |
|
1273 { |
|
1274 idx_j.sort (true); |
|
1275 |
5275
|
1276 octave_idx_type num_to_delete = idx_j.length (nc); |
5164
|
1277 |
|
1278 if (num_to_delete != 0) |
|
1279 { |
|
1280 if (nr == 1 && num_to_delete == nc) |
|
1281 resize_no_fill (0, 0); |
|
1282 else |
|
1283 { |
5275
|
1284 octave_idx_type new_nc = nc; |
5681
|
1285 octave_idx_type new_nnz = nnz (); |
5275
|
1286 |
|
1287 octave_idx_type iidx = 0; |
|
1288 |
|
1289 for (octave_idx_type j = 0; j < nc; j++) |
5164
|
1290 { |
|
1291 OCTAVE_QUIT; |
|
1292 |
|
1293 if (j == idx_j.elem (iidx)) |
|
1294 { |
|
1295 iidx++; |
|
1296 new_nc--; |
|
1297 |
5681
|
1298 new_nnz -= cidx(j+1) - cidx(j); |
5164
|
1299 |
|
1300 if (iidx == num_to_delete) |
|
1301 break; |
|
1302 } |
|
1303 } |
|
1304 |
|
1305 if (new_nc > 0) |
|
1306 { |
|
1307 const Sparse<T> tmp (*this); |
|
1308 --rep->count; |
|
1309 rep = new typename Sparse<T>::SparseRep (nr, new_nc, |
5681
|
1310 new_nnz); |
5275
|
1311 octave_idx_type ii = 0; |
|
1312 octave_idx_type jj = 0; |
5164
|
1313 iidx = 0; |
|
1314 cidx(0) = 0; |
5275
|
1315 for (octave_idx_type j = 0; j < nc; j++) |
5164
|
1316 { |
|
1317 OCTAVE_QUIT; |
|
1318 |
|
1319 if (iidx < num_to_delete && j == idx_j.elem (iidx)) |
|
1320 iidx++; |
|
1321 else |
|
1322 { |
5275
|
1323 for (octave_idx_type i = tmp.cidx(j); |
5164
|
1324 i < tmp.cidx(j+1); i++) |
|
1325 { |
|
1326 data(jj) = tmp.data(i); |
|
1327 ridx(jj++) = tmp.ridx(i); |
|
1328 } |
|
1329 cidx(++ii) = jj; |
|
1330 } |
|
1331 } |
|
1332 |
|
1333 dimensions.resize (2); |
|
1334 dimensions(1) = new_nc; |
|
1335 } |
|
1336 else |
|
1337 (*current_liboctave_error_handler) |
|
1338 ("A(idx) = []: index out of range"); |
|
1339 } |
|
1340 } |
|
1341 } |
|
1342 } |
|
1343 else if (idx_j.is_colon_equiv (nc, 1)) |
|
1344 { |
|
1345 if (idx_i.is_colon_equiv (nr, 1)) |
|
1346 resize_no_fill (0, 0); |
|
1347 else |
|
1348 { |
|
1349 idx_i.sort (true); |
|
1350 |
5275
|
1351 octave_idx_type num_to_delete = idx_i.length (nr); |
5164
|
1352 |
|
1353 if (num_to_delete != 0) |
|
1354 { |
|
1355 if (nc == 1 && num_to_delete == nr) |
|
1356 resize_no_fill (0, 0); |
|
1357 else |
|
1358 { |
5275
|
1359 octave_idx_type new_nr = nr; |
5681
|
1360 octave_idx_type new_nnz = nnz (); |
5275
|
1361 |
|
1362 octave_idx_type iidx = 0; |
|
1363 |
|
1364 for (octave_idx_type i = 0; i < nr; i++) |
5164
|
1365 { |
|
1366 OCTAVE_QUIT; |
|
1367 |
|
1368 if (i == idx_i.elem (iidx)) |
|
1369 { |
|
1370 iidx++; |
|
1371 new_nr--; |
|
1372 |
5681
|
1373 for (octave_idx_type j = 0; j < nnz (); j++) |
5164
|
1374 if (ridx(j) == i) |
5681
|
1375 new_nnz--; |
5164
|
1376 |
|
1377 if (iidx == num_to_delete) |
|
1378 break; |
|
1379 } |
|
1380 } |
|
1381 |
|
1382 if (new_nr > 0) |
|
1383 { |
|
1384 const Sparse<T> tmp (*this); |
|
1385 --rep->count; |
|
1386 rep = new typename Sparse<T>::SparseRep (new_nr, nc, |
5681
|
1387 new_nnz); |
5164
|
1388 |
5275
|
1389 octave_idx_type jj = 0; |
5164
|
1390 cidx(0) = 0; |
5275
|
1391 for (octave_idx_type i = 0; i < nc; i++) |
5164
|
1392 { |
|
1393 iidx = 0; |
5275
|
1394 for (octave_idx_type j = tmp.cidx(i); j < tmp.cidx(i+1); j++) |
5164
|
1395 { |
|
1396 OCTAVE_QUIT; |
|
1397 |
5275
|
1398 octave_idx_type ri = tmp.ridx(j); |
5164
|
1399 |
|
1400 while (iidx < num_to_delete && |
|
1401 ri > idx_i.elem (iidx)) |
|
1402 { |
|
1403 iidx++; |
|
1404 } |
|
1405 |
|
1406 if (iidx == num_to_delete || |
|
1407 ri != idx_i.elem(iidx)) |
|
1408 { |
|
1409 data(jj) = tmp.data(j); |
|
1410 ridx(jj++) = ri - iidx; |
|
1411 } |
|
1412 } |
|
1413 cidx(i+1) = jj; |
|
1414 } |
|
1415 |
|
1416 dimensions.resize (2); |
|
1417 dimensions(0) = new_nr; |
|
1418 } |
|
1419 else |
|
1420 (*current_liboctave_error_handler) |
|
1421 ("A(idx) = []: index out of range"); |
|
1422 } |
|
1423 } |
|
1424 } |
|
1425 } |
|
1426 } |
|
1427 |
|
1428 template <class T> |
|
1429 void |
|
1430 Sparse<T>::maybe_delete_elements (Array<idx_vector>& ra_idx) |
|
1431 { |
|
1432 if (ra_idx.length () == 1) |
|
1433 maybe_delete_elements (ra_idx(0)); |
|
1434 else if (ra_idx.length () == 2) |
|
1435 maybe_delete_elements (ra_idx(0), ra_idx(1)); |
|
1436 else |
|
1437 (*current_liboctave_error_handler) |
|
1438 ("range error for maybe_delete_elements"); |
|
1439 } |
|
1440 |
|
1441 template <class T> |
|
1442 Sparse<T> |
|
1443 Sparse<T>::value (void) |
|
1444 { |
|
1445 Sparse<T> retval; |
|
1446 |
|
1447 int n_idx = index_count (); |
|
1448 |
|
1449 if (n_idx == 2) |
|
1450 { |
|
1451 idx_vector *tmp = get_idx (); |
|
1452 |
|
1453 idx_vector idx_i = tmp[0]; |
|
1454 idx_vector idx_j = tmp[1]; |
|
1455 |
|
1456 retval = index (idx_i, idx_j); |
|
1457 } |
|
1458 else if (n_idx == 1) |
|
1459 { |
|
1460 retval = index (idx[0]); |
|
1461 } |
|
1462 else |
|
1463 (*current_liboctave_error_handler) |
|
1464 ("Sparse<T>::value: invalid number of indices specified"); |
|
1465 |
|
1466 clear_index (); |
|
1467 |
|
1468 return retval; |
|
1469 } |
|
1470 |
|
1471 template <class T> |
|
1472 Sparse<T> |
|
1473 Sparse<T>::index (idx_vector& idx_arg, int resize_ok) const |
|
1474 { |
|
1475 Sparse<T> retval; |
|
1476 |
|
1477 assert (ndims () == 2); |
|
1478 |
5275
|
1479 octave_idx_type nr = dim1 (); |
|
1480 octave_idx_type nc = dim2 (); |
5681
|
1481 octave_idx_type nz = nnz (); |
5275
|
1482 |
|
1483 octave_idx_type orig_len = nr * nc; |
5164
|
1484 |
|
1485 dim_vector idx_orig_dims = idx_arg.orig_dimensions (); |
|
1486 |
5275
|
1487 octave_idx_type idx_orig_rows = idx_arg.orig_rows (); |
|
1488 octave_idx_type idx_orig_columns = idx_arg.orig_columns (); |
5164
|
1489 |
|
1490 if (idx_orig_dims.length () > 2) |
|
1491 (*current_liboctave_error_handler) |
|
1492 ("Sparse<T>::index: Can not index Sparse<T> with an N-D Array"); |
|
1493 else if (idx_arg.is_colon ()) |
|
1494 { |
|
1495 // Fast magic colon processing. |
|
1496 retval = Sparse<T> (nr * nc, 1, nz); |
|
1497 |
5275
|
1498 for (octave_idx_type i = 0; i < nc; i++) |
|
1499 for (octave_idx_type j = cidx(i); j < cidx(i+1); j++) |
5164
|
1500 { |
|
1501 OCTAVE_QUIT; |
|
1502 retval.xdata(j) = data(j); |
|
1503 retval.xridx(j) = ridx(j) + i * nr; |
|
1504 } |
|
1505 retval.xcidx(0) = 0; |
|
1506 retval.xcidx(1) = nz; |
|
1507 } |
|
1508 else if (nr == 1 && nc == 1) |
|
1509 { |
|
1510 // You have to be pretty sick to get to this bit of code, |
|
1511 // since you have a scalar stored as a sparse matrix, and |
|
1512 // then want to make a dense matrix with sparse |
|
1513 // representation. Ok, we'll do it, but you deserve what |
|
1514 // you get!! |
5275
|
1515 octave_idx_type n = idx_arg.freeze (length (), "sparse vector", resize_ok); |
5164
|
1516 if (n == 0) |
|
1517 if (idx_arg.one_zero_only ()) |
|
1518 retval = Sparse<T> (dim_vector (0, 0)); |
|
1519 else |
7299
|
1520 retval = Sparse<T> (idx_orig_dims); |
5164
|
1521 else if (nz < 1) |
|
1522 if (n >= idx_orig_dims.numel ()) |
|
1523 retval = Sparse<T> (idx_orig_dims); |
|
1524 else |
|
1525 retval = Sparse<T> (dim_vector (n, 1)); |
|
1526 else if (n >= idx_orig_dims.numel ()) |
|
1527 { |
|
1528 T el = elem (0); |
5275
|
1529 octave_idx_type new_nr = idx_orig_rows; |
|
1530 octave_idx_type new_nc = idx_orig_columns; |
|
1531 for (octave_idx_type i = 2; i < idx_orig_dims.length (); i++) |
5164
|
1532 new_nc *= idx_orig_dims (i); |
|
1533 |
|
1534 retval = Sparse<T> (new_nr, new_nc, idx_arg.ones_count ()); |
|
1535 |
5275
|
1536 octave_idx_type ic = 0; |
|
1537 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1538 { |
|
1539 if (i % new_nr == 0) |
7322
|
1540 retval.xcidx(i / new_nr) = ic; |
5164
|
1541 |
5275
|
1542 octave_idx_type ii = idx_arg.elem (i); |
5164
|
1543 if (ii == 0) |
|
1544 { |
|
1545 OCTAVE_QUIT; |
|
1546 retval.xdata(ic) = el; |
|
1547 retval.xridx(ic++) = i % new_nr; |
|
1548 } |
|
1549 } |
|
1550 retval.xcidx (new_nc) = ic; |
|
1551 } |
|
1552 else |
|
1553 { |
|
1554 T el = elem (0); |
|
1555 retval = Sparse<T> (n, 1, nz); |
|
1556 |
5275
|
1557 for (octave_idx_type i = 0; i < nz; i++) |
5164
|
1558 { |
|
1559 OCTAVE_QUIT; |
|
1560 retval.xdata(i) = el; |
|
1561 retval.xridx(i) = i; |
|
1562 } |
|
1563 retval.xcidx(0) = 0; |
|
1564 retval.xcidx(1) = n; |
|
1565 } |
|
1566 } |
|
1567 else if (nr == 1 || nc == 1) |
|
1568 { |
|
1569 // If indexing a vector with a matrix, return value has same |
|
1570 // shape as the index. Otherwise, it has same orientation as |
|
1571 // indexed object. |
5275
|
1572 octave_idx_type len = length (); |
|
1573 octave_idx_type n = idx_arg.freeze (len, "sparse vector", resize_ok); |
5164
|
1574 |
|
1575 if (n == 0) |
|
1576 if (nr == 1) |
|
1577 retval = Sparse<T> (dim_vector (1, 0)); |
|
1578 else |
|
1579 retval = Sparse<T> (dim_vector (0, 1)); |
|
1580 else if (nz < 1) |
|
1581 if ((n != 0 && idx_arg.one_zero_only ()) |
|
1582 || idx_orig_rows == 1 || idx_orig_columns == 1) |
|
1583 retval = Sparse<T> ((nr == 1 ? 1 : n), (nr == 1 ? n : 1)); |
|
1584 else |
|
1585 retval = Sparse<T> (idx_orig_dims); |
|
1586 else |
|
1587 { |
|
1588 |
5604
|
1589 octave_idx_type new_nzmx = 0; |
5164
|
1590 if (nr == 1) |
5275
|
1591 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1592 { |
|
1593 OCTAVE_QUIT; |
|
1594 |
5275
|
1595 octave_idx_type ii = idx_arg.elem (i); |
5164
|
1596 if (ii < len) |
|
1597 if (cidx(ii) != cidx(ii+1)) |
5604
|
1598 new_nzmx++; |
5164
|
1599 } |
|
1600 else |
5275
|
1601 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1602 { |
5275
|
1603 octave_idx_type ii = idx_arg.elem (i); |
5164
|
1604 if (ii < len) |
5275
|
1605 for (octave_idx_type j = 0; j < nz; j++) |
5164
|
1606 { |
|
1607 OCTAVE_QUIT; |
|
1608 |
|
1609 if (ridx(j) == ii) |
5604
|
1610 new_nzmx++; |
5164
|
1611 if (ridx(j) >= ii) |
|
1612 break; |
|
1613 } |
|
1614 } |
|
1615 |
|
1616 if (idx_arg.one_zero_only () || idx_orig_rows == 1 || |
|
1617 idx_orig_columns == 1) |
|
1618 { |
|
1619 if (nr == 1) |
|
1620 { |
5604
|
1621 retval = Sparse<T> (1, n, new_nzmx); |
5275
|
1622 octave_idx_type jj = 0; |
5164
|
1623 retval.xcidx(0) = 0; |
5275
|
1624 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1625 { |
|
1626 OCTAVE_QUIT; |
|
1627 |
5275
|
1628 octave_idx_type ii = idx_arg.elem (i); |
5164
|
1629 if (ii < len) |
|
1630 if (cidx(ii) != cidx(ii+1)) |
|
1631 { |
|
1632 retval.xdata(jj) = data(cidx(ii)); |
|
1633 retval.xridx(jj++) = 0; |
|
1634 } |
|
1635 retval.xcidx(i+1) = jj; |
|
1636 } |
|
1637 } |
|
1638 else |
|
1639 { |
5604
|
1640 retval = Sparse<T> (n, 1, new_nzmx); |
5164
|
1641 retval.xcidx(0) = 0; |
5604
|
1642 retval.xcidx(1) = new_nzmx; |
5275
|
1643 octave_idx_type jj = 0; |
|
1644 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1645 { |
5275
|
1646 octave_idx_type ii = idx_arg.elem (i); |
5164
|
1647 if (ii < len) |
5275
|
1648 for (octave_idx_type j = 0; j < nz; j++) |
5164
|
1649 { |
|
1650 OCTAVE_QUIT; |
|
1651 |
|
1652 if (ridx(j) == ii) |
|
1653 { |
|
1654 retval.xdata(jj) = data(j); |
|
1655 retval.xridx(jj++) = i; |
|
1656 } |
|
1657 if (ridx(j) >= ii) |
|
1658 break; |
|
1659 } |
|
1660 } |
|
1661 } |
|
1662 } |
|
1663 else |
|
1664 { |
5275
|
1665 octave_idx_type new_nr; |
|
1666 octave_idx_type new_nc; |
5164
|
1667 if (n >= idx_orig_dims.numel ()) |
|
1668 { |
|
1669 new_nr = idx_orig_rows; |
|
1670 new_nc = idx_orig_columns; |
|
1671 } |
|
1672 else |
|
1673 { |
|
1674 new_nr = n; |
|
1675 new_nc = 1; |
|
1676 } |
|
1677 |
5604
|
1678 retval = Sparse<T> (new_nr, new_nc, new_nzmx); |
5164
|
1679 |
|
1680 if (nr == 1) |
|
1681 { |
5275
|
1682 octave_idx_type jj = 0; |
5164
|
1683 retval.xcidx(0) = 0; |
5275
|
1684 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1685 { |
|
1686 OCTAVE_QUIT; |
|
1687 |
5275
|
1688 octave_idx_type ii = idx_arg.elem (i); |
5164
|
1689 if (ii < len) |
|
1690 if (cidx(ii) != cidx(ii+1)) |
|
1691 { |
|
1692 retval.xdata(jj) = data(cidx(ii)); |
|
1693 retval.xridx(jj++) = 0; |
|
1694 } |
|
1695 retval.xcidx(i/new_nr+1) = jj; |
|
1696 } |
|
1697 } |
|
1698 else |
|
1699 { |
5275
|
1700 octave_idx_type jj = 0; |
5164
|
1701 retval.xcidx(0) = 0; |
5275
|
1702 for (octave_idx_type i = 0; i < n; i++) |
5164
|
1703 { |
5275
|
1704 octave_idx_type ii = idx_arg.elem (i); |
5164
|
1705 if (ii < len) |
5275
|
1706 for (octave_idx_type j = 0; j < nz; j++) |
5164
|
1707 { |
|
1708 OCTAVE_QUIT; |
|
1709 |
|
1710 if (ridx(j) == ii) |
|
1711 { |
|
1712 retval.xdata(jj) = data(j); |
|
1713 retval.xridx(jj++) = i; |
|
1714 } |
|
1715 if (ridx(j) >= ii) |
|
1716 break; |
|
1717 } |
|
1718 retval.xcidx(i/new_nr+1) = jj; |
|
1719 } |
|
1720 } |
|
1721 } |
|
1722 } |
|
1723 } |
|
1724 else |
|
1725 { |
5781
|
1726 if (! (idx_arg.one_zero_only () |
|
1727 && idx_orig_rows == nr |
|
1728 && idx_orig_columns == nc)) |
|
1729 (*current_liboctave_warning_with_id_handler) |
|
1730 ("Octave:fortran-indexing", "single index used for sparse matrix"); |
5164
|
1731 |
|
1732 // This code is only for indexing matrices. The vector |
|
1733 // cases are handled above. |
|
1734 |
|
1735 idx_arg.freeze (nr * nc, "matrix", resize_ok); |
|
1736 |
|
1737 if (idx_arg) |
|
1738 { |
5275
|
1739 octave_idx_type result_nr = idx_orig_rows; |
|
1740 octave_idx_type result_nc = idx_orig_columns; |
5164
|
1741 |
|
1742 if (idx_arg.one_zero_only ()) |
|
1743 { |
|
1744 result_nr = idx_arg.ones_count (); |
|
1745 result_nc = (result_nr > 0 ? 1 : 0); |
|
1746 } |
|
1747 |
|
1748 if (nz < 1) |
|
1749 retval = Sparse<T> (result_nr, result_nc); |
|
1750 else |
|
1751 { |
|
1752 // Count number of non-zero elements |
5604
|
1753 octave_idx_type new_nzmx = 0; |
5275
|
1754 octave_idx_type kk = 0; |
|
1755 for (octave_idx_type j = 0; j < result_nc; j++) |
5164
|
1756 { |
5275
|
1757 for (octave_idx_type i = 0; i < result_nr; i++) |
5164
|
1758 { |
|
1759 OCTAVE_QUIT; |
|
1760 |
5275
|
1761 octave_idx_type ii = idx_arg.elem (kk++); |
5164
|
1762 if (ii < orig_len) |
|
1763 { |
5275
|
1764 octave_idx_type fr = ii % nr; |
|
1765 octave_idx_type fc = (ii - fr) / nr; |
|
1766 for (octave_idx_type k = cidx(fc); k < cidx(fc+1); k++) |
5164
|
1767 { |
|
1768 if (ridx(k) == fr) |
5604
|
1769 new_nzmx++; |
5164
|
1770 if (ridx(k) >= fr) |
|
1771 break; |
|
1772 } |
|
1773 } |
|
1774 } |
|
1775 } |
|
1776 |
5604
|
1777 retval = Sparse<T> (result_nr, result_nc, new_nzmx); |
5164
|
1778 |
|
1779 kk = 0; |
5275
|
1780 octave_idx_type jj = 0; |
5164
|
1781 retval.xcidx(0) = 0; |
5275
|
1782 for (octave_idx_type j = 0; j < result_nc; j++) |
5164
|
1783 { |
5275
|
1784 for (octave_idx_type i = 0; i < result_nr; i++) |
5164
|
1785 { |
|
1786 OCTAVE_QUIT; |
|
1787 |
5275
|
1788 octave_idx_type ii = idx_arg.elem (kk++); |
5164
|
1789 if (ii < orig_len) |
|
1790 { |
5275
|
1791 octave_idx_type fr = ii % nr; |
|
1792 octave_idx_type fc = (ii - fr) / nr; |
|
1793 for (octave_idx_type k = cidx(fc); k < cidx(fc+1); k++) |
5164
|
1794 { |
|
1795 if (ridx(k) == fr) |
|
1796 { |
|
1797 retval.xdata(jj) = data(k); |
|
1798 retval.xridx(jj++) = i; |
|
1799 } |
|
1800 if (ridx(k) >= fr) |
|
1801 break; |
|
1802 } |
|
1803 } |
|
1804 } |
|
1805 retval.xcidx(j+1) = jj; |
|
1806 } |
|
1807 } |
|
1808 // idx_vector::freeze() printed an error message for us. |
|
1809 } |
|
1810 } |
|
1811 |
|
1812 return retval; |
|
1813 } |
|
1814 |
6988
|
1815 struct |
|
1816 idx_node |
|
1817 { |
|
1818 octave_idx_type i; |
|
1819 struct idx_node *next; |
|
1820 }; |
|
1821 |
5164
|
1822 template <class T> |
|
1823 Sparse<T> |
|
1824 Sparse<T>::index (idx_vector& idx_i, idx_vector& idx_j, int resize_ok) const |
|
1825 { |
|
1826 Sparse<T> retval; |
|
1827 |
|
1828 assert (ndims () == 2); |
|
1829 |
5275
|
1830 octave_idx_type nr = dim1 (); |
|
1831 octave_idx_type nc = dim2 (); |
|
1832 |
|
1833 octave_idx_type n = idx_i.freeze (nr, "row", resize_ok); |
|
1834 octave_idx_type m = idx_j.freeze (nc, "column", resize_ok); |
5164
|
1835 |
|
1836 if (idx_i && idx_j) |
|
1837 { |
|
1838 if (idx_i.orig_empty () || idx_j.orig_empty () || n == 0 || m == 0) |
|
1839 { |
|
1840 retval.resize_no_fill (n, m); |
|
1841 } |
5681
|
1842 else |
5164
|
1843 { |
5681
|
1844 int idx_i_colon = idx_i.is_colon_equiv (nr); |
|
1845 int idx_j_colon = idx_j.is_colon_equiv (nc); |
|
1846 |
|
1847 if (idx_i_colon && idx_j_colon) |
|
1848 { |
|
1849 retval = *this; |
|
1850 } |
|
1851 else |
5164
|
1852 { |
5681
|
1853 // Identify if the indices have any repeated values |
|
1854 bool permutation = true; |
|
1855 |
|
1856 OCTAVE_LOCAL_BUFFER (octave_idx_type, itmp, |
|
1857 (nr > nc ? nr : nc)); |
7433
|
1858 octave_sort<octave_idx_type> lsort; |
5681
|
1859 |
|
1860 if (n > nr || m > nc) |
|
1861 permutation = false; |
|
1862 |
|
1863 if (permutation && ! idx_i_colon) |
|
1864 { |
|
1865 // Can't use something like |
|
1866 // idx_vector tmp_idx = idx_i; |
|
1867 // tmp_idx.sort (true); |
|
1868 // if (tmp_idx.length(nr) != n) |
|
1869 // permutation = false; |
|
1870 // here as there is no make_unique function |
|
1871 // for idx_vector type. |
|
1872 for (octave_idx_type i = 0; i < n; i++) |
|
1873 itmp [i] = idx_i.elem (i); |
7433
|
1874 lsort.sort (itmp, n); |
5681
|
1875 for (octave_idx_type i = 1; i < n; i++) |
|
1876 if (itmp[i-1] == itmp[i]) |
|
1877 { |
|
1878 permutation = false; |
|
1879 break; |
|
1880 } |
|
1881 } |
|
1882 if (permutation && ! idx_j_colon) |
|
1883 { |
|
1884 for (octave_idx_type i = 0; i < m; i++) |
|
1885 itmp [i] = idx_j.elem (i); |
7433
|
1886 lsort.sort (itmp, m); |
5681
|
1887 for (octave_idx_type i = 1; i < m; i++) |
|
1888 if (itmp[i-1] == itmp[i]) |
|
1889 { |
|
1890 permutation = false; |
|
1891 break; |
|
1892 } |
|
1893 } |
|
1894 |
|
1895 if (permutation) |
5164
|
1896 { |
5681
|
1897 // Special case permutation like indexing for speed |
|
1898 retval = Sparse<T> (n, m, nnz ()); |
|
1899 octave_idx_type *ri = retval.xridx (); |
|
1900 |
5766
|
1901 std::vector<T> X (n); |
5681
|
1902 for (octave_idx_type i = 0; i < nr; i++) |
|
1903 itmp [i] = -1; |
|
1904 for (octave_idx_type i = 0; i < n; i++) |
|
1905 itmp[idx_i.elem(i)] = i; |
|
1906 |
|
1907 octave_idx_type kk = 0; |
|
1908 retval.xcidx(0) = 0; |
|
1909 for (octave_idx_type j = 0; j < m; j++) |
|
1910 { |
|
1911 octave_idx_type jj = idx_j.elem (j); |
|
1912 for (octave_idx_type i = cidx(jj); i < cidx(jj+1); i++) |
|
1913 { |
6988
|
1914 OCTAVE_QUIT; |
|
1915 |
5681
|
1916 octave_idx_type ii = itmp [ridx(i)]; |
|
1917 if (ii >= 0) |
|
1918 { |
|
1919 X [ii] = data (i); |
|
1920 retval.xridx (kk++) = ii; |
|
1921 } |
|
1922 } |
7433
|
1923 lsort.sort (ri + retval.xcidx (j), kk - retval.xcidx (j)); |
5681
|
1924 for (octave_idx_type p = retval.xcidx (j); p < kk; p++) |
|
1925 retval.xdata (p) = X [retval.xridx (p)]; |
|
1926 retval.xcidx(j+1) = kk; |
|
1927 } |
|
1928 retval.maybe_compress (); |
|
1929 } |
|
1930 else |
|
1931 { |
6988
|
1932 OCTAVE_LOCAL_BUFFER (struct idx_node, nodes, n); |
|
1933 OCTAVE_LOCAL_BUFFER (octave_idx_type, start_nodes, nr); |
|
1934 |
|
1935 for (octave_idx_type i = 0; i < nr; i++) |
|
1936 start_nodes[i] = -1; |
|
1937 |
|
1938 for (octave_idx_type i = 0; i < n; i++) |
|
1939 { |
|
1940 octave_idx_type ii = idx_i.elem (i); |
|
1941 nodes[i].i = i; |
|
1942 nodes[i].next = 0; |
|
1943 |
|
1944 octave_idx_type node = start_nodes[ii]; |
|
1945 if (node == -1) |
|
1946 start_nodes[ii] = i; |
|
1947 else |
|
1948 { |
7322
|
1949 while (nodes[node].next) |
|
1950 node = nodes[node].next->i; |
|
1951 nodes[node].next = nodes + i; |
6988
|
1952 } |
|
1953 } |
|
1954 |
5681
|
1955 // First count the number of non-zero elements |
|
1956 octave_idx_type new_nzmx = 0; |
|
1957 for (octave_idx_type j = 0; j < m; j++) |
5164
|
1958 { |
5681
|
1959 octave_idx_type jj = idx_j.elem (j); |
6988
|
1960 |
|
1961 if (jj < nc) |
5164
|
1962 { |
6988
|
1963 for (octave_idx_type i = cidx(jj); |
|
1964 i < cidx(jj+1); i++) |
5681
|
1965 { |
6988
|
1966 OCTAVE_QUIT; |
|
1967 |
|
1968 octave_idx_type ii = start_nodes [ridx(i)]; |
|
1969 |
|
1970 if (ii >= 0) |
5681
|
1971 { |
6988
|
1972 struct idx_node inode = nodes[ii]; |
|
1973 |
|
1974 while (true) |
|
1975 { |
7326
|
1976 if (idx_i.elem (inode.i) < nr) |
6988
|
1977 new_nzmx ++; |
|
1978 if (inode.next == 0) |
|
1979 break; |
|
1980 else |
|
1981 inode = *inode.next; |
|
1982 } |
5681
|
1983 } |
|
1984 } |
5164
|
1985 } |
|
1986 } |
5681
|
1987 |
6988
|
1988 std::vector<T> X (n); |
5681
|
1989 retval = Sparse<T> (n, m, new_nzmx); |
6988
|
1990 octave_idx_type *ri = retval.xridx (); |
5681
|
1991 |
|
1992 octave_idx_type kk = 0; |
|
1993 retval.xcidx(0) = 0; |
|
1994 for (octave_idx_type j = 0; j < m; j++) |
|
1995 { |
|
1996 octave_idx_type jj = idx_j.elem (j); |
6988
|
1997 if (jj < nc) |
5681
|
1998 { |
6988
|
1999 for (octave_idx_type i = cidx(jj); |
|
2000 i < cidx(jj+1); i++) |
5681
|
2001 { |
6988
|
2002 OCTAVE_QUIT; |
|
2003 |
|
2004 octave_idx_type ii = start_nodes [ridx(i)]; |
|
2005 |
|
2006 if (ii >= 0) |
5681
|
2007 { |
6988
|
2008 struct idx_node inode = nodes[ii]; |
|
2009 |
|
2010 while (true) |
5681
|
2011 { |
7326
|
2012 if (idx_i.elem (inode.i) < nr) |
6988
|
2013 { |
|
2014 X [inode.i] = data (i); |
|
2015 retval.xridx (kk++) = inode.i; |
|
2016 } |
|
2017 |
|
2018 if (inode.next == 0) |
|
2019 break; |
|
2020 else |
|
2021 inode = *inode.next; |
5681
|
2022 } |
|
2023 } |
|
2024 } |
7433
|
2025 lsort.sort (ri + retval.xcidx (j), |
6988
|
2026 kk - retval.xcidx (j)); |
|
2027 for (octave_idx_type p = retval.xcidx (j); |
|
2028 p < kk; p++) |
|
2029 retval.xdata (p) = X [retval.xridx (p)]; |
|
2030 retval.xcidx(j+1) = kk; |
5681
|
2031 } |
|
2032 } |
5164
|
2033 } |
|
2034 } |
|
2035 } |
|
2036 } |
|
2037 // idx_vector::freeze() printed an error message for us. |
|
2038 |
|
2039 return retval; |
|
2040 } |
|
2041 |
|
2042 template <class T> |
|
2043 Sparse<T> |
|
2044 Sparse<T>::index (Array<idx_vector>& ra_idx, int resize_ok) const |
|
2045 { |
|
2046 |
|
2047 if (ra_idx.length () != 2) |
|
2048 { |
|
2049 (*current_liboctave_error_handler) ("range error for index"); |
|
2050 return *this; |
|
2051 } |
|
2052 |
|
2053 return index (ra_idx (0), ra_idx (1), resize_ok); |
|
2054 } |
|
2055 |
7433
|
2056 // Can't use versions of these in Array.cc due to duplication of the |
|
2057 // instantiations for Array<double and Sparse<double>, etc |
|
2058 template <class T> |
|
2059 bool |
|
2060 sparse_ascending_compare (T a, T b) |
|
2061 { |
|
2062 return (a < b); |
|
2063 } |
|
2064 |
|
2065 template <class T> |
|
2066 bool |
|
2067 sparse_descending_compare (T a, T b) |
|
2068 { |
|
2069 return (a > b); |
|
2070 } |
|
2071 |
|
2072 template <class T> |
|
2073 bool |
|
2074 sparse_ascending_compare (vec_index<T> *a, vec_index<T> *b) |
|
2075 { |
|
2076 return (a->vec < b->vec); |
|
2077 } |
|
2078 |
|
2079 template <class T> |
|
2080 bool |
|
2081 sparse_descending_compare (vec_index<T> *a, vec_index<T> *b) |
|
2082 { |
|
2083 return (a->vec > b->vec); |
|
2084 } |
|
2085 |
|
2086 template <class T> |
|
2087 Sparse<T> |
|
2088 Sparse<T>::sort (octave_idx_type dim, sortmode mode) const |
|
2089 { |
|
2090 Sparse<T> m = *this; |
|
2091 |
|
2092 octave_idx_type nr = m.rows (); |
|
2093 octave_idx_type nc = m.columns (); |
|
2094 |
|
2095 if (m.length () < 1) |
|
2096 return m; |
|
2097 |
|
2098 if (dim > 0) |
|
2099 { |
|
2100 m = m.transpose (); |
|
2101 nr = m.rows (); |
|
2102 nc = m.columns (); |
|
2103 } |
|
2104 |
|
2105 octave_sort<T> lsort; |
|
2106 |
|
2107 if (mode == ASCENDING) |
|
2108 lsort.set_compare (sparse_ascending_compare); |
|
2109 else if (mode == DESCENDING) |
|
2110 lsort.set_compare (sparse_descending_compare); |
|
2111 |
|
2112 T *v = m.data (); |
|
2113 octave_idx_type *mcidx = m.cidx (); |
|
2114 octave_idx_type *mridx = m.ridx (); |
|
2115 |
|
2116 for (octave_idx_type j = 0; j < nc; j++) |
|
2117 { |
|
2118 octave_idx_type ns = mcidx [j + 1] - mcidx [j]; |
|
2119 lsort.sort (v, ns); |
|
2120 |
|
2121 octave_idx_type i; |
|
2122 if (mode == ASCENDING) |
|
2123 { |
|
2124 for (i = 0; i < ns; i++) |
|
2125 if (sparse_ascending_compare (static_cast<T> (0), v [i])) |
|
2126 break; |
|
2127 } |
|
2128 else |
|
2129 { |
|
2130 for (i = 0; i < ns; i++) |
|
2131 if (sparse_descending_compare (static_cast<T> (0), v [i])) |
|
2132 break; |
|
2133 } |
|
2134 for (octave_idx_type k = 0; k < i; k++) |
|
2135 mridx [k] = k; |
|
2136 for (octave_idx_type k = i; k < ns; k++) |
|
2137 mridx [k] = k - ns + nr; |
|
2138 |
|
2139 v += ns; |
|
2140 mridx += ns; |
|
2141 } |
|
2142 |
|
2143 if (dim > 0) |
|
2144 m = m.transpose (); |
|
2145 |
|
2146 return m; |
|
2147 } |
|
2148 |
|
2149 template <class T> |
|
2150 Sparse<T> |
|
2151 Sparse<T>::sort (Array<octave_idx_type> &sidx, octave_idx_type dim, |
|
2152 sortmode mode) const |
|
2153 { |
|
2154 Sparse<T> m = *this; |
|
2155 |
|
2156 octave_idx_type nr = m.rows (); |
|
2157 octave_idx_type nc = m.columns (); |
|
2158 |
|
2159 if (m.length () < 1) |
|
2160 { |
|
2161 sidx = Array<octave_idx_type> (dim_vector (nr, nc)); |
|
2162 return m; |
|
2163 } |
|
2164 |
|
2165 if (dim > 0) |
|
2166 { |
|
2167 m = m.transpose (); |
|
2168 nr = m.rows (); |
|
2169 nc = m.columns (); |
|
2170 } |
|
2171 |
|
2172 octave_sort<vec_index<T> *> indexed_sort; |
|
2173 |
|
2174 if (mode == ASCENDING) |
|
2175 indexed_sort.set_compare (sparse_ascending_compare); |
|
2176 else if (mode == DESCENDING) |
|
2177 indexed_sort.set_compare (sparse_descending_compare); |
|
2178 |
|
2179 T *v = m.data (); |
|
2180 octave_idx_type *mcidx = m.cidx (); |
|
2181 octave_idx_type *mridx = m.ridx (); |
|
2182 |
|
2183 OCTAVE_LOCAL_BUFFER (vec_index<T> *, vi, nr); |
|
2184 OCTAVE_LOCAL_BUFFER (vec_index<T>, vix, nr); |
|
2185 |
|
2186 for (octave_idx_type i = 0; i < nr; i++) |
|
2187 vi[i] = &vix[i]; |
|
2188 |
|
2189 sidx = Array<octave_idx_type> (dim_vector (nr, nc)); |
|
2190 |
|
2191 for (octave_idx_type j = 0; j < nc; j++) |
|
2192 { |
|
2193 octave_idx_type ns = mcidx [j + 1] - mcidx [j]; |
|
2194 octave_idx_type offset = j * nr; |
|
2195 |
|
2196 if (ns == 0) |
|
2197 { |
|
2198 for (octave_idx_type k = 0; k < nr; k++) |
|
2199 sidx (offset + k) = k; |
|
2200 } |
|
2201 else |
|
2202 { |
|
2203 for (octave_idx_type i = 0; i < ns; i++) |
|
2204 { |
|
2205 vi[i]->vec = v[i]; |
|
2206 vi[i]->indx = mridx[i]; |
|
2207 } |
|
2208 |
|
2209 indexed_sort.sort (vi, ns); |
|
2210 |
|
2211 octave_idx_type i; |
|
2212 if (mode == ASCENDING) |
|
2213 { |
|
2214 for (i = 0; i < ns; i++) |
|
2215 if (sparse_ascending_compare (static_cast<T> (0), |
|
2216 vi [i] -> vec)) |
|
2217 break; |
|
2218 } |
|
2219 else |
|
2220 { |
|
2221 for (i = 0; i < ns; i++) |
|
2222 if (sparse_descending_compare (static_cast<T> (0), |
|
2223 vi [i] -> vec)) |
|
2224 break; |
|
2225 } |
|
2226 |
|
2227 octave_idx_type ii = 0; |
|
2228 octave_idx_type jj = i; |
|
2229 for (octave_idx_type k = 0; k < nr; k++) |
|
2230 { |
|
2231 if (ii < ns && mridx[ii] == k) |
|
2232 ii++; |
|
2233 else |
|
2234 sidx (offset + jj++) = k; |
|
2235 } |
|
2236 |
|
2237 for (octave_idx_type k = 0; k < i; k++) |
|
2238 { |
|
2239 v [k] = vi [k] -> vec; |
|
2240 sidx (k + offset) = vi [k] -> indx; |
|
2241 mridx [k] = k; |
|
2242 } |
|
2243 |
|
2244 for (octave_idx_type k = i; k < ns; k++) |
|
2245 { |
|
2246 v [k] = vi [k] -> vec; |
|
2247 sidx (k - ns + nr + offset) = vi [k] -> indx; |
|
2248 mridx [k] = k - ns + nr; |
|
2249 } |
|
2250 |
|
2251 v += ns; |
|
2252 mridx += ns; |
|
2253 } |
|
2254 } |
|
2255 |
|
2256 if (dim > 0) |
|
2257 { |
|
2258 m = m.transpose (); |
|
2259 sidx = sidx.transpose (); |
|
2260 } |
|
2261 |
|
2262 return m; |
|
2263 } |
|
2264 |
5775
|
2265 // FIXME |
5164
|
2266 // Unfortunately numel can overflow for very large but very sparse matrices. |
|
2267 // For now just flag an error when this happens. |
|
2268 template <class LT, class RT> |
|
2269 int |
|
2270 assign1 (Sparse<LT>& lhs, const Sparse<RT>& rhs) |
|
2271 { |
|
2272 int retval = 1; |
|
2273 |
|
2274 idx_vector *idx_tmp = lhs.get_idx (); |
|
2275 |
|
2276 idx_vector lhs_idx = idx_tmp[0]; |
|
2277 |
5275
|
2278 octave_idx_type lhs_len = lhs.numel (); |
|
2279 octave_idx_type rhs_len = rhs.numel (); |
5164
|
2280 |
5828
|
2281 uint64_t long_lhs_len = |
|
2282 static_cast<uint64_t> (lhs.rows ()) * |
|
2283 static_cast<uint64_t> (lhs.cols ()); |
|
2284 |
|
2285 uint64_t long_rhs_len = |
|
2286 static_cast<uint64_t> (rhs.rows ()) * |
|
2287 static_cast<uint64_t> (rhs.cols ()); |
|
2288 |
|
2289 if (long_rhs_len != static_cast<uint64_t>(rhs_len) || |
|
2290 long_lhs_len != static_cast<uint64_t>(lhs_len)) |
5164
|
2291 { |
|
2292 (*current_liboctave_error_handler) |
|
2293 ("A(I) = X: Matrix dimensions too large to ensure correct\n", |
|
2294 "operation. This is an limitation that should be removed\n", |
|
2295 "in the future."); |
|
2296 |
|
2297 lhs.clear_index (); |
|
2298 return 0; |
|
2299 } |
|
2300 |
5275
|
2301 octave_idx_type nr = lhs.rows (); |
|
2302 octave_idx_type nc = lhs.cols (); |
5681
|
2303 octave_idx_type nz = lhs.nnz (); |
5275
|
2304 |
5781
|
2305 octave_idx_type n = lhs_idx.freeze (lhs_len, "vector", true); |
5164
|
2306 |
|
2307 if (n != 0) |
|
2308 { |
5275
|
2309 octave_idx_type max_idx = lhs_idx.max () + 1; |
5164
|
2310 max_idx = max_idx < lhs_len ? lhs_len : max_idx; |
|
2311 |
|
2312 // Take a constant copy of lhs. This means that elem won't |
|
2313 // create missing elements. |
|
2314 const Sparse<LT> c_lhs (lhs); |
|
2315 |
|
2316 if (rhs_len == n) |
|
2317 { |
5681
|
2318 octave_idx_type new_nzmx = lhs.nnz (); |
5164
|
2319 |
5603
|
2320 OCTAVE_LOCAL_BUFFER (octave_idx_type, rhs_idx, n); |
|
2321 if (! lhs_idx.is_colon ()) |
|
2322 { |
|
2323 // Ok here we have to be careful with the indexing, |
|
2324 // to treat cases like "a([3,2,1]) = b", and still |
|
2325 // handle the need for strict sorting of the sparse |
|
2326 // elements. |
|
2327 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort *, sidx, n); |
|
2328 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort, sidxX, n); |
|
2329 |
|
2330 for (octave_idx_type i = 0; i < n; i++) |
|
2331 { |
|
2332 sidx[i] = &sidxX[i]; |
|
2333 sidx[i]->i = lhs_idx.elem(i); |
|
2334 sidx[i]->idx = i; |
|
2335 } |
|
2336 |
|
2337 OCTAVE_QUIT; |
|
2338 octave_sort<octave_idx_vector_sort *> |
|
2339 sort (octave_idx_vector_comp); |
|
2340 |
|
2341 sort.sort (sidx, n); |
|
2342 |
|
2343 intNDArray<octave_idx_type> new_idx (dim_vector (n,1)); |
|
2344 |
|
2345 for (octave_idx_type i = 0; i < n; i++) |
|
2346 { |
|
2347 new_idx.xelem(i) = sidx[i]->i + 1; |
|
2348 rhs_idx[i] = sidx[i]->idx; |
|
2349 } |
|
2350 |
|
2351 lhs_idx = idx_vector (new_idx); |
|
2352 } |
|
2353 else |
|
2354 for (octave_idx_type i = 0; i < n; i++) |
|
2355 rhs_idx[i] = i; |
|
2356 |
5164
|
2357 // First count the number of non-zero elements |
5275
|
2358 for (octave_idx_type i = 0; i < n; i++) |
5164
|
2359 { |
|
2360 OCTAVE_QUIT; |
|
2361 |
5275
|
2362 octave_idx_type ii = lhs_idx.elem (i); |
5164
|
2363 if (ii < lhs_len && c_lhs.elem(ii) != LT ()) |
5604
|
2364 new_nzmx--; |
5603
|
2365 if (rhs.elem(rhs_idx[i]) != RT ()) |
5604
|
2366 new_nzmx++; |
5164
|
2367 } |
|
2368 |
|
2369 if (nr > 1) |
|
2370 { |
7246
|
2371 Sparse<LT> tmp ((max_idx > nr ? max_idx : nr), 1, new_nzmx); |
5164
|
2372 tmp.cidx(0) = 0; |
5681
|
2373 tmp.cidx(1) = new_nzmx; |
5164
|
2374 |
5275
|
2375 octave_idx_type i = 0; |
|
2376 octave_idx_type ii = 0; |
5164
|
2377 if (i < nz) |
|
2378 ii = c_lhs.ridx(i); |
|
2379 |
5275
|
2380 octave_idx_type j = 0; |
|
2381 octave_idx_type jj = lhs_idx.elem(j); |
|
2382 |
|
2383 octave_idx_type kk = 0; |
5164
|
2384 |
|
2385 while (j < n || i < nz) |
|
2386 { |
|
2387 if (j == n || (i < nz && ii < jj)) |
|
2388 { |
|
2389 tmp.xdata (kk) = c_lhs.data (i); |
|
2390 tmp.xridx (kk++) = ii; |
|
2391 if (++i < nz) |
|
2392 ii = c_lhs.ridx(i); |
|
2393 } |
|
2394 else |
|
2395 { |
5603
|
2396 RT rtmp = rhs.elem (rhs_idx[j]); |
5164
|
2397 if (rtmp != RT ()) |
|
2398 { |
|
2399 tmp.xdata (kk) = rtmp; |
|
2400 tmp.xridx (kk++) = jj; |
|
2401 } |
|
2402 |
|
2403 if (ii == jj && i < nz) |
|
2404 if (++i < nz) |
|
2405 ii = c_lhs.ridx(i); |
|
2406 if (++j < n) |
|
2407 jj = lhs_idx.elem(j); |
|
2408 } |
|
2409 } |
|
2410 |
|
2411 lhs = tmp; |
|
2412 } |
|
2413 else |
|
2414 { |
7246
|
2415 Sparse<LT> tmp (1, (max_idx > nc ? max_idx : nc), new_nzmx); |
5164
|
2416 |
5275
|
2417 octave_idx_type i = 0; |
|
2418 octave_idx_type ii = 0; |
5164
|
2419 while (ii < nc && c_lhs.cidx(ii+1) <= i) |
|
2420 ii++; |
|
2421 |
5275
|
2422 octave_idx_type j = 0; |
|
2423 octave_idx_type jj = lhs_idx.elem(j); |
|
2424 |
|
2425 octave_idx_type kk = 0; |
|
2426 octave_idx_type ic = 0; |
5164
|
2427 |
|
2428 while (j < n || i < nz) |
|
2429 { |
|
2430 if (j == n || (i < nz && ii < jj)) |
|
2431 { |
|
2432 while (ic <= ii) |
|
2433 tmp.xcidx (ic++) = kk; |
|
2434 tmp.xdata (kk) = c_lhs.data (i); |
5603
|
2435 tmp.xridx (kk++) = 0; |
5164
|
2436 i++; |
|
2437 while (ii < nc && c_lhs.cidx(ii+1) <= i) |
|
2438 ii++; |
|
2439 } |
|
2440 else |
|
2441 { |
|
2442 while (ic <= jj) |
|
2443 tmp.xcidx (ic++) = kk; |
|
2444 |
5603
|
2445 RT rtmp = rhs.elem (rhs_idx[j]); |
5164
|
2446 if (rtmp != RT ()) |
5603
|
2447 { |
|
2448 tmp.xdata (kk) = rtmp; |
|
2449 tmp.xridx (kk++) = 0; |
|
2450 } |
5164
|
2451 if (ii == jj) |
|
2452 { |
|
2453 i++; |
|
2454 while (ii < nc && c_lhs.cidx(ii+1) <= i) |
|
2455 ii++; |
|
2456 } |
|
2457 j++; |
|
2458 if (j < n) |
|
2459 jj = lhs_idx.elem(j); |
|
2460 } |
|
2461 } |
|
2462 |
5275
|
2463 for (octave_idx_type iidx = ic; iidx < max_idx+1; iidx++) |
5164
|
2464 tmp.xcidx(iidx) = kk; |
|
2465 |
|
2466 lhs = tmp; |
|
2467 } |
|
2468 } |
|
2469 else if (rhs_len == 1) |
|
2470 { |
5681
|
2471 octave_idx_type new_nzmx = lhs.nnz (); |
5164
|
2472 RT scalar = rhs.elem (0); |
|
2473 bool scalar_non_zero = (scalar != RT ()); |
5603
|
2474 lhs_idx.sort (true); |
5164
|
2475 |
|
2476 // First count the number of non-zero elements |
|
2477 if (scalar != RT ()) |
5604
|
2478 new_nzmx += n; |
5275
|
2479 for (octave_idx_type i = 0; i < n; i++) |
5164
|
2480 { |
|
2481 OCTAVE_QUIT; |
|
2482 |
5275
|
2483 octave_idx_type ii = lhs_idx.elem (i); |
5164
|
2484 if (ii < lhs_len && c_lhs.elem(ii) != LT ()) |
5604
|
2485 new_nzmx--; |
5164
|
2486 } |
|
2487 |
|
2488 if (nr > 1) |
|
2489 { |
7246
|
2490 Sparse<LT> tmp ((max_idx > nr ? max_idx : nr), 1, new_nzmx); |
5164
|
2491 tmp.cidx(0) = 0; |
5681
|
2492 tmp.cidx(1) = new_nzmx; |
5164
|
2493 |
5275
|
2494 octave_idx_type i = 0; |
|
2495 octave_idx_type ii = 0; |
5164
|
2496 if (i < nz) |
|
2497 ii = c_lhs.ridx(i); |
|
2498 |
5275
|
2499 octave_idx_type j = 0; |
|
2500 octave_idx_type jj = lhs_idx.elem(j); |
|
2501 |
|
2502 octave_idx_type kk = 0; |
5164
|
2503 |
|
2504 while (j < n || i < nz) |
|
2505 { |
|
2506 if (j == n || (i < nz && ii < jj)) |
|
2507 { |
|
2508 tmp.xdata (kk) = c_lhs.data (i); |
|
2509 tmp.xridx (kk++) = ii; |
|
2510 if (++i < nz) |
|
2511 ii = c_lhs.ridx(i); |
|
2512 } |
|
2513 else |
|
2514 { |
|
2515 if (scalar_non_zero) |
|
2516 { |
|
2517 tmp.xdata (kk) = scalar; |
|
2518 tmp.xridx (kk++) = jj; |
|
2519 } |
|
2520 |
|
2521 if (ii == jj && i < nz) |
|
2522 if (++i < nz) |
|
2523 ii = c_lhs.ridx(i); |
|
2524 if (++j < n) |
|
2525 jj = lhs_idx.elem(j); |
|
2526 } |
|
2527 } |
|
2528 |
|
2529 lhs = tmp; |
|
2530 } |
|
2531 else |
|
2532 { |
7246
|
2533 Sparse<LT> tmp (1, (max_idx > nc ? max_idx : nc), new_nzmx); |
5164
|
2534 |
5275
|
2535 octave_idx_type i = 0; |
|
2536 octave_idx_type ii = 0; |
5164
|
2537 while (ii < nc && c_lhs.cidx(ii+1) <= i) |
|
2538 ii++; |
|
2539 |
5275
|
2540 octave_idx_type j = 0; |
|
2541 octave_idx_type jj = lhs_idx.elem(j); |
|
2542 |
|
2543 octave_idx_type kk = 0; |
|
2544 octave_idx_type ic = 0; |
5164
|
2545 |
|
2546 while (j < n || i < nz) |
|
2547 { |
|
2548 if (j == n || (i < nz && ii < jj)) |
|
2549 { |
|
2550 while (ic <= ii) |
|
2551 tmp.xcidx (ic++) = kk; |
|
2552 tmp.xdata (kk) = c_lhs.data (i); |
|
2553 i++; |
|
2554 while (ii < nc && c_lhs.cidx(ii+1) <= i) |
|
2555 ii++; |
|
2556 } |
|
2557 else |
|
2558 { |
|
2559 while (ic <= jj) |
|
2560 tmp.xcidx (ic++) = kk; |
|
2561 if (scalar_non_zero) |
|
2562 tmp.xdata (kk) = scalar; |
|
2563 if (ii == jj) |
|
2564 { |
|
2565 i++; |
|
2566 while (ii < nc && c_lhs.cidx(ii+1) <= i) |
|
2567 ii++; |
|
2568 } |
|
2569 j++; |
|
2570 if (j < n) |
|
2571 jj = lhs_idx.elem(j); |
|
2572 } |
|
2573 tmp.xridx (kk++) = 0; |
|
2574 } |
|
2575 |
5275
|
2576 for (octave_idx_type iidx = ic; iidx < max_idx+1; iidx++) |
5164
|
2577 tmp.xcidx(iidx) = kk; |
|
2578 |
|
2579 lhs = tmp; |
|
2580 } |
|
2581 } |
|
2582 else |
|
2583 { |
|
2584 (*current_liboctave_error_handler) |
|
2585 ("A(I) = X: X must be a scalar or a vector with same length as I"); |
|
2586 |
|
2587 retval = 0; |
|
2588 } |
|
2589 } |
|
2590 else if (lhs_idx.is_colon ()) |
|
2591 { |
|
2592 if (lhs_len == 0) |
|
2593 { |
|
2594 |
5681
|
2595 octave_idx_type new_nzmx = rhs.nnz (); |
5604
|
2596 Sparse<LT> tmp (1, rhs_len, new_nzmx); |
5164
|
2597 |
5275
|
2598 octave_idx_type ii = 0; |
|
2599 octave_idx_type jj = 0; |
|
2600 for (octave_idx_type i = 0; i < rhs.cols(); i++) |
|
2601 for (octave_idx_type j = rhs.cidx(i); j < rhs.cidx(i+1); j++) |
5164
|
2602 { |
|
2603 OCTAVE_QUIT; |
5275
|
2604 for (octave_idx_type k = jj; k <= i * rhs.rows() + rhs.ridx(j); k++) |
5164
|
2605 tmp.cidx(jj++) = ii; |
|
2606 |
|
2607 tmp.data(ii) = rhs.data(j); |
|
2608 tmp.ridx(ii++) = 0; |
|
2609 } |
|
2610 |
5275
|
2611 for (octave_idx_type i = jj; i < rhs_len + 1; i++) |
5164
|
2612 tmp.cidx(i) = ii; |
|
2613 |
|
2614 lhs = tmp; |
|
2615 } |
|
2616 else |
|
2617 (*current_liboctave_error_handler) |
|
2618 ("A(:) = X: A must be the same size as X"); |
|
2619 } |
|
2620 else if (! (rhs_len == 1 || rhs_len == 0)) |
|
2621 { |
|
2622 (*current_liboctave_error_handler) |
|
2623 ("A([]) = X: X must also be an empty matrix or a scalar"); |
|
2624 |
|
2625 retval = 0; |
|
2626 } |
|
2627 |
|
2628 lhs.clear_index (); |
|
2629 |
|
2630 return retval; |
|
2631 } |
|
2632 |
|
2633 template <class LT, class RT> |
|
2634 int |
|
2635 assign (Sparse<LT>& lhs, const Sparse<RT>& rhs) |
|
2636 { |
|
2637 int retval = 1; |
|
2638 |
|
2639 int n_idx = lhs.index_count (); |
|
2640 |
5275
|
2641 octave_idx_type lhs_nr = lhs.rows (); |
|
2642 octave_idx_type lhs_nc = lhs.cols (); |
5681
|
2643 octave_idx_type lhs_nz = lhs.nnz (); |
5275
|
2644 |
|
2645 octave_idx_type rhs_nr = rhs.rows (); |
|
2646 octave_idx_type rhs_nc = rhs.cols (); |
5164
|
2647 |
|
2648 idx_vector *tmp = lhs.get_idx (); |
|
2649 |
|
2650 idx_vector idx_i; |
|
2651 idx_vector idx_j; |
|
2652 |
|
2653 if (n_idx > 2) |
|
2654 { |
|
2655 (*current_liboctave_error_handler) |
|
2656 ("A(I, J) = X: can only have 1 or 2 indexes for sparse matrices"); |
6092
|
2657 |
|
2658 lhs.clear_index (); |
5164
|
2659 return 0; |
|
2660 } |
|
2661 |
|
2662 if (n_idx > 1) |
|
2663 idx_j = tmp[1]; |
|
2664 |
|
2665 if (n_idx > 0) |
|
2666 idx_i = tmp[0]; |
|
2667 |
6988
|
2668 // Take a constant copy of lhs. This means that ridx and family won't |
|
2669 // call make_unique. |
|
2670 const Sparse<LT> c_lhs (lhs); |
|
2671 |
5164
|
2672 if (n_idx == 2) |
|
2673 { |
5781
|
2674 octave_idx_type n = idx_i.freeze (lhs_nr, "row", true); |
|
2675 octave_idx_type m = idx_j.freeze (lhs_nc, "column", true); |
5164
|
2676 |
|
2677 int idx_i_is_colon = idx_i.is_colon (); |
|
2678 int idx_j_is_colon = idx_j.is_colon (); |
|
2679 |
7238
|
2680 if (lhs_nr == 0 && lhs_nc == 0) |
|
2681 { |
|
2682 if (idx_i_is_colon) |
|
2683 n = rhs_nr; |
|
2684 |
|
2685 if (idx_j_is_colon) |
|
2686 m = rhs_nc; |
|
2687 } |
5164
|
2688 |
|
2689 if (idx_i && idx_j) |
|
2690 { |
|
2691 if (rhs_nr == 0 && rhs_nc == 0) |
|
2692 { |
|
2693 lhs.maybe_delete_elements (idx_i, idx_j); |
|
2694 } |
|
2695 else |
|
2696 { |
|
2697 if (rhs_nr == 1 && rhs_nc == 1 && n >= 0 && m >= 0) |
|
2698 { |
|
2699 if (n > 0 && m > 0) |
|
2700 { |
5603
|
2701 idx_i.sort (true); |
|
2702 idx_j.sort (true); |
|
2703 |
5275
|
2704 octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : |
5164
|
2705 idx_i.max () + 1; |
5275
|
2706 octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : |
5164
|
2707 idx_j.max () + 1; |
5603
|
2708 octave_idx_type new_nr = max_row_idx > lhs_nr ? |
|
2709 max_row_idx : lhs_nr; |
|
2710 octave_idx_type new_nc = max_col_idx > lhs_nc ? |
|
2711 max_col_idx : lhs_nc; |
5164
|
2712 RT scalar = rhs.elem (0, 0); |
|
2713 |
|
2714 // Count the number of non-zero terms |
5681
|
2715 octave_idx_type new_nzmx = lhs.nnz (); |
5275
|
2716 for (octave_idx_type j = 0; j < m; j++) |
5164
|
2717 { |
5275
|
2718 octave_idx_type jj = idx_j.elem (j); |
5164
|
2719 if (jj < lhs_nc) |
|
2720 { |
5275
|
2721 for (octave_idx_type i = 0; i < n; i++) |
5164
|
2722 { |
|
2723 OCTAVE_QUIT; |
|
2724 |
5275
|
2725 octave_idx_type ii = idx_i.elem (i); |
5164
|
2726 |
|
2727 if (ii < lhs_nr) |
|
2728 { |
6988
|
2729 for (octave_idx_type k = c_lhs.cidx(jj); |
|
2730 k < c_lhs.cidx(jj+1); k++) |
5164
|
2731 { |
6988
|
2732 if (c_lhs.ridx(k) == ii) |
5604
|
2733 new_nzmx--; |
6988
|
2734 if (c_lhs.ridx(k) >= ii) |
5164
|
2735 break; |
|
2736 } |
|
2737 } |
|
2738 } |
|
2739 } |
|
2740 } |
|
2741 |
|
2742 if (scalar != RT()) |
5604
|
2743 new_nzmx += m * n; |
|
2744 |
|
2745 Sparse<LT> stmp (new_nr, new_nc, new_nzmx); |
5164
|
2746 |
5275
|
2747 octave_idx_type jji = 0; |
|
2748 octave_idx_type jj = idx_j.elem (jji); |
|
2749 octave_idx_type kk = 0; |
5164
|
2750 stmp.cidx(0) = 0; |
5275
|
2751 for (octave_idx_type j = 0; j < new_nc; j++) |
5164
|
2752 { |
|
2753 if (jji < m && jj == j) |
|
2754 { |
5275
|
2755 octave_idx_type iii = 0; |
|
2756 octave_idx_type ii = idx_i.elem (iii); |
5760
|
2757 octave_idx_type ppp = 0; |
6092
|
2758 octave_idx_type ppi = (j >= lhs_nc ? 0 : |
6988
|
2759 c_lhs.cidx(j+1) - |
|
2760 c_lhs.cidx(j)); |
5760
|
2761 octave_idx_type pp = (ppp < ppi ? |
6988
|
2762 c_lhs.ridx(c_lhs.cidx(j)+ppp) : |
|
2763 new_nr); |
5760
|
2764 while (ppp < ppi || iii < n) |
5164
|
2765 { |
5760
|
2766 if (iii < n && ii <= pp) |
5164
|
2767 { |
|
2768 if (scalar != RT ()) |
|
2769 { |
|
2770 stmp.data(kk) = scalar; |
5760
|
2771 stmp.ridx(kk++) = ii; |
5164
|
2772 } |
5760
|
2773 if (ii == pp) |
6988
|
2774 pp = (++ppp < ppi ? c_lhs.ridx(c_lhs.cidx(j)+ppp) : new_nr); |
5164
|
2775 if (++iii < n) |
|
2776 ii = idx_i.elem(iii); |
|
2777 } |
5760
|
2778 else |
5164
|
2779 { |
5760
|
2780 stmp.data(kk) = |
6988
|
2781 c_lhs.data(c_lhs.cidx(j)+ppp); |
5760
|
2782 stmp.ridx(kk++) = pp; |
6988
|
2783 pp = (++ppp < ppi ? c_lhs.ridx(c_lhs.cidx(j)+ppp) : new_nr); |
5164
|
2784 } |
|
2785 } |
|
2786 if (++jji < m) |
|
2787 jj = idx_j.elem(jji); |
|
2788 } |
6988
|
2789 else if (j < lhs_nc) |
5164
|
2790 { |
6988
|
2791 for (octave_idx_type i = c_lhs.cidx(j); |
|
2792 i < c_lhs.cidx(j+1); i++) |
5164
|
2793 { |
6988
|
2794 stmp.data(kk) = c_lhs.data(i); |
|
2795 stmp.ridx(kk++) = c_lhs.ridx(i); |
5164
|
2796 } |
|
2797 } |
|
2798 stmp.cidx(j+1) = kk; |
|
2799 } |
|
2800 |
|
2801 lhs = stmp; |
|
2802 } |
7246
|
2803 else |
|
2804 { |
7253
|
2805 #if 0 |
|
2806 // FIXME -- the following code will make this |
|
2807 // function behave the same as the full matrix |
|
2808 // case for things like |
|
2809 // |
|
2810 // x = sparse (ones (2)); |
|
2811 // x([],3) = 2; |
|
2812 // |
|
2813 // x = |
|
2814 // |
|
2815 // Compressed Column Sparse (rows = 2, cols = 3, nnz = 4) |
|
2816 // |
|
2817 // (1, 1) -> 1 |
|
2818 // (2, 1) -> 1 |
|
2819 // (1, 2) -> 1 |
|
2820 // (2, 2) -> 1 |
|
2821 // |
|
2822 // However, Matlab doesn't resize in this case |
|
2823 // even though it does in the full matrix case. |
|
2824 |
7246
|
2825 if (n > 0) |
|
2826 { |
|
2827 octave_idx_type max_row_idx = idx_i_is_colon ? |
|
2828 rhs_nr : idx_i.max () + 1; |
|
2829 octave_idx_type new_nr = max_row_idx > lhs_nr ? |
|
2830 max_row_idx : lhs_nr; |
|
2831 octave_idx_type new_nc = lhs_nc; |
|
2832 |
7253
|
2833 lhs.resize (new_nr, new_nc); |
7246
|
2834 } |
|
2835 else if (m > 0) |
|
2836 { |
|
2837 octave_idx_type max_col_idx = idx_j_is_colon ? |
|
2838 rhs_nc : idx_j.max () + 1; |
|
2839 octave_idx_type new_nr = lhs_nr; |
|
2840 octave_idx_type new_nc = max_col_idx > lhs_nc ? |
|
2841 max_col_idx : lhs_nc; |
|
2842 |
7253
|
2843 lhs.resize (new_nr, new_nc); |
7246
|
2844 } |
7253
|
2845 #endif |
7246
|
2846 } |
5164
|
2847 } |
|
2848 else if (n == rhs_nr && m == rhs_nc) |
|
2849 { |
|
2850 if (n > 0 && m > 0) |
|
2851 { |
5275
|
2852 octave_idx_type max_row_idx = idx_i_is_colon ? rhs_nr : |
5164
|
2853 idx_i.max () + 1; |
5275
|
2854 octave_idx_type max_col_idx = idx_j_is_colon ? rhs_nc : |
5164
|
2855 idx_j.max () + 1; |
5603
|
2856 octave_idx_type new_nr = max_row_idx > lhs_nr ? |
|
2857 max_row_idx : lhs_nr; |
|
2858 octave_idx_type new_nc = max_col_idx > lhs_nc ? |
|
2859 max_col_idx : lhs_nc; |
|
2860 |
|
2861 OCTAVE_LOCAL_BUFFER (octave_idx_type, rhs_idx_i, n); |
|
2862 if (! idx_i.is_colon ()) |
|
2863 { |
|
2864 // Ok here we have to be careful with the indexing, |
|
2865 // to treat cases like "a([3,2,1],:) = b", and still |
|
2866 // handle the need for strict sorting of the sparse |
|
2867 // elements. |
|
2868 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort *, |
|
2869 sidx, n); |
|
2870 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort, |
|
2871 sidxX, n); |
|
2872 |
|
2873 for (octave_idx_type i = 0; i < n; i++) |
|
2874 { |
|
2875 sidx[i] = &sidxX[i]; |
|
2876 sidx[i]->i = idx_i.elem(i); |
|
2877 sidx[i]->idx = i; |
|
2878 } |
|
2879 |
|
2880 OCTAVE_QUIT; |
|
2881 octave_sort<octave_idx_vector_sort *> |
|
2882 sort (octave_idx_vector_comp); |
|
2883 |
|
2884 sort.sort (sidx, n); |
|
2885 |
|
2886 intNDArray<octave_idx_type> new_idx (dim_vector (n,1)); |
|
2887 |
|
2888 for (octave_idx_type i = 0; i < n; i++) |
|
2889 { |
|
2890 new_idx.xelem(i) = sidx[i]->i + 1; |
|
2891 rhs_idx_i[i] = sidx[i]->idx; |
|
2892 } |
|
2893 |
|
2894 idx_i = idx_vector (new_idx); |
|
2895 } |
|
2896 else |
|
2897 for (octave_idx_type i = 0; i < n; i++) |
|
2898 rhs_idx_i[i] = i; |
|
2899 |
|
2900 OCTAVE_LOCAL_BUFFER (octave_idx_type, rhs_idx_j, m); |
|
2901 if (! idx_j.is_colon ()) |
|
2902 { |
|
2903 // Ok here we have to be careful with the indexing, |
|
2904 // to treat cases like "a([3,2,1],:) = b", and still |
|
2905 // handle the need for strict sorting of the sparse |
|
2906 // elements. |
|
2907 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort *, |
|
2908 sidx, m); |
|
2909 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort, |
|
2910 sidxX, m); |
|
2911 |
|
2912 for (octave_idx_type i = 0; i < m; i++) |
|
2913 { |
|
2914 sidx[i] = &sidxX[i]; |
|
2915 sidx[i]->i = idx_j.elem(i); |
|
2916 sidx[i]->idx = i; |
|
2917 } |
|
2918 |
|
2919 OCTAVE_QUIT; |
|
2920 octave_sort<octave_idx_vector_sort *> |
|
2921 sort (octave_idx_vector_comp); |
|
2922 |
|
2923 sort.sort (sidx, m); |
|
2924 |
|
2925 intNDArray<octave_idx_type> new_idx (dim_vector (m,1)); |
|
2926 |
|
2927 for (octave_idx_type i = 0; i < m; i++) |
|
2928 { |
|
2929 new_idx.xelem(i) = sidx[i]->i + 1; |
|
2930 rhs_idx_j[i] = sidx[i]->idx; |
|
2931 } |
|
2932 |
|
2933 idx_j = idx_vector (new_idx); |
|
2934 } |
|
2935 else |
|
2936 for (octave_idx_type i = 0; i < m; i++) |
|
2937 rhs_idx_j[i] = i; |
5164
|
2938 |
5760
|
2939 // Maximum number of non-zero elements |
|
2940 octave_idx_type new_nzmx = lhs.nnz() + rhs.nnz(); |
5164
|
2941 |
5604
|
2942 Sparse<LT> stmp (new_nr, new_nc, new_nzmx); |
5164
|
2943 |
5275
|
2944 octave_idx_type jji = 0; |
|
2945 octave_idx_type jj = idx_j.elem (jji); |
|
2946 octave_idx_type kk = 0; |
5164
|
2947 stmp.cidx(0) = 0; |
5275
|
2948 for (octave_idx_type j = 0; j < new_nc; j++) |
5164
|
2949 { |
|
2950 if (jji < m && jj == j) |
|
2951 { |
5275
|
2952 octave_idx_type iii = 0; |
|
2953 octave_idx_type ii = idx_i.elem (iii); |
5760
|
2954 octave_idx_type ppp = 0; |
6092
|
2955 octave_idx_type ppi = (j >= lhs_nc ? 0 : |
6988
|
2956 c_lhs.cidx(j+1) - |
|
2957 c_lhs.cidx(j)); |
5760
|
2958 octave_idx_type pp = (ppp < ppi ? |
6988
|
2959 c_lhs.ridx(c_lhs.cidx(j)+ppp) : |
|
2960 new_nr); |
5760
|
2961 while (ppp < ppi || iii < n) |
5164
|
2962 { |
5760
|
2963 if (iii < n && ii <= pp) |
5164
|
2964 { |
5603
|
2965 RT rtmp = rhs.elem (rhs_idx_i[iii], |
|
2966 rhs_idx_j[jji]); |
5164
|
2967 if (rtmp != RT ()) |
|
2968 { |
|
2969 stmp.data(kk) = rtmp; |
5760
|
2970 stmp.ridx(kk++) = ii; |
5164
|
2971 } |
5760
|
2972 if (ii == pp) |
6988
|
2973 pp = (++ppp < ppi ? c_lhs.ridx(c_lhs.cidx(j)+ppp) : new_nr); |
5164
|
2974 if (++iii < n) |
|
2975 ii = idx_i.elem(iii); |
|
2976 } |
5760
|
2977 else |
5164
|
2978 { |
5760
|
2979 stmp.data(kk) = |
6988
|
2980 c_lhs.data(c_lhs.cidx(j)+ppp); |
5760
|
2981 stmp.ridx(kk++) = pp; |
6988
|
2982 pp = (++ppp < ppi ? c_lhs.ridx(c_lhs.cidx(j)+ppp) : new_nr); |
5164
|
2983 } |
|
2984 } |
|
2985 if (++jji < m) |
|
2986 jj = idx_j.elem(jji); |
|
2987 } |
6988
|
2988 else if (j < lhs_nc) |
5164
|
2989 { |
6988
|
2990 for (octave_idx_type i = c_lhs.cidx(j); |
|
2991 i < c_lhs.cidx(j+1); i++) |
5164
|
2992 { |
6988
|
2993 stmp.data(kk) = c_lhs.data(i); |
|
2994 stmp.ridx(kk++) = c_lhs.ridx(i); |
5164
|
2995 } |
|
2996 } |
|
2997 stmp.cidx(j+1) = kk; |
|
2998 } |
|
2999 |
5760
|
3000 stmp.maybe_compress(); |
5164
|
3001 lhs = stmp; |
|
3002 } |
|
3003 } |
|
3004 else if (n == 0 && m == 0) |
|
3005 { |
|
3006 if (! ((rhs_nr == 1 && rhs_nc == 1) |
|
3007 || (rhs_nr == 0 || rhs_nc == 0))) |
|
3008 { |
|
3009 (*current_liboctave_error_handler) |
|
3010 ("A([], []) = X: X must be an empty matrix or a scalar"); |
|
3011 |
|
3012 retval = 0; |
|
3013 } |
|
3014 } |
|
3015 else |
|
3016 { |
|
3017 (*current_liboctave_error_handler) |
|
3018 ("A(I, J) = X: X must be a scalar or the number of elements in I must"); |
|
3019 (*current_liboctave_error_handler) |
|
3020 ("match the number of rows in X and the number of elements in J must"); |
|
3021 (*current_liboctave_error_handler) |
|
3022 ("match the number of columns in X"); |
|
3023 |
|
3024 retval = 0; |
|
3025 } |
|
3026 } |
|
3027 } |
|
3028 // idx_vector::freeze() printed an error message for us. |
|
3029 } |
|
3030 else if (n_idx == 1) |
|
3031 { |
|
3032 int lhs_is_empty = lhs_nr == 0 || lhs_nc == 0; |
|
3033 |
|
3034 if (lhs_is_empty || (lhs_nr == 1 && lhs_nc == 1)) |
|
3035 { |
5275
|
3036 octave_idx_type lhs_len = lhs.length (); |
|
3037 |
5781
|
3038 octave_idx_type n = idx_i.freeze (lhs_len, 0, true); |
5164
|
3039 |
|
3040 if (idx_i) |
|
3041 { |
|
3042 if (rhs_nr == 0 && rhs_nc == 0) |
|
3043 { |
|
3044 if (n != 0 && (lhs_nr != 0 || lhs_nc != 0)) |
|
3045 lhs.maybe_delete_elements (idx_i); |
|
3046 } |
|
3047 else |
|
3048 { |
5781
|
3049 if (lhs_is_empty |
|
3050 && idx_i.is_colon () |
|
3051 && ! (rhs_nr == 1 || rhs_nc == 1)) |
5164
|
3052 { |
5781
|
3053 (*current_liboctave_warning_with_id_handler) |
|
3054 ("Octave:fortran-indexing", |
|
3055 "A(:) = X: X is not a vector or scalar"); |
|
3056 } |
|
3057 else |
|
3058 { |
|
3059 octave_idx_type idx_nr = idx_i.orig_rows (); |
|
3060 octave_idx_type idx_nc = idx_i.orig_columns (); |
|
3061 |
|
3062 if (! (rhs_nr == idx_nr && rhs_nc == idx_nc)) |
|
3063 (*current_liboctave_warning_with_id_handler) |
|
3064 ("Octave:fortran-indexing", |
|
3065 "A(I) = X: X does not have same shape as I"); |
5164
|
3066 } |
|
3067 |
5760
|
3068 if (! assign1 (lhs, rhs)) |
5164
|
3069 retval = 0; |
|
3070 } |
|
3071 } |
|
3072 // idx_vector::freeze() printed an error message for us. |
|
3073 } |
|
3074 else if (lhs_nr == 1) |
|
3075 { |
5781
|
3076 idx_i.freeze (lhs_nc, "vector", true); |
5164
|
3077 |
|
3078 if (idx_i) |
|
3079 { |
|
3080 if (rhs_nr == 0 && rhs_nc == 0) |
|
3081 lhs.maybe_delete_elements (idx_i); |
5760
|
3082 else if (! assign1 (lhs, rhs)) |
5164
|
3083 retval = 0; |
|
3084 } |
|
3085 // idx_vector::freeze() printed an error message for us. |
|
3086 } |
|
3087 else if (lhs_nc == 1) |
|
3088 { |
5781
|
3089 idx_i.freeze (lhs_nr, "vector", true); |
5164
|
3090 |
|
3091 if (idx_i) |
|
3092 { |
|
3093 if (rhs_nr == 0 && rhs_nc == 0) |
|
3094 lhs.maybe_delete_elements (idx_i); |
5760
|
3095 else if (! assign1 (lhs, rhs)) |
5164
|
3096 retval = 0; |
|
3097 } |
|
3098 // idx_vector::freeze() printed an error message for us. |
|
3099 } |
|
3100 else |
|
3101 { |
5781
|
3102 if (! (idx_i.is_colon () |
|
3103 || (idx_i.one_zero_only () |
|
3104 && idx_i.orig_rows () == lhs_nr |
|
3105 && idx_i.orig_columns () == lhs_nc))) |
|
3106 (*current_liboctave_warning_with_id_handler) |
|
3107 ("Octave:fortran-indexing", "single index used for matrix"); |
5164
|
3108 |
5275
|
3109 octave_idx_type lhs_len = lhs.length (); |
|
3110 |
|
3111 octave_idx_type len = idx_i.freeze (lhs_nr * lhs_nc, "matrix"); |
5164
|
3112 |
|
3113 if (idx_i) |
|
3114 { |
|
3115 if (rhs_nr == 0 && rhs_nc == 0) |
|
3116 lhs.maybe_delete_elements (idx_i); |
|
3117 else if (len == 0) |
|
3118 { |
|
3119 if (! ((rhs_nr == 1 && rhs_nc == 1) |
|
3120 || (rhs_nr == 0 || rhs_nc == 0))) |
|
3121 (*current_liboctave_error_handler) |
|
3122 ("A([]) = X: X must be an empty matrix or scalar"); |
|
3123 } |
|
3124 else if (len == rhs_nr * rhs_nc) |
|
3125 { |
5604
|
3126 octave_idx_type new_nzmx = lhs_nz; |
5603
|
3127 OCTAVE_LOCAL_BUFFER (octave_idx_type, rhs_idx, len); |
|
3128 |
|
3129 if (! idx_i.is_colon ()) |
|
3130 { |
|
3131 // Ok here we have to be careful with the indexing, to |
|
3132 // treat cases like "a([3,2,1]) = b", and still handle |
|
3133 // the need for strict sorting of the sparse elements. |
|
3134 |
|
3135 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort *, sidx, |
|
3136 len); |
|
3137 OCTAVE_LOCAL_BUFFER (octave_idx_vector_sort, sidxX, |
|
3138 len); |
|
3139 |
|
3140 for (octave_idx_type i = 0; i < len; i++) |
|
3141 { |
|
3142 sidx[i] = &sidxX[i]; |
|
3143 sidx[i]->i = idx_i.elem(i); |
|
3144 sidx[i]->idx = i; |
|
3145 } |
|
3146 |
|
3147 OCTAVE_QUIT; |
|
3148 octave_sort<octave_idx_vector_sort *> |
|
3149 sort (octave_idx_vector_comp); |
|
3150 |
|
3151 sort.sort (sidx, len); |
|
3152 |
|
3153 intNDArray<octave_idx_type> new_idx (dim_vector (len,1)); |
|
3154 |
|
3155 for (octave_idx_type i = 0; i < len; i++) |
|
3156 { |
|
3157 new_idx.xelem(i) = sidx[i]->i + 1; |
|
3158 rhs_idx[i] = sidx[i]->idx; |
|
3159 } |
|
3160 |
|
3161 idx_i = idx_vector (new_idx); |
|
3162 } |
|
3163 else |
|
3164 for (octave_idx_type i = 0; i < len; i++) |
|
3165 rhs_idx[i] = i; |
5164
|
3166 |
|
3167 // First count the number of non-zero elements |
5275
|
3168 for (octave_idx_type i = 0; i < len; i++) |
5164
|
3169 { |
|
3170 OCTAVE_QUIT; |
|
3171 |
5275
|
3172 octave_idx_type ii = idx_i.elem (i); |
5164
|
3173 if (ii < lhs_len && c_lhs.elem(ii) != LT ()) |
5604
|
3174 new_nzmx--; |
5603
|
3175 if (rhs.elem(rhs_idx[i]) != RT ()) |
5604
|
3176 new_nzmx++; |
5164
|
3177 } |
|
3178 |
5604
|
3179 Sparse<LT> stmp (lhs_nr, lhs_nc, new_nzmx); |
5164
|
3180 |
5275
|
3181 octave_idx_type i = 0; |
|
3182 octave_idx_type ii = 0; |
|
3183 octave_idx_type ic = 0; |
5164
|
3184 if (i < lhs_nz) |
|
3185 { |
|
3186 while (ic < lhs_nc && i >= c_lhs.cidx(ic+1)) |
|
3187 ic++; |
|
3188 ii = ic * lhs_nr + c_lhs.ridx(i); |
|
3189 } |
|
3190 |
5275
|
3191 octave_idx_type j = 0; |
|
3192 octave_idx_type jj = idx_i.elem (j); |
|
3193 octave_idx_type jr = jj % lhs_nr; |
|
3194 octave_idx_type jc = (jj - jr) / lhs_nr; |
|
3195 |
|
3196 octave_idx_type kk = 0; |
|
3197 octave_idx_type kc = 0; |
5164
|
3198 |
|
3199 while (j < len || i < lhs_nz) |
|
3200 { |
|
3201 if (j == len || (i < lhs_nz && ii < jj)) |
|
3202 { |
|
3203 while (kc <= ic) |
|
3204 stmp.xcidx (kc++) = kk; |
|
3205 stmp.xdata (kk) = c_lhs.data (i); |
|
3206 stmp.xridx (kk++) = c_lhs.ridx (i); |
|
3207 i++; |
|
3208 while (ic < lhs_nc && i >= c_lhs.cidx(ic+1)) |
|
3209 ic++; |
|
3210 if (i < lhs_nz) |
|
3211 ii = ic * lhs_nr + c_lhs.ridx(i); |
|
3212 } |
|
3213 else |
|
3214 { |
|
3215 while (kc <= jc) |
|
3216 stmp.xcidx (kc++) = kk; |
5603
|
3217 RT rtmp = rhs.elem (rhs_idx[j]); |
5164
|
3218 if (rtmp != RT ()) |
|
3219 { |
|
3220 stmp.xdata (kk) = rtmp; |
|
3221 stmp.xridx (kk++) = jr; |
|
3222 } |
|
3223 if (ii == jj) |
|
3224 { |
|
3225 i++; |
|
3226 while (ic < lhs_nc && i >= c_lhs.cidx(ic+1)) |
|
3227 ic++; |
|
3228 if (i < lhs_nz) |
|
3229 ii = ic * lhs_nr + c_lhs.ridx(i); |
|
3230 } |
|
3231 j++; |
|
3232 if (j < len) |
|
3233 { |
|
3234 jj = idx_i.elem (j); |
|
3235 jr = jj % lhs_nr; |
|
3236 jc = (jj - jr) / lhs_nr; |
|
3237 } |
|
3238 } |
|
3239 } |
|
3240 |
5275
|
3241 for (octave_idx_type iidx = kc; iidx < lhs_nc+1; iidx++) |
5603
|
3242 stmp.xcidx(iidx) = kk; |
5164
|
3243 |
|
3244 lhs = stmp; |
|
3245 } |
|
3246 else if (rhs_nr == 1 && rhs_nc == 1) |
|
3247 { |
|
3248 RT scalar = rhs.elem (0, 0); |
5604
|
3249 octave_idx_type new_nzmx = lhs_nz; |
5603
|
3250 idx_i.sort (true); |
5164
|
3251 |
|
3252 // First count the number of non-zero elements |
|
3253 if (scalar != RT ()) |
5604
|
3254 new_nzmx += len; |
5275
|
3255 for (octave_idx_type i = 0; i < len; i++) |
5164
|
3256 { |
|
3257 OCTAVE_QUIT; |
5275
|
3258 octave_idx_type ii = idx_i.elem (i); |
5164
|
3259 if (ii < lhs_len && c_lhs.elem(ii) != LT ()) |
5604
|
3260 new_nzmx--; |
5164
|
3261 } |
|
3262 |
5604
|
3263 Sparse<LT> stmp (lhs_nr, lhs_nc, new_nzmx); |
5164
|
3264 |
5275
|
3265 octave_idx_type i = 0; |
|
3266 octave_idx_type ii = 0; |
|
3267 octave_idx_type ic = 0; |
5164
|
3268 if (i < lhs_nz) |
|
3269 { |
|
3270 while (ic < lhs_nc && i >= c_lhs.cidx(ic+1)) |
|
3271 ic++; |
|
3272 ii = ic * lhs_nr + c_lhs.ridx(i); |
|
3273 } |
|
3274 |
5275
|
3275 octave_idx_type j = 0; |
|
3276 octave_idx_type jj = idx_i.elem (j); |
|
3277 octave_idx_type jr = jj % lhs_nr; |
|
3278 octave_idx_type jc = (jj - jr) / lhs_nr; |
|
3279 |
|
3280 octave_idx_type kk = 0; |
|
3281 octave_idx_type kc = 0; |
5164
|
3282 |
|
3283 while (j < len || i < lhs_nz) |
|
3284 { |
|
3285 if (j == len || (i < lhs_nz && ii < jj)) |
|
3286 { |
|
3287 while (kc <= ic) |
|
3288 stmp.xcidx (kc++) = kk; |
|
3289 stmp.xdata (kk) = c_lhs.data (i); |
|
3290 stmp.xridx (kk++) = c_lhs.ridx (i); |
|
3291 i++; |
|
3292 while (ic < lhs_nc && i >= c_lhs.cidx(ic+1)) |
|
3293 ic++; |
|
3294 if (i < lhs_nz) |
|
3295 ii = ic * lhs_nr + c_lhs.ridx(i); |
|
3296 } |
|
3297 else |
|
3298 { |
|
3299 while (kc <= jc) |
|
3300 stmp.xcidx (kc++) = kk; |
|
3301 if (scalar != RT ()) |
|
3302 { |
|
3303 stmp.xdata (kk) = scalar; |
|
3304 stmp.xridx (kk++) = jr; |
|
3305 } |
|
3306 if (ii == jj) |
|
3307 { |
|
3308 i++; |
|
3309 while (ic < lhs_nc && i >= c_lhs.cidx(ic+1)) |
|
3310 ic++; |
|
3311 if (i < lhs_nz) |
|
3312 ii = ic * lhs_nr + c_lhs.ridx(i); |
|
3313 } |
|
3314 j++; |
|
3315 if (j < len) |
|
3316 { |
|
3317 jj = idx_i.elem (j); |
|
3318 jr = jj % lhs_nr; |
|
3319 jc = (jj - jr) / lhs_nr; |
|
3320 } |
|
3321 } |
|
3322 } |
|
3323 |
5275
|
3324 for (octave_idx_type iidx = kc; iidx < lhs_nc+1; iidx++) |
5164
|
3325 stmp.xcidx(iidx) = kk; |
|
3326 |
|
3327 lhs = stmp; |
|
3328 } |
|
3329 else |
|
3330 { |
|
3331 (*current_liboctave_error_handler) |
|
3332 ("A(I) = X: X must be a scalar or a matrix with the same size as I"); |
|
3333 |
|
3334 retval = 0; |
|
3335 } |
|
3336 } |
|
3337 // idx_vector::freeze() printed an error message for us. |
|
3338 } |
|
3339 } |
|
3340 else |
|
3341 { |
|
3342 (*current_liboctave_error_handler) |
|
3343 ("invalid number of indices for matrix expression"); |
|
3344 |
|
3345 retval = 0; |
|
3346 } |
|
3347 |
|
3348 lhs.clear_index (); |
|
3349 |
|
3350 return retval; |
|
3351 } |
|
3352 |
7356
|
3353 /* |
|
3354 * Tests |
|
3355 * |
|
3356 |
|
3357 %!function x = set_slice(x, dim, slice) |
|
3358 %! switch dim |
|
3359 %! case 11 |
|
3360 %! x(slice) = 2; |
|
3361 %! case 21 |
|
3362 %! x(slice, :) = 2; |
|
3363 %! case 22 |
|
3364 %! x(:, slice) = 2; |
|
3365 %! otherwise |
|
3366 %! error("invalid dim, '%d'", dim); |
|
3367 %! endswitch |
|
3368 %! endfunction |
|
3369 |
|
3370 %!function test_sparse_slice(size, dim, slice) |
|
3371 %! x = ones(size); |
|
3372 %! s = set_slice(sparse(x), dim, slice); |
|
3373 %! f = set_slice(x, dim, slice); |
|
3374 %! assert(full(s), f); |
|
3375 %! endfunction |
|
3376 |
|
3377 #### 1d indexing |
|
3378 |
|
3379 ## size = [2 0] |
|
3380 %!test test_sparse_slice([2 0], 11, []); |
|
3381 %!assert(set_slice(sparse(ones([2 0])), 11, 1), sparse([2 0]')); # sparse different from full |
|
3382 %!assert(set_slice(sparse(ones([2 0])), 11, 2), sparse([0 2]')); # sparse different from full |
|
3383 %!assert(set_slice(sparse(ones([2 0])), 11, 3), sparse([0 0 2]')); # sparse different from full |
|
3384 %!assert(set_slice(sparse(ones([2 0])), 11, 4), sparse([0 0 0 2]')); # sparse different from full |
|
3385 |
|
3386 ## size = [0 2] |
|
3387 %!test test_sparse_slice([0 2], 11, []); |
|
3388 %!assert(set_slice(sparse(ones([0 2])), 11, 1), sparse(1,2)); # sparse different from full |
|
3389 %!test test_sparse_slice([0 2], 11, 2); |
|
3390 %!test test_sparse_slice([0 2], 11, 3); |
|
3391 %!test test_sparse_slice([0 2], 11, 4); |
|
3392 |
|
3393 ## size = [2 1] |
|
3394 %!test test_sparse_slice([2 1], 11, []); |
|
3395 %!test test_sparse_slice([2 1], 11, 1); |
|
3396 %!test test_sparse_slice([2 1], 11, 2); |
|
3397 %!test test_sparse_slice([2 1], 11, 3); |
|
3398 %!test test_sparse_slice([2 1], 11, 4); |
|
3399 |
|
3400 ## size = [1 2] |
|
3401 %!test test_sparse_slice([1 2], 11, []); |
|
3402 %!test test_sparse_slice([1 2], 11, 1); |
|
3403 %!test test_sparse_slice([1 2], 11, 2); |
|
3404 %!test test_sparse_slice([1 2], 11, 3); |
|
3405 %!test test_sparse_slice([1 2], 11, 4); |
|
3406 |
|
3407 ## size = [2 2] |
|
3408 %!test test_sparse_slice([2 2], 11, []); |
|
3409 %!test test_sparse_slice([2 2], 11, 1); |
|
3410 %!test test_sparse_slice([2 2], 11, 2); |
|
3411 %!test test_sparse_slice([2 2], 11, 3); |
|
3412 %!test test_sparse_slice([2 2], 11, 4); |
|
3413 # These 2 errors are the same as in the full case |
|
3414 %!error <invalid matrix index = 5> set_slice(sparse(ones([2 2])), 11, 5); |
|
3415 %!error <invalid matrix index = 6> set_slice(sparse(ones([2 2])), 11, 6); |
|
3416 |
|
3417 |
|
3418 #### 2d indexing |
|
3419 |
|
3420 ## size = [2 0] |
|
3421 %!test test_sparse_slice([2 0], 21, []); |
|
3422 %!test test_sparse_slice([2 0], 21, 1); |
|
3423 %!test test_sparse_slice([2 0], 21, 2); |
|
3424 %!assert(set_slice(sparse(ones([2 0])), 21, 3), sparse(2,0)); # sparse different from full |
|
3425 %!assert(set_slice(sparse(ones([2 0])), 21, 4), sparse(2,0)); # sparse different from full |
|
3426 %!test test_sparse_slice([2 0], 22, []); |
|
3427 %!test test_sparse_slice([2 0], 22, 1); |
|
3428 %!test test_sparse_slice([2 0], 22, 2); |
|
3429 %!assert(set_slice(sparse(ones([2 0])), 22, 3), sparse([0 0 2;0 0 2])); # sparse different from full |
|
3430 %!assert(set_slice(sparse(ones([2 0])), 22, 4), sparse([0 0 0 2;0 0 0 2])); # sparse different from full |
|
3431 |
|
3432 ## size = [0 2] |
|
3433 %!test test_sparse_slice([0 2], 21, []); |
|
3434 %!test test_sparse_slice([0 2], 21, 1); |
|
3435 %!test test_sparse_slice([0 2], 21, 2); |
|
3436 %!assert(set_slice(sparse(ones([0 2])), 21, 3), sparse([0 0;0 0;2 2])); # sparse different from full |
|
3437 %!assert(set_slice(sparse(ones([0 2])), 21, 4), sparse([0 0;0 0;0 0;2 2])); # sparse different from full |
|
3438 %!test test_sparse_slice([0 2], 22, []); |
|
3439 %!test test_sparse_slice([0 2], 22, 1); |
|
3440 %!test test_sparse_slice([0 2], 22, 2); |
|
3441 %!assert(set_slice(sparse(ones([0 2])), 22, 3), sparse(0,2)); # sparse different from full |
|
3442 %!assert(set_slice(sparse(ones([0 2])), 22, 4), sparse(0,2)); # sparse different from full |
|
3443 |
|
3444 ## size = [2 1] |
|
3445 %!test test_sparse_slice([2 1], 21, []); |
|
3446 %!test test_sparse_slice([2 1], 21, 1); |
|
3447 %!test test_sparse_slice([2 1], 21, 2); |
|
3448 %!test test_sparse_slice([2 1], 21, 3); |
|
3449 %!test test_sparse_slice([2 1], 21, 4); |
|
3450 %!test test_sparse_slice([2 1], 22, []); |
|
3451 %!test test_sparse_slice([2 1], 22, 1); |
|
3452 %!test test_sparse_slice([2 1], 22, 2); |
|
3453 %!test test_sparse_slice([2 1], 22, 3); |
|
3454 %!test test_sparse_slice([2 1], 22, 4); |
|
3455 |
|
3456 ## size = [1 2] |
|
3457 %!test test_sparse_slice([1 2], 21, []); |
|
3458 %!test test_sparse_slice([1 2], 21, 1); |
|
3459 %!test test_sparse_slice([1 2], 21, 2); |
|
3460 %!test test_sparse_slice([1 2], 21, 3); |
|
3461 %!test test_sparse_slice([1 2], 21, 4); |
|
3462 %!test test_sparse_slice([1 2], 22, []); |
|
3463 %!test test_sparse_slice([1 2], 22, 1); |
|
3464 %!test test_sparse_slice([1 2], 22, 2); |
|
3465 %!test test_sparse_slice([1 2], 22, 3); |
|
3466 %!test test_sparse_slice([1 2], 22, 4); |
|
3467 |
|
3468 ## size = [2 2] |
|
3469 %!test test_sparse_slice([2 2], 21, []); |
|
3470 %!test test_sparse_slice([2 2], 21, 1); |
|
3471 %!test test_sparse_slice([2 2], 21, 2); |
|
3472 %!test test_sparse_slice([2 2], 21, 3); |
|
3473 %!test test_sparse_slice([2 2], 21, 4); |
|
3474 %!test test_sparse_slice([2 2], 22, []); |
|
3475 %!test test_sparse_slice([2 2], 22, 1); |
|
3476 %!test test_sparse_slice([2 2], 22, 2); |
|
3477 %!test test_sparse_slice([2 2], 22, 3); |
|
3478 %!test test_sparse_slice([2 2], 22, 4); |
|
3479 |
|
3480 */ |
|
3481 |
5164
|
3482 template <class T> |
|
3483 void |
|
3484 Sparse<T>::print_info (std::ostream& os, const std::string& prefix) const |
|
3485 { |
|
3486 os << prefix << "rep address: " << rep << "\n" |
5604
|
3487 << prefix << "rep->nzmx: " << rep->nzmx << "\n" |
5164
|
3488 << prefix << "rep->nrows: " << rep->nrows << "\n" |
|
3489 << prefix << "rep->ncols: " << rep->ncols << "\n" |
|
3490 << prefix << "rep->data: " << static_cast<void *> (rep->d) << "\n" |
|
3491 << prefix << "rep->ridx: " << static_cast<void *> (rep->r) << "\n" |
|
3492 << prefix << "rep->cidx: " << static_cast<void *> (rep->c) << "\n" |
|
3493 << prefix << "rep->count: " << rep->count << "\n"; |
|
3494 } |
|
3495 |
|
3496 /* |
|
3497 ;;; Local Variables: *** |
|
3498 ;;; mode: C++ *** |
|
3499 ;;; End: *** |
|
3500 */ |