2
|
1 /* Extended regular expression matching and search library, |
47
|
2 version 0.12. |
2
|
3 (Implements POSIX draft P10003.2/D11.2, except for |
|
4 internationalization features.) |
|
5 |
34
|
6 Copyright (C) 1993 Free Software Foundation, Inc. |
2
|
7 |
|
8 This program is free software; you can redistribute it and/or modify |
|
9 it under the terms of the GNU General Public License as published by |
|
10 the Free Software Foundation; either version 2, or (at your option) |
|
11 any later version. |
|
12 |
|
13 This program is distributed in the hope that it will be useful, |
|
14 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
16 GNU General Public License for more details. |
|
17 |
|
18 You should have received a copy of the GNU General Public License |
|
19 along with this program; if not, write to the Free Software |
|
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ |
|
21 |
|
22 /* AIX requires this to be the first thing in the file. */ |
|
23 #if defined (_AIX) && !defined (REGEX_MALLOC) |
|
24 #pragma alloca |
|
25 #endif |
|
26 |
|
27 #define _GNU_SOURCE |
|
28 |
124
|
29 #ifdef HAVE_CONFIG_H |
|
30 #if defined (CONFIG_BROKETS) |
|
31 /* We use <config.h> instead of "config.h" so that a compilation |
|
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h |
|
33 (which it would do because it found this file in $srcdir). */ |
|
34 #include <config.h> |
|
35 #else |
|
36 #include "config.h" |
|
37 #endif |
|
38 #endif |
|
39 |
2
|
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */ |
|
41 #include <sys/types.h> |
|
42 |
29
|
43 #ifdef HAVE_CONFIG_H |
26
|
44 #include "config.h" |
|
45 #endif |
|
46 |
2
|
47 /* The `emacs' switch turns on certain matching commands |
|
48 that make sense only in Emacs. */ |
|
49 #ifdef emacs |
|
50 |
|
51 #include "lisp.h" |
|
52 #include "buffer.h" |
|
53 #include "syntax.h" |
|
54 |
|
55 /* Emacs uses `NULL' as a predicate. */ |
|
56 #undef NULL |
|
57 |
|
58 #else /* not emacs */ |
|
59 |
94
|
60 #ifdef STDC_HEADERS |
|
61 #include <stdlib.h> |
|
62 #else |
|
63 char *malloc (); |
|
64 char *realloc (); |
|
65 #endif |
|
66 |
|
67 |
2
|
68 /* We used to test for `BSTRING' here, but only GCC and Emacs define |
|
69 `BSTRING', as far as I know, and neither of them use this code. */ |
24
|
70 #if HAVE_STRING_H || STDC_HEADERS |
2
|
71 #include <string.h> |
23
|
72 #ifndef bcmp |
2
|
73 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) |
23
|
74 #endif |
|
75 #ifndef bcopy |
2
|
76 #define bcopy(s, d, n) memcpy ((d), (s), (n)) |
23
|
77 #endif |
|
78 #ifndef bzero |
2
|
79 #define bzero(s, n) memset ((s), 0, (n)) |
23
|
80 #endif |
2
|
81 #else |
|
82 #include <strings.h> |
|
83 #endif |
|
84 |
|
85 /* Define the syntax stuff for \<, \>, etc. */ |
|
86 |
|
87 /* This must be nonzero for the wordchar and notwordchar pattern |
|
88 commands in re_match_2. */ |
|
89 #ifndef Sword |
|
90 #define Sword 1 |
|
91 #endif |
|
92 |
|
93 #ifdef SYNTAX_TABLE |
|
94 |
|
95 extern char *re_syntax_table; |
|
96 |
|
97 #else /* not SYNTAX_TABLE */ |
|
98 |
|
99 /* How many characters in the character set. */ |
|
100 #define CHAR_SET_SIZE 256 |
|
101 |
|
102 static char re_syntax_table[CHAR_SET_SIZE]; |
|
103 |
|
104 static void |
|
105 init_syntax_once () |
|
106 { |
|
107 register int c; |
|
108 static int done = 0; |
|
109 |
|
110 if (done) |
|
111 return; |
|
112 |
|
113 bzero (re_syntax_table, sizeof re_syntax_table); |
|
114 |
|
115 for (c = 'a'; c <= 'z'; c++) |
|
116 re_syntax_table[c] = Sword; |
|
117 |
|
118 for (c = 'A'; c <= 'Z'; c++) |
|
119 re_syntax_table[c] = Sword; |
|
120 |
|
121 for (c = '0'; c <= '9'; c++) |
|
122 re_syntax_table[c] = Sword; |
|
123 |
|
124 re_syntax_table['_'] = Sword; |
|
125 |
|
126 done = 1; |
|
127 } |
|
128 |
|
129 #endif /* not SYNTAX_TABLE */ |
|
130 |
|
131 #define SYNTAX(c) re_syntax_table[c] |
|
132 |
|
133 #endif /* not emacs */ |
|
134 |
|
135 /* Get the interface, including the syntax bits. */ |
|
136 #include "regex.h" |
|
137 |
|
138 /* isalpha etc. are used for the character classes. */ |
|
139 #include <ctype.h> |
28
|
140 |
54
|
141 /* Jim Meyering writes: |
|
142 |
|
143 "... Some ctype macros are valid only for character codes that |
|
144 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when |
|
145 using /bin/cc or gcc but without giving an ansi option). So, all |
|
146 ctype uses should be through macros like ISPRINT... If |
|
147 STDC_HEADERS is defined, then autoconf has verified that the ctype |
|
148 macros don't need to be guarded with references to isascii. ... |
|
149 Defining isascii to 1 should let any compiler worth its salt |
|
150 eliminate the && through constant folding." */ |
174
|
151 |
|
152 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) |
|
153 #define ISASCII(c) 1 |
|
154 #else |
|
155 #define ISASCII(c) isascii(c) |
28
|
156 #endif |
|
157 |
|
158 #ifdef isblank |
174
|
159 #define ISBLANK(c) (ISASCII (c) && isblank (c)) |
28
|
160 #else |
|
161 #define ISBLANK(c) ((c) == ' ' || (c) == '\t') |
2
|
162 #endif |
28
|
163 #ifdef isgraph |
174
|
164 #define ISGRAPH(c) (ISASCII (c) && isgraph (c)) |
28
|
165 #else |
174
|
166 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) |
2
|
167 #endif |
|
168 |
174
|
169 #define ISPRINT(c) (ISASCII (c) && isprint (c)) |
|
170 #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) |
|
171 #define ISALNUM(c) (ISASCII (c) && isalnum (c)) |
|
172 #define ISALPHA(c) (ISASCII (c) && isalpha (c)) |
|
173 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) |
|
174 #define ISLOWER(c) (ISASCII (c) && islower (c)) |
|
175 #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) |
|
176 #define ISSPACE(c) (ISASCII (c) && isspace (c)) |
|
177 #define ISUPPER(c) (ISASCII (c) && isupper (c)) |
|
178 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) |
28
|
179 |
2
|
180 #ifndef NULL |
|
181 #define NULL 0 |
|
182 #endif |
|
183 |
|
184 /* We remove any previous definition of `SIGN_EXTEND_CHAR', |
|
185 since ours (we hope) works properly with all combinations of |
|
186 machines, compilers, `char' and `unsigned char' argument types. |
|
187 (Per Bothner suggested the basic approach.) */ |
|
188 #undef SIGN_EXTEND_CHAR |
|
189 #if __STDC__ |
|
190 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) |
23
|
191 #else /* not __STDC__ */ |
2
|
192 /* As in Harbison and Steele. */ |
|
193 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) |
|
194 #endif |
|
195 |
|
196 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we |
|
197 use `alloca' instead of `malloc'. This is because using malloc in |
|
198 re_search* or re_match* could cause memory leaks when C-g is used in |
|
199 Emacs; also, malloc is slower and causes storage fragmentation. On |
|
200 the other hand, malloc is more portable, and easier to debug. |
|
201 |
|
202 Because we sometimes use alloca, some routines have to be macros, |
|
203 not functions -- `alloca'-allocated space disappears at the end of the |
|
204 function it is called in. */ |
|
205 |
|
206 #ifdef REGEX_MALLOC |
|
207 |
|
208 #define REGEX_ALLOCATE malloc |
|
209 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) |
|
210 |
|
211 #else /* not REGEX_MALLOC */ |
|
212 |
|
213 /* Emacs already defines alloca, sometimes. */ |
|
214 #ifndef alloca |
|
215 |
|
216 /* Make alloca work the best possible way. */ |
|
217 #ifdef __GNUC__ |
|
218 #define alloca __builtin_alloca |
|
219 #else /* not __GNUC__ */ |
|
220 #if HAVE_ALLOCA_H |
|
221 #include <alloca.h> |
|
222 #else /* not __GNUC__ or HAVE_ALLOCA_H */ |
|
223 #ifndef _AIX /* Already did AIX, up at the top. */ |
|
224 char *alloca (); |
|
225 #endif /* not _AIX */ |
|
226 #endif /* not HAVE_ALLOCA_H */ |
|
227 #endif /* not __GNUC__ */ |
|
228 |
|
229 #endif /* not alloca */ |
|
230 |
|
231 #define REGEX_ALLOCATE alloca |
|
232 |
|
233 /* Assumes a `char *destination' variable. */ |
|
234 #define REGEX_REALLOCATE(source, osize, nsize) \ |
|
235 (destination = (char *) alloca (nsize), \ |
|
236 bcopy (source, destination, osize), \ |
|
237 destination) |
|
238 |
|
239 #endif /* not REGEX_MALLOC */ |
|
240 |
|
241 |
|
242 /* True if `size1' is non-NULL and PTR is pointing anywhere inside |
|
243 `string1' or just past its end. This works if PTR is NULL, which is |
|
244 a good thing. */ |
|
245 #define FIRST_STRING_P(ptr) \ |
|
246 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) |
|
247 |
|
248 /* (Re)Allocate N items of type T using malloc, or fail. */ |
|
249 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) |
|
250 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) |
87
|
251 #define RETALLOC_IF(addr, n, t) \ |
|
252 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) |
2
|
253 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
|
254 |
|
255 #define BYTEWIDTH 8 /* In bits. */ |
|
256 |
|
257 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) |
|
258 |
|
259 #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
|
260 #define MIN(a, b) ((a) < (b) ? (a) : (b)) |
|
261 |
|
262 typedef char boolean; |
|
263 #define false 0 |
|
264 #define true 1 |
|
265 |
|
266 /* These are the command codes that appear in compiled regular |
|
267 expressions. Some opcodes are followed by argument bytes. A |
|
268 command code can specify any interpretation whatsoever for its |
|
269 arguments. Zero bytes may appear in the compiled regular expression. |
|
270 |
|
271 The value of `exactn' is needed in search.c (search_buffer) in Emacs. |
|
272 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of |
|
273 `exactn' we use here must also be 1. */ |
|
274 |
|
275 typedef enum |
|
276 { |
|
277 no_op = 0, |
|
278 |
|
279 /* Followed by one byte giving n, then by n literal bytes. */ |
|
280 exactn = 1, |
|
281 |
|
282 /* Matches any (more or less) character. */ |
|
283 anychar, |
|
284 |
|
285 /* Matches any one char belonging to specified set. First |
|
286 following byte is number of bitmap bytes. Then come bytes |
|
287 for a bitmap saying which chars are in. Bits in each byte |
|
288 are ordered low-bit-first. A character is in the set if its |
|
289 bit is 1. A character too large to have a bit in the map is |
|
290 automatically not in the set. */ |
|
291 charset, |
|
292 |
|
293 /* Same parameters as charset, but match any character that is |
|
294 not one of those specified. */ |
|
295 charset_not, |
|
296 |
|
297 /* Start remembering the text that is matched, for storing in a |
|
298 register. Followed by one byte with the register number, in |
|
299 the range 0 to one less than the pattern buffer's re_nsub |
|
300 field. Then followed by one byte with the number of groups |
|
301 inner to this one. (This last has to be part of the |
|
302 start_memory only because we need it in the on_failure_jump |
|
303 of re_match_2.) */ |
|
304 start_memory, |
|
305 |
|
306 /* Stop remembering the text that is matched and store it in a |
|
307 memory register. Followed by one byte with the register |
|
308 number, in the range 0 to one less than `re_nsub' in the |
|
309 pattern buffer, and one byte with the number of inner groups, |
|
310 just like `start_memory'. (We need the number of inner |
|
311 groups here because we don't have any easy way of finding the |
|
312 corresponding start_memory when we're at a stop_memory.) */ |
|
313 stop_memory, |
|
314 |
|
315 /* Match a duplicate of something remembered. Followed by one |
|
316 byte containing the register number. */ |
|
317 duplicate, |
|
318 |
|
319 /* Fail unless at beginning of line. */ |
|
320 begline, |
|
321 |
|
322 /* Fail unless at end of line. */ |
|
323 endline, |
|
324 |
|
325 /* Succeeds if at beginning of buffer (if emacs) or at beginning |
|
326 of string to be matched (if not). */ |
|
327 begbuf, |
|
328 |
|
329 /* Analogously, for end of buffer/string. */ |
|
330 endbuf, |
|
331 |
|
332 /* Followed by two byte relative address to which to jump. */ |
|
333 jump, |
|
334 |
|
335 /* Same as jump, but marks the end of an alternative. */ |
|
336 jump_past_alt, |
|
337 |
|
338 /* Followed by two-byte relative address of place to resume at |
|
339 in case of failure. */ |
|
340 on_failure_jump, |
|
341 |
|
342 /* Like on_failure_jump, but pushes a placeholder instead of the |
|
343 current string position when executed. */ |
|
344 on_failure_keep_string_jump, |
|
345 |
|
346 /* Throw away latest failure point and then jump to following |
|
347 two-byte relative address. */ |
|
348 pop_failure_jump, |
|
349 |
|
350 /* Change to pop_failure_jump if know won't have to backtrack to |
|
351 match; otherwise change to jump. This is used to jump |
|
352 back to the beginning of a repeat. If what follows this jump |
|
353 clearly won't match what the repeat does, such that we can be |
|
354 sure that there is no use backtracking out of repetitions |
|
355 already matched, then we change it to a pop_failure_jump. |
|
356 Followed by two-byte address. */ |
|
357 maybe_pop_jump, |
|
358 |
|
359 /* Jump to following two-byte address, and push a dummy failure |
|
360 point. This failure point will be thrown away if an attempt |
|
361 is made to use it for a failure. A `+' construct makes this |
|
362 before the first repeat. Also used as an intermediary kind |
|
363 of jump when compiling an alternative. */ |
|
364 dummy_failure_jump, |
|
365 |
|
366 /* Push a dummy failure point and continue. Used at the end of |
|
367 alternatives. */ |
|
368 push_dummy_failure, |
|
369 |
|
370 /* Followed by two-byte relative address and two-byte number n. |
|
371 After matching N times, jump to the address upon failure. */ |
|
372 succeed_n, |
|
373 |
|
374 /* Followed by two-byte relative address, and two-byte number n. |
|
375 Jump to the address N times, then fail. */ |
|
376 jump_n, |
|
377 |
|
378 /* Set the following two-byte relative address to the |
|
379 subsequent two-byte number. The address *includes* the two |
|
380 bytes of number. */ |
|
381 set_number_at, |
|
382 |
|
383 wordchar, /* Matches any word-constituent character. */ |
|
384 notwordchar, /* Matches any char that is not a word-constituent. */ |
|
385 |
|
386 wordbeg, /* Succeeds if at word beginning. */ |
|
387 wordend, /* Succeeds if at word end. */ |
|
388 |
|
389 wordbound, /* Succeeds if at a word boundary. */ |
|
390 notwordbound /* Succeeds if not at a word boundary. */ |
|
391 |
|
392 #ifdef emacs |
|
393 ,before_dot, /* Succeeds if before point. */ |
|
394 at_dot, /* Succeeds if at point. */ |
|
395 after_dot, /* Succeeds if after point. */ |
|
396 |
|
397 /* Matches any character whose syntax is specified. Followed by |
|
398 a byte which contains a syntax code, e.g., Sword. */ |
|
399 syntaxspec, |
|
400 |
|
401 /* Matches any character whose syntax is not that specified. */ |
|
402 notsyntaxspec |
|
403 #endif /* emacs */ |
|
404 } re_opcode_t; |
|
405 |
|
406 /* Common operations on the compiled pattern. */ |
|
407 |
|
408 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ |
|
409 |
|
410 #define STORE_NUMBER(destination, number) \ |
|
411 do { \ |
|
412 (destination)[0] = (number) & 0377; \ |
|
413 (destination)[1] = (number) >> 8; \ |
|
414 } while (0) |
|
415 |
|
416 /* Same as STORE_NUMBER, except increment DESTINATION to |
|
417 the byte after where the number is stored. Therefore, DESTINATION |
|
418 must be an lvalue. */ |
|
419 |
|
420 #define STORE_NUMBER_AND_INCR(destination, number) \ |
|
421 do { \ |
|
422 STORE_NUMBER (destination, number); \ |
|
423 (destination) += 2; \ |
|
424 } while (0) |
|
425 |
|
426 /* Put into DESTINATION a number stored in two contiguous bytes starting |
|
427 at SOURCE. */ |
|
428 |
|
429 #define EXTRACT_NUMBER(destination, source) \ |
|
430 do { \ |
|
431 (destination) = *(source) & 0377; \ |
|
432 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ |
|
433 } while (0) |
|
434 |
|
435 #ifdef DEBUG |
|
436 static void |
|
437 extract_number (dest, source) |
|
438 int *dest; |
|
439 unsigned char *source; |
|
440 { |
|
441 int temp = SIGN_EXTEND_CHAR (*(source + 1)); |
|
442 *dest = *source & 0377; |
|
443 *dest += temp << 8; |
|
444 } |
|
445 |
|
446 #ifndef EXTRACT_MACROS /* To debug the macros. */ |
|
447 #undef EXTRACT_NUMBER |
|
448 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) |
|
449 #endif /* not EXTRACT_MACROS */ |
|
450 |
|
451 #endif /* DEBUG */ |
|
452 |
|
453 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. |
|
454 SOURCE must be an lvalue. */ |
|
455 |
|
456 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ |
|
457 do { \ |
|
458 EXTRACT_NUMBER (destination, source); \ |
|
459 (source) += 2; \ |
|
460 } while (0) |
|
461 |
|
462 #ifdef DEBUG |
|
463 static void |
|
464 extract_number_and_incr (destination, source) |
|
465 int *destination; |
|
466 unsigned char **source; |
|
467 { |
|
468 extract_number (destination, *source); |
|
469 *source += 2; |
|
470 } |
|
471 |
|
472 #ifndef EXTRACT_MACROS |
|
473 #undef EXTRACT_NUMBER_AND_INCR |
|
474 #define EXTRACT_NUMBER_AND_INCR(dest, src) \ |
|
475 extract_number_and_incr (&dest, &src) |
|
476 #endif /* not EXTRACT_MACROS */ |
|
477 |
|
478 #endif /* DEBUG */ |
|
479 |
|
480 /* If DEBUG is defined, Regex prints many voluminous messages about what |
|
481 it is doing (if the variable `debug' is nonzero). If linked with the |
|
482 main program in `iregex.c', you can enter patterns and strings |
|
483 interactively. And if linked with the main program in `main.c' and |
|
484 the other test files, you can run the already-written tests. */ |
|
485 |
|
486 #ifdef DEBUG |
|
487 |
|
488 /* We use standard I/O for debugging. */ |
|
489 #include <stdio.h> |
|
490 |
|
491 /* It is useful to test things that ``must'' be true when debugging. */ |
|
492 #include <assert.h> |
|
493 |
|
494 static int debug = 0; |
|
495 |
|
496 #define DEBUG_STATEMENT(e) e |
|
497 #define DEBUG_PRINT1(x) if (debug) printf (x) |
|
498 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) |
|
499 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) |
23
|
500 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) |
2
|
501 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
|
502 if (debug) print_partial_compiled_pattern (s, e) |
|
503 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ |
|
504 if (debug) print_double_string (w, s1, sz1, s2, sz2) |
|
505 |
|
506 |
|
507 extern void printchar (); |
|
508 |
|
509 /* Print the fastmap in human-readable form. */ |
|
510 |
|
511 void |
|
512 print_fastmap (fastmap) |
|
513 char *fastmap; |
|
514 { |
|
515 unsigned was_a_range = 0; |
|
516 unsigned i = 0; |
|
517 |
|
518 while (i < (1 << BYTEWIDTH)) |
|
519 { |
|
520 if (fastmap[i++]) |
|
521 { |
|
522 was_a_range = 0; |
|
523 printchar (i - 1); |
|
524 while (i < (1 << BYTEWIDTH) && fastmap[i]) |
|
525 { |
|
526 was_a_range = 1; |
|
527 i++; |
|
528 } |
|
529 if (was_a_range) |
|
530 { |
|
531 printf ("-"); |
|
532 printchar (i - 1); |
|
533 } |
|
534 } |
|
535 } |
|
536 putchar ('\n'); |
|
537 } |
|
538 |
|
539 |
|
540 /* Print a compiled pattern string in human-readable form, starting at |
|
541 the START pointer into it and ending just before the pointer END. */ |
|
542 |
|
543 void |
|
544 print_partial_compiled_pattern (start, end) |
|
545 unsigned char *start; |
|
546 unsigned char *end; |
|
547 { |
|
548 int mcnt, mcnt2; |
|
549 unsigned char *p = start; |
|
550 unsigned char *pend = end; |
|
551 |
|
552 if (start == NULL) |
|
553 { |
|
554 printf ("(null)\n"); |
|
555 return; |
|
556 } |
|
557 |
|
558 /* Loop over pattern commands. */ |
|
559 while (p < pend) |
|
560 { |
79
|
561 printf ("%d:\t", p - start); |
|
562 |
2
|
563 switch ((re_opcode_t) *p++) |
|
564 { |
|
565 case no_op: |
|
566 printf ("/no_op"); |
|
567 break; |
|
568 |
|
569 case exactn: |
|
570 mcnt = *p++; |
|
571 printf ("/exactn/%d", mcnt); |
|
572 do |
|
573 { |
|
574 putchar ('/'); |
|
575 printchar (*p++); |
|
576 } |
|
577 while (--mcnt); |
|
578 break; |
|
579 |
|
580 case start_memory: |
|
581 mcnt = *p++; |
|
582 printf ("/start_memory/%d/%d", mcnt, *p++); |
|
583 break; |
|
584 |
|
585 case stop_memory: |
|
586 mcnt = *p++; |
|
587 printf ("/stop_memory/%d/%d", mcnt, *p++); |
|
588 break; |
|
589 |
|
590 case duplicate: |
|
591 printf ("/duplicate/%d", *p++); |
|
592 break; |
|
593 |
|
594 case anychar: |
|
595 printf ("/anychar"); |
|
596 break; |
|
597 |
|
598 case charset: |
|
599 case charset_not: |
|
600 { |
79
|
601 register int c, last = -100; |
|
602 register int in_range = 0; |
|
603 |
|
604 printf ("/charset [%s", |
|
605 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); |
2
|
606 |
|
607 assert (p + *p < pend); |
|
608 |
79
|
609 for (c = 0; c < 256; c++) |
|
610 if (c / 8 < *p |
|
611 && (p[1 + (c/8)] & (1 << (c % 8)))) |
|
612 { |
|
613 /* Are we starting a range? */ |
|
614 if (last + 1 == c && ! in_range) |
|
615 { |
|
616 putchar ('-'); |
|
617 in_range = 1; |
|
618 } |
|
619 /* Have we broken a range? */ |
|
620 else if (last + 1 != c && in_range) |
2
|
621 { |
79
|
622 printchar (last); |
|
623 in_range = 0; |
|
624 } |
2
|
625 |
79
|
626 if (! in_range) |
|
627 printchar (c); |
|
628 |
|
629 last = c; |
2
|
630 } |
79
|
631 |
|
632 if (in_range) |
|
633 printchar (last); |
|
634 |
|
635 putchar (']'); |
|
636 |
2
|
637 p += 1 + *p; |
|
638 } |
79
|
639 break; |
2
|
640 |
|
641 case begline: |
|
642 printf ("/begline"); |
|
643 break; |
|
644 |
|
645 case endline: |
|
646 printf ("/endline"); |
|
647 break; |
|
648 |
|
649 case on_failure_jump: |
|
650 extract_number_and_incr (&mcnt, &p); |
79
|
651 printf ("/on_failure_jump to %d", p + mcnt - start); |
2
|
652 break; |
|
653 |
|
654 case on_failure_keep_string_jump: |
|
655 extract_number_and_incr (&mcnt, &p); |
79
|
656 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); |
2
|
657 break; |
|
658 |
|
659 case dummy_failure_jump: |
|
660 extract_number_and_incr (&mcnt, &p); |
79
|
661 printf ("/dummy_failure_jump to %d", p + mcnt - start); |
2
|
662 break; |
|
663 |
|
664 case push_dummy_failure: |
|
665 printf ("/push_dummy_failure"); |
|
666 break; |
|
667 |
|
668 case maybe_pop_jump: |
|
669 extract_number_and_incr (&mcnt, &p); |
79
|
670 printf ("/maybe_pop_jump to %d", p + mcnt - start); |
2
|
671 break; |
|
672 |
|
673 case pop_failure_jump: |
|
674 extract_number_and_incr (&mcnt, &p); |
79
|
675 printf ("/pop_failure_jump to %d", p + mcnt - start); |
2
|
676 break; |
|
677 |
|
678 case jump_past_alt: |
|
679 extract_number_and_incr (&mcnt, &p); |
79
|
680 printf ("/jump_past_alt to %d", p + mcnt - start); |
2
|
681 break; |
|
682 |
|
683 case jump: |
|
684 extract_number_and_incr (&mcnt, &p); |
79
|
685 printf ("/jump to %d", p + mcnt - start); |
2
|
686 break; |
|
687 |
|
688 case succeed_n: |
|
689 extract_number_and_incr (&mcnt, &p); |
|
690 extract_number_and_incr (&mcnt2, &p); |
79
|
691 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); |
2
|
692 break; |
|
693 |
|
694 case jump_n: |
|
695 extract_number_and_incr (&mcnt, &p); |
|
696 extract_number_and_incr (&mcnt2, &p); |
79
|
697 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); |
2
|
698 break; |
|
699 |
|
700 case set_number_at: |
|
701 extract_number_and_incr (&mcnt, &p); |
|
702 extract_number_and_incr (&mcnt2, &p); |
79
|
703 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); |
2
|
704 break; |
|
705 |
|
706 case wordbound: |
|
707 printf ("/wordbound"); |
|
708 break; |
|
709 |
|
710 case notwordbound: |
|
711 printf ("/notwordbound"); |
|
712 break; |
|
713 |
|
714 case wordbeg: |
|
715 printf ("/wordbeg"); |
|
716 break; |
|
717 |
|
718 case wordend: |
|
719 printf ("/wordend"); |
|
720 |
|
721 #ifdef emacs |
|
722 case before_dot: |
|
723 printf ("/before_dot"); |
|
724 break; |
|
725 |
|
726 case at_dot: |
|
727 printf ("/at_dot"); |
|
728 break; |
|
729 |
|
730 case after_dot: |
|
731 printf ("/after_dot"); |
|
732 break; |
|
733 |
|
734 case syntaxspec: |
|
735 printf ("/syntaxspec"); |
|
736 mcnt = *p++; |
|
737 printf ("/%d", mcnt); |
|
738 break; |
|
739 |
|
740 case notsyntaxspec: |
|
741 printf ("/notsyntaxspec"); |
|
742 mcnt = *p++; |
|
743 printf ("/%d", mcnt); |
|
744 break; |
|
745 #endif /* emacs */ |
|
746 |
|
747 case wordchar: |
|
748 printf ("/wordchar"); |
|
749 break; |
|
750 |
|
751 case notwordchar: |
|
752 printf ("/notwordchar"); |
|
753 break; |
|
754 |
|
755 case begbuf: |
|
756 printf ("/begbuf"); |
|
757 break; |
|
758 |
|
759 case endbuf: |
|
760 printf ("/endbuf"); |
|
761 break; |
|
762 |
|
763 default: |
|
764 printf ("?%d", *(p-1)); |
|
765 } |
79
|
766 |
|
767 putchar ('\n'); |
2
|
768 } |
79
|
769 |
|
770 printf ("%d:\tend of pattern.\n", p - start); |
2
|
771 } |
|
772 |
|
773 |
|
774 void |
|
775 print_compiled_pattern (bufp) |
|
776 struct re_pattern_buffer *bufp; |
|
777 { |
|
778 unsigned char *buffer = bufp->buffer; |
|
779 |
|
780 print_partial_compiled_pattern (buffer, buffer + bufp->used); |
|
781 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); |
|
782 |
|
783 if (bufp->fastmap_accurate && bufp->fastmap) |
|
784 { |
|
785 printf ("fastmap: "); |
|
786 print_fastmap (bufp->fastmap); |
|
787 } |
|
788 |
|
789 printf ("re_nsub: %d\t", bufp->re_nsub); |
|
790 printf ("regs_alloc: %d\t", bufp->regs_allocated); |
|
791 printf ("can_be_null: %d\t", bufp->can_be_null); |
|
792 printf ("newline_anchor: %d\n", bufp->newline_anchor); |
|
793 printf ("no_sub: %d\t", bufp->no_sub); |
|
794 printf ("not_bol: %d\t", bufp->not_bol); |
|
795 printf ("not_eol: %d\t", bufp->not_eol); |
|
796 printf ("syntax: %d\n", bufp->syntax); |
|
797 /* Perhaps we should print the translate table? */ |
|
798 } |
|
799 |
|
800 |
|
801 void |
|
802 print_double_string (where, string1, size1, string2, size2) |
|
803 const char *where; |
|
804 const char *string1; |
|
805 const char *string2; |
|
806 int size1; |
|
807 int size2; |
|
808 { |
|
809 unsigned this_char; |
|
810 |
|
811 if (where == NULL) |
|
812 printf ("(null)"); |
|
813 else |
|
814 { |
|
815 if (FIRST_STRING_P (where)) |
|
816 { |
|
817 for (this_char = where - string1; this_char < size1; this_char++) |
|
818 printchar (string1[this_char]); |
|
819 |
|
820 where = string2; |
|
821 } |
|
822 |
|
823 for (this_char = where - string2; this_char < size2; this_char++) |
|
824 printchar (string2[this_char]); |
|
825 } |
|
826 } |
|
827 |
|
828 #else /* not DEBUG */ |
|
829 |
|
830 #undef assert |
|
831 #define assert(e) |
|
832 |
|
833 #define DEBUG_STATEMENT(e) |
|
834 #define DEBUG_PRINT1(x) |
|
835 #define DEBUG_PRINT2(x1, x2) |
|
836 #define DEBUG_PRINT3(x1, x2, x3) |
23
|
837 #define DEBUG_PRINT4(x1, x2, x3, x4) |
2
|
838 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) |
|
839 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) |
|
840 |
|
841 #endif /* not DEBUG */ |
|
842 |
|
843 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can |
|
844 also be assigned to arbitrarily: each pattern buffer stores its own |
|
845 syntax, so it can be changed between regex compilations. */ |
|
846 reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS; |
|
847 |
|
848 |
|
849 /* Specify the precise syntax of regexps for compilation. This provides |
|
850 for compatibility for various utilities which historically have |
|
851 different, incompatible syntaxes. |
|
852 |
|
853 The argument SYNTAX is a bit mask comprised of the various bits |
|
854 defined in regex.h. We return the old syntax. */ |
|
855 |
|
856 reg_syntax_t |
|
857 re_set_syntax (syntax) |
|
858 reg_syntax_t syntax; |
|
859 { |
|
860 reg_syntax_t ret = re_syntax_options; |
|
861 |
|
862 re_syntax_options = syntax; |
|
863 return ret; |
|
864 } |
|
865 |
|
866 /* This table gives an error message for each of the error codes listed |
|
867 in regex.h. Obviously the order here has to be same as there. */ |
|
868 |
|
869 static const char *re_error_msg[] = |
|
870 { NULL, /* REG_NOERROR */ |
|
871 "No match", /* REG_NOMATCH */ |
|
872 "Invalid regular expression", /* REG_BADPAT */ |
|
873 "Invalid collation character", /* REG_ECOLLATE */ |
|
874 "Invalid character class name", /* REG_ECTYPE */ |
|
875 "Trailing backslash", /* REG_EESCAPE */ |
|
876 "Invalid back reference", /* REG_ESUBREG */ |
|
877 "Unmatched [ or [^", /* REG_EBRACK */ |
|
878 "Unmatched ( or \\(", /* REG_EPAREN */ |
|
879 "Unmatched \\{", /* REG_EBRACE */ |
|
880 "Invalid content of \\{\\}", /* REG_BADBR */ |
|
881 "Invalid range end", /* REG_ERANGE */ |
|
882 "Memory exhausted", /* REG_ESPACE */ |
|
883 "Invalid preceding regular expression", /* REG_BADRPT */ |
|
884 "Premature end of regular expression", /* REG_EEND */ |
|
885 "Regular expression too big", /* REG_ESIZE */ |
|
886 "Unmatched ) or \\)", /* REG_ERPAREN */ |
|
887 }; |
|
888 |
87
|
889 /* Avoiding alloca during matching, to placate r_alloc. */ |
|
890 |
89
|
891 /* Define MATCH_MAY_ALLOCATE if we need to make sure that the |
87
|
892 searching and matching functions should not call alloca. On some |
|
893 systems, alloca is implemented in terms of malloc, and if we're |
|
894 using the relocating allocator routines, then malloc could cause a |
|
895 relocation, which might (if the strings being searched are in the |
|
896 ralloc heap) shift the data out from underneath the regexp |
93
|
897 routines. |
|
898 |
|
899 Here's another reason to avoid allocation: Emacs insists on |
|
900 processing input from X in a signal handler; processing X input may |
|
901 call malloc; if input arrives while a matching routine is calling |
|
902 malloc, then we're scrod. But Emacs can't just block input while |
|
903 calling matching routines; then we don't notice interrupts when |
|
904 they come in. So, Emacs blocks input around all regexp calls |
|
905 except the matching calls, which it leaves unprotected, in the |
|
906 faith that they will not malloc. */ |
89
|
907 |
|
908 /* Normally, this is fine. */ |
|
909 #define MATCH_MAY_ALLOCATE |
|
910 |
|
911 /* But under some circumstances, it's not. */ |
93
|
912 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA)) |
89
|
913 #undef MATCH_MAY_ALLOCATE |
87
|
914 #endif |
|
915 |
|
916 |
|
917 /* Failure stack declarations and macros; both re_compile_fastmap and |
|
918 re_match_2 use a failure stack. These have to be macros because of |
|
919 REGEX_ALLOCATE. */ |
|
920 |
|
921 |
|
922 /* Number of failure points for which to initially allocate space |
|
923 when matching. If this number is exceeded, we allocate more |
|
924 space, so it is not a hard limit. */ |
|
925 #ifndef INIT_FAILURE_ALLOC |
|
926 #define INIT_FAILURE_ALLOC 5 |
|
927 #endif |
|
928 |
|
929 /* Roughly the maximum number of failure points on the stack. Would be |
|
930 exactly that if always used MAX_FAILURE_SPACE each time we failed. |
|
931 This is a variable only so users of regex can assign to it; we never |
|
932 change it ourselves. */ |
|
933 int re_max_failures = 2000; |
|
934 |
169
|
935 typedef unsigned char *fail_stack_elt_t; |
87
|
936 |
|
937 typedef struct |
|
938 { |
|
939 fail_stack_elt_t *stack; |
|
940 unsigned size; |
|
941 unsigned avail; /* Offset of next open position. */ |
|
942 } fail_stack_type; |
|
943 |
|
944 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) |
|
945 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) |
|
946 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) |
|
947 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail]) |
|
948 |
|
949 |
|
950 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */ |
|
951 |
89
|
952 #ifdef MATCH_MAY_ALLOCATE |
87
|
953 #define INIT_FAIL_STACK() \ |
|
954 do { \ |
|
955 fail_stack.stack = (fail_stack_elt_t *) \ |
|
956 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ |
|
957 \ |
|
958 if (fail_stack.stack == NULL) \ |
|
959 return -2; \ |
|
960 \ |
|
961 fail_stack.size = INIT_FAILURE_ALLOC; \ |
|
962 fail_stack.avail = 0; \ |
|
963 } while (0) |
|
964 #else |
|
965 #define INIT_FAIL_STACK() \ |
|
966 do { \ |
|
967 fail_stack.avail = 0; \ |
|
968 } while (0) |
|
969 #endif |
|
970 |
|
971 |
|
972 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. |
|
973 |
|
974 Return 1 if succeeds, and 0 if either ran out of memory |
|
975 allocating space for it or it was already too large. |
|
976 |
|
977 REGEX_REALLOCATE requires `destination' be declared. */ |
|
978 |
|
979 #define DOUBLE_FAIL_STACK(fail_stack) \ |
|
980 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ |
|
981 ? 0 \ |
|
982 : ((fail_stack).stack = (fail_stack_elt_t *) \ |
|
983 REGEX_REALLOCATE ((fail_stack).stack, \ |
|
984 (fail_stack).size * sizeof (fail_stack_elt_t), \ |
|
985 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ |
|
986 \ |
|
987 (fail_stack).stack == NULL \ |
|
988 ? 0 \ |
|
989 : ((fail_stack).size <<= 1, \ |
|
990 1))) |
|
991 |
|
992 |
|
993 /* Push PATTERN_OP on FAIL_STACK. |
|
994 |
|
995 Return 1 if was able to do so and 0 if ran out of memory allocating |
|
996 space to do so. */ |
|
997 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \ |
|
998 ((FAIL_STACK_FULL () \ |
|
999 && !DOUBLE_FAIL_STACK (fail_stack)) \ |
|
1000 ? 0 \ |
|
1001 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \ |
|
1002 1)) |
|
1003 |
|
1004 /* This pushes an item onto the failure stack. Must be a four-byte |
|
1005 value. Assumes the variable `fail_stack'. Probably should only |
|
1006 be called from within `PUSH_FAILURE_POINT'. */ |
|
1007 #define PUSH_FAILURE_ITEM(item) \ |
|
1008 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item |
|
1009 |
|
1010 /* The complement operation. Assumes `fail_stack' is nonempty. */ |
|
1011 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail] |
|
1012 |
|
1013 /* Used to omit pushing failure point id's when we're not debugging. */ |
|
1014 #ifdef DEBUG |
|
1015 #define DEBUG_PUSH PUSH_FAILURE_ITEM |
|
1016 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM () |
|
1017 #else |
|
1018 #define DEBUG_PUSH(item) |
|
1019 #define DEBUG_POP(item_addr) |
|
1020 #endif |
|
1021 |
|
1022 |
|
1023 /* Push the information about the state we will need |
|
1024 if we ever fail back to it. |
|
1025 |
|
1026 Requires variables fail_stack, regstart, regend, reg_info, and |
|
1027 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be |
|
1028 declared. |
|
1029 |
|
1030 Does `return FAILURE_CODE' if runs out of memory. */ |
|
1031 |
|
1032 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ |
|
1033 do { \ |
|
1034 char *destination; \ |
|
1035 /* Must be int, so when we don't save any registers, the arithmetic \ |
|
1036 of 0 + -1 isn't done as unsigned. */ \ |
|
1037 int this_reg; \ |
|
1038 \ |
|
1039 DEBUG_STATEMENT (failure_id++); \ |
|
1040 DEBUG_STATEMENT (nfailure_points_pushed++); \ |
|
1041 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ |
|
1042 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ |
|
1043 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ |
|
1044 \ |
|
1045 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ |
|
1046 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ |
|
1047 \ |
|
1048 /* Ensure we have enough space allocated for what we will push. */ \ |
|
1049 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ |
|
1050 { \ |
|
1051 if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
|
1052 return failure_code; \ |
|
1053 \ |
|
1054 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ |
|
1055 (fail_stack).size); \ |
|
1056 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ |
|
1057 } \ |
|
1058 \ |
|
1059 /* Push the info, starting with the registers. */ \ |
|
1060 DEBUG_PRINT1 ("\n"); \ |
|
1061 \ |
|
1062 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ |
|
1063 this_reg++) \ |
|
1064 { \ |
|
1065 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ |
|
1066 DEBUG_STATEMENT (num_regs_pushed++); \ |
|
1067 \ |
|
1068 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ |
|
1069 PUSH_FAILURE_ITEM (regstart[this_reg]); \ |
|
1070 \ |
|
1071 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ |
|
1072 PUSH_FAILURE_ITEM (regend[this_reg]); \ |
|
1073 \ |
|
1074 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ |
|
1075 DEBUG_PRINT2 (" match_null=%d", \ |
|
1076 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ |
|
1077 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ |
|
1078 DEBUG_PRINT2 (" matched_something=%d", \ |
|
1079 MATCHED_SOMETHING (reg_info[this_reg])); \ |
|
1080 DEBUG_PRINT2 (" ever_matched=%d", \ |
|
1081 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ |
|
1082 DEBUG_PRINT1 ("\n"); \ |
|
1083 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \ |
|
1084 } \ |
|
1085 \ |
|
1086 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ |
|
1087 PUSH_FAILURE_ITEM (lowest_active_reg); \ |
|
1088 \ |
|
1089 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ |
|
1090 PUSH_FAILURE_ITEM (highest_active_reg); \ |
|
1091 \ |
|
1092 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ |
|
1093 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ |
|
1094 PUSH_FAILURE_ITEM (pattern_place); \ |
|
1095 \ |
|
1096 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ |
|
1097 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ |
|
1098 size2); \ |
|
1099 DEBUG_PRINT1 ("'\n"); \ |
|
1100 PUSH_FAILURE_ITEM (string_place); \ |
|
1101 \ |
|
1102 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
|
1103 DEBUG_PUSH (failure_id); \ |
|
1104 } while (0) |
|
1105 |
|
1106 /* This is the number of items that are pushed and popped on the stack |
|
1107 for each register. */ |
|
1108 #define NUM_REG_ITEMS 3 |
|
1109 |
|
1110 /* Individual items aside from the registers. */ |
|
1111 #ifdef DEBUG |
|
1112 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ |
|
1113 #else |
|
1114 #define NUM_NONREG_ITEMS 4 |
|
1115 #endif |
|
1116 |
|
1117 /* We push at most this many items on the stack. */ |
|
1118 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) |
|
1119 |
|
1120 /* We actually push this many items. */ |
|
1121 #define NUM_FAILURE_ITEMS \ |
|
1122 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ |
|
1123 + NUM_NONREG_ITEMS) |
|
1124 |
|
1125 /* How many items can still be added to the stack without overflowing it. */ |
|
1126 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) |
|
1127 |
|
1128 |
|
1129 /* Pops what PUSH_FAIL_STACK pushes. |
|
1130 |
|
1131 We restore into the parameters, all of which should be lvalues: |
|
1132 STR -- the saved data position. |
|
1133 PAT -- the saved pattern position. |
|
1134 LOW_REG, HIGH_REG -- the highest and lowest active registers. |
|
1135 REGSTART, REGEND -- arrays of string positions. |
|
1136 REG_INFO -- array of information about each subexpression. |
|
1137 |
|
1138 Also assumes the variables `fail_stack' and (if debugging), `bufp', |
|
1139 `pend', `string1', `size1', `string2', and `size2'. */ |
|
1140 |
|
1141 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ |
|
1142 { \ |
|
1143 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ |
|
1144 int this_reg; \ |
|
1145 const unsigned char *string_temp; \ |
|
1146 \ |
|
1147 assert (!FAIL_STACK_EMPTY ()); \ |
|
1148 \ |
|
1149 /* Remove failure points and point to how many regs pushed. */ \ |
|
1150 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ |
|
1151 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ |
|
1152 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ |
|
1153 \ |
|
1154 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ |
|
1155 \ |
|
1156 DEBUG_POP (&failure_id); \ |
|
1157 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ |
|
1158 \ |
|
1159 /* If the saved string location is NULL, it came from an \ |
|
1160 on_failure_keep_string_jump opcode, and we want to throw away the \ |
|
1161 saved NULL, thus retaining our current position in the string. */ \ |
|
1162 string_temp = POP_FAILURE_ITEM (); \ |
|
1163 if (string_temp != NULL) \ |
|
1164 str = (const char *) string_temp; \ |
|
1165 \ |
|
1166 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ |
|
1167 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ |
|
1168 DEBUG_PRINT1 ("'\n"); \ |
|
1169 \ |
|
1170 pat = (unsigned char *) POP_FAILURE_ITEM (); \ |
|
1171 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ |
|
1172 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ |
|
1173 \ |
|
1174 /* Restore register info. */ \ |
|
1175 high_reg = (unsigned) POP_FAILURE_ITEM (); \ |
|
1176 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ |
|
1177 \ |
|
1178 low_reg = (unsigned) POP_FAILURE_ITEM (); \ |
|
1179 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ |
|
1180 \ |
|
1181 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ |
|
1182 { \ |
|
1183 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ |
|
1184 \ |
|
1185 reg_info[this_reg].word = POP_FAILURE_ITEM (); \ |
|
1186 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ |
|
1187 \ |
|
1188 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \ |
|
1189 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ |
|
1190 \ |
|
1191 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \ |
|
1192 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ |
|
1193 } \ |
|
1194 \ |
|
1195 DEBUG_STATEMENT (nfailure_points_popped++); \ |
|
1196 } /* POP_FAILURE_POINT */ |
|
1197 |
|
1198 |
|
1199 |
|
1200 /* Structure for per-register (a.k.a. per-group) information. |
|
1201 This must not be longer than one word, because we push this value |
|
1202 onto the failure stack. Other register information, such as the |
|
1203 starting and ending positions (which are addresses), and the list of |
|
1204 inner groups (which is a bits list) are maintained in separate |
|
1205 variables. |
|
1206 |
|
1207 We are making a (strictly speaking) nonportable assumption here: that |
|
1208 the compiler will pack our bit fields into something that fits into |
|
1209 the type of `word', i.e., is something that fits into one item on the |
|
1210 failure stack. */ |
|
1211 typedef union |
|
1212 { |
|
1213 fail_stack_elt_t word; |
|
1214 struct |
|
1215 { |
|
1216 /* This field is one if this group can match the empty string, |
|
1217 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ |
|
1218 #define MATCH_NULL_UNSET_VALUE 3 |
|
1219 unsigned match_null_string_p : 2; |
|
1220 unsigned is_active : 1; |
|
1221 unsigned matched_something : 1; |
|
1222 unsigned ever_matched_something : 1; |
|
1223 } bits; |
|
1224 } register_info_type; |
|
1225 |
|
1226 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) |
|
1227 #define IS_ACTIVE(R) ((R).bits.is_active) |
|
1228 #define MATCHED_SOMETHING(R) ((R).bits.matched_something) |
|
1229 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) |
|
1230 |
|
1231 |
|
1232 /* Call this when have matched a real character; it sets `matched' flags |
|
1233 for the subexpressions which we are currently inside. Also records |
|
1234 that those subexprs have matched. */ |
|
1235 #define SET_REGS_MATCHED() \ |
|
1236 do \ |
|
1237 { \ |
|
1238 unsigned r; \ |
|
1239 for (r = lowest_active_reg; r <= highest_active_reg; r++) \ |
|
1240 { \ |
|
1241 MATCHED_SOMETHING (reg_info[r]) \ |
|
1242 = EVER_MATCHED_SOMETHING (reg_info[r]) \ |
|
1243 = 1; \ |
|
1244 } \ |
|
1245 } \ |
|
1246 while (0) |
|
1247 |
|
1248 |
|
1249 /* Registers are set to a sentinel when they haven't yet matched. */ |
|
1250 #define REG_UNSET_VALUE ((char *) -1) |
|
1251 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) |
|
1252 |
|
1253 |
|
1254 |
89
|
1255 /* How do we implement a missing MATCH_MAY_ALLOCATE? |
87
|
1256 We make the fail stack a global thing, and then grow it to |
|
1257 re_max_failures when we compile. */ |
89
|
1258 #ifndef MATCH_MAY_ALLOCATE |
87
|
1259 static fail_stack_type fail_stack; |
|
1260 |
|
1261 static const char ** regstart, ** regend; |
|
1262 static const char ** old_regstart, ** old_regend; |
|
1263 static const char **best_regstart, **best_regend; |
|
1264 static register_info_type *reg_info; |
|
1265 static const char **reg_dummy; |
|
1266 static register_info_type *reg_info_dummy; |
|
1267 #endif |
|
1268 |
|
1269 |
2
|
1270 /* Subroutine declarations and macros for regex_compile. */ |
|
1271 |
|
1272 static void store_op1 (), store_op2 (); |
|
1273 static void insert_op1 (), insert_op2 (); |
|
1274 static boolean at_begline_loc_p (), at_endline_loc_p (); |
|
1275 static boolean group_in_compile_stack (); |
|
1276 static reg_errcode_t compile_range (); |
|
1277 |
|
1278 /* Fetch the next character in the uncompiled pattern---translating it |
|
1279 if necessary. Also cast from a signed character in the constant |
|
1280 string passed to us by the user to an unsigned char that we can use |
|
1281 as an array index (in, e.g., `translate'). */ |
|
1282 #define PATFETCH(c) \ |
|
1283 do {if (p == pend) return REG_EEND; \ |
|
1284 c = (unsigned char) *p++; \ |
|
1285 if (translate) c = translate[c]; \ |
|
1286 } while (0) |
|
1287 |
|
1288 /* Fetch the next character in the uncompiled pattern, with no |
|
1289 translation. */ |
|
1290 #define PATFETCH_RAW(c) \ |
|
1291 do {if (p == pend) return REG_EEND; \ |
|
1292 c = (unsigned char) *p++; \ |
|
1293 } while (0) |
|
1294 |
|
1295 /* Go backwards one character in the pattern. */ |
|
1296 #define PATUNFETCH p-- |
|
1297 |
|
1298 |
|
1299 /* If `translate' is non-null, return translate[D], else just D. We |
|
1300 cast the subscript to translate because some data is declared as |
|
1301 `char *', to avoid warnings when a string constant is passed. But |
|
1302 when we use a character as a subscript we must make it unsigned. */ |
|
1303 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) |
|
1304 |
|
1305 |
|
1306 /* Macros for outputting the compiled pattern into `buffer'. */ |
|
1307 |
|
1308 /* If the buffer isn't allocated when it comes in, use this. */ |
|
1309 #define INIT_BUF_SIZE 32 |
|
1310 |
|
1311 /* Make sure we have at least N more bytes of space in buffer. */ |
|
1312 #define GET_BUFFER_SPACE(n) \ |
|
1313 while (b - bufp->buffer + (n) > bufp->allocated) \ |
|
1314 EXTEND_BUFFER () |
|
1315 |
|
1316 /* Make sure we have one more byte of buffer space and then add C to it. */ |
|
1317 #define BUF_PUSH(c) \ |
|
1318 do { \ |
|
1319 GET_BUFFER_SPACE (1); \ |
|
1320 *b++ = (unsigned char) (c); \ |
|
1321 } while (0) |
|
1322 |
|
1323 |
|
1324 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ |
|
1325 #define BUF_PUSH_2(c1, c2) \ |
|
1326 do { \ |
|
1327 GET_BUFFER_SPACE (2); \ |
|
1328 *b++ = (unsigned char) (c1); \ |
|
1329 *b++ = (unsigned char) (c2); \ |
|
1330 } while (0) |
|
1331 |
|
1332 |
|
1333 /* As with BUF_PUSH_2, except for three bytes. */ |
|
1334 #define BUF_PUSH_3(c1, c2, c3) \ |
|
1335 do { \ |
|
1336 GET_BUFFER_SPACE (3); \ |
|
1337 *b++ = (unsigned char) (c1); \ |
|
1338 *b++ = (unsigned char) (c2); \ |
|
1339 *b++ = (unsigned char) (c3); \ |
|
1340 } while (0) |
|
1341 |
|
1342 |
|
1343 /* Store a jump with opcode OP at LOC to location TO. We store a |
|
1344 relative address offset by the three bytes the jump itself occupies. */ |
|
1345 #define STORE_JUMP(op, loc, to) \ |
|
1346 store_op1 (op, loc, (to) - (loc) - 3) |
|
1347 |
|
1348 /* Likewise, for a two-argument jump. */ |
|
1349 #define STORE_JUMP2(op, loc, to, arg) \ |
|
1350 store_op2 (op, loc, (to) - (loc) - 3, arg) |
|
1351 |
|
1352 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ |
|
1353 #define INSERT_JUMP(op, loc, to) \ |
|
1354 insert_op1 (op, loc, (to) - (loc) - 3, b) |
|
1355 |
|
1356 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ |
|
1357 #define INSERT_JUMP2(op, loc, to, arg) \ |
|
1358 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) |
|
1359 |
|
1360 |
|
1361 /* This is not an arbitrary limit: the arguments which represent offsets |
|
1362 into the pattern are two bytes long. So if 2^16 bytes turns out to |
|
1363 be too small, many things would have to change. */ |
|
1364 #define MAX_BUF_SIZE (1L << 16) |
|
1365 |
|
1366 |
|
1367 /* Extend the buffer by twice its current size via realloc and |
|
1368 reset the pointers that pointed into the old block to point to the |
|
1369 correct places in the new one. If extending the buffer results in it |
|
1370 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ |
|
1371 #define EXTEND_BUFFER() \ |
|
1372 do { \ |
|
1373 unsigned char *old_buffer = bufp->buffer; \ |
|
1374 if (bufp->allocated == MAX_BUF_SIZE) \ |
|
1375 return REG_ESIZE; \ |
|
1376 bufp->allocated <<= 1; \ |
|
1377 if (bufp->allocated > MAX_BUF_SIZE) \ |
|
1378 bufp->allocated = MAX_BUF_SIZE; \ |
|
1379 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ |
|
1380 if (bufp->buffer == NULL) \ |
|
1381 return REG_ESPACE; \ |
|
1382 /* If the buffer moved, move all the pointers into it. */ \ |
|
1383 if (old_buffer != bufp->buffer) \ |
|
1384 { \ |
|
1385 b = (b - old_buffer) + bufp->buffer; \ |
|
1386 begalt = (begalt - old_buffer) + bufp->buffer; \ |
|
1387 if (fixup_alt_jump) \ |
|
1388 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ |
|
1389 if (laststart) \ |
|
1390 laststart = (laststart - old_buffer) + bufp->buffer; \ |
|
1391 if (pending_exact) \ |
|
1392 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ |
|
1393 } \ |
|
1394 } while (0) |
|
1395 |
|
1396 |
|
1397 /* Since we have one byte reserved for the register number argument to |
|
1398 {start,stop}_memory, the maximum number of groups we can report |
|
1399 things about is what fits in that byte. */ |
|
1400 #define MAX_REGNUM 255 |
|
1401 |
|
1402 /* But patterns can have more than `MAX_REGNUM' registers. We just |
|
1403 ignore the excess. */ |
|
1404 typedef unsigned regnum_t; |
|
1405 |
|
1406 |
|
1407 /* Macros for the compile stack. */ |
|
1408 |
|
1409 /* Since offsets can go either forwards or backwards, this type needs to |
|
1410 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ |
|
1411 typedef int pattern_offset_t; |
|
1412 |
|
1413 typedef struct |
|
1414 { |
|
1415 pattern_offset_t begalt_offset; |
|
1416 pattern_offset_t fixup_alt_jump; |
|
1417 pattern_offset_t inner_group_offset; |
|
1418 pattern_offset_t laststart_offset; |
|
1419 regnum_t regnum; |
|
1420 } compile_stack_elt_t; |
|
1421 |
|
1422 |
|
1423 typedef struct |
|
1424 { |
|
1425 compile_stack_elt_t *stack; |
|
1426 unsigned size; |
|
1427 unsigned avail; /* Offset of next open position. */ |
|
1428 } compile_stack_type; |
|
1429 |
|
1430 |
|
1431 #define INIT_COMPILE_STACK_SIZE 32 |
|
1432 |
|
1433 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) |
|
1434 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) |
|
1435 |
|
1436 /* The next available element. */ |
|
1437 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) |
|
1438 |
|
1439 |
|
1440 /* Set the bit for character C in a list. */ |
|
1441 #define SET_LIST_BIT(c) \ |
|
1442 (b[((unsigned char) (c)) / BYTEWIDTH] \ |
|
1443 |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
|
1444 |
|
1445 |
|
1446 /* Get the next unsigned number in the uncompiled pattern. */ |
|
1447 #define GET_UNSIGNED_NUMBER(num) \ |
|
1448 { if (p != pend) \ |
|
1449 { \ |
|
1450 PATFETCH (c); \ |
28
|
1451 while (ISDIGIT (c)) \ |
2
|
1452 { \ |
|
1453 if (num < 0) \ |
|
1454 num = 0; \ |
|
1455 num = num * 10 + c - '0'; \ |
|
1456 if (p == pend) \ |
|
1457 break; \ |
|
1458 PATFETCH (c); \ |
|
1459 } \ |
|
1460 } \ |
|
1461 } |
|
1462 |
|
1463 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ |
|
1464 |
|
1465 #define IS_CHAR_CLASS(string) \ |
|
1466 (STREQ (string, "alpha") || STREQ (string, "upper") \ |
|
1467 || STREQ (string, "lower") || STREQ (string, "digit") \ |
|
1468 || STREQ (string, "alnum") || STREQ (string, "xdigit") \ |
|
1469 || STREQ (string, "space") || STREQ (string, "print") \ |
|
1470 || STREQ (string, "punct") || STREQ (string, "graph") \ |
|
1471 || STREQ (string, "cntrl") || STREQ (string, "blank")) |
|
1472 |
|
1473 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. |
|
1474 Returns one of error codes defined in `regex.h', or zero for success. |
|
1475 |
|
1476 Assumes the `allocated' (and perhaps `buffer') and `translate' |
|
1477 fields are set in BUFP on entry. |
|
1478 |
|
1479 If it succeeds, results are put in BUFP (if it returns an error, the |
|
1480 contents of BUFP are undefined): |
|
1481 `buffer' is the compiled pattern; |
|
1482 `syntax' is set to SYNTAX; |
|
1483 `used' is set to the length of the compiled pattern; |
23
|
1484 `fastmap_accurate' is zero; |
|
1485 `re_nsub' is the number of subexpressions in PATTERN; |
|
1486 `not_bol' and `not_eol' are zero; |
2
|
1487 |
|
1488 The `fastmap' and `newline_anchor' fields are neither |
|
1489 examined nor set. */ |
|
1490 |
|
1491 static reg_errcode_t |
|
1492 regex_compile (pattern, size, syntax, bufp) |
|
1493 const char *pattern; |
|
1494 int size; |
|
1495 reg_syntax_t syntax; |
|
1496 struct re_pattern_buffer *bufp; |
|
1497 { |
|
1498 /* We fetch characters from PATTERN here. Even though PATTERN is |
|
1499 `char *' (i.e., signed), we declare these variables as unsigned, so |
|
1500 they can be reliably used as array indices. */ |
|
1501 register unsigned char c, c1; |
|
1502 |
|
1503 /* A random tempory spot in PATTERN. */ |
|
1504 const char *p1; |
|
1505 |
|
1506 /* Points to the end of the buffer, where we should append. */ |
|
1507 register unsigned char *b; |
|
1508 |
|
1509 /* Keeps track of unclosed groups. */ |
|
1510 compile_stack_type compile_stack; |
|
1511 |
|
1512 /* Points to the current (ending) position in the pattern. */ |
|
1513 const char *p = pattern; |
|
1514 const char *pend = pattern + size; |
|
1515 |
|
1516 /* How to translate the characters in the pattern. */ |
|
1517 char *translate = bufp->translate; |
|
1518 |
|
1519 /* Address of the count-byte of the most recently inserted `exactn' |
|
1520 command. This makes it possible to tell if a new exact-match |
|
1521 character can be added to that command or if the character requires |
|
1522 a new `exactn' command. */ |
|
1523 unsigned char *pending_exact = 0; |
|
1524 |
|
1525 /* Address of start of the most recently finished expression. |
|
1526 This tells, e.g., postfix * where to find the start of its |
|
1527 operand. Reset at the beginning of groups and alternatives. */ |
|
1528 unsigned char *laststart = 0; |
|
1529 |
|
1530 /* Address of beginning of regexp, or inside of last group. */ |
|
1531 unsigned char *begalt; |
|
1532 |
|
1533 /* Place in the uncompiled pattern (i.e., the {) to |
|
1534 which to go back if the interval is invalid. */ |
|
1535 const char *beg_interval; |
|
1536 |
|
1537 /* Address of the place where a forward jump should go to the end of |
|
1538 the containing expression. Each alternative of an `or' -- except the |
|
1539 last -- ends with a forward jump of this sort. */ |
|
1540 unsigned char *fixup_alt_jump = 0; |
|
1541 |
|
1542 /* Counts open-groups as they are encountered. Remembered for the |
|
1543 matching close-group on the compile stack, so the same register |
|
1544 number is put in the stop_memory as the start_memory. */ |
|
1545 regnum_t regnum = 0; |
|
1546 |
|
1547 #ifdef DEBUG |
|
1548 DEBUG_PRINT1 ("\nCompiling pattern: "); |
|
1549 if (debug) |
|
1550 { |
|
1551 unsigned debug_count; |
|
1552 |
|
1553 for (debug_count = 0; debug_count < size; debug_count++) |
|
1554 printchar (pattern[debug_count]); |
|
1555 putchar ('\n'); |
|
1556 } |
|
1557 #endif /* DEBUG */ |
|
1558 |
|
1559 /* Initialize the compile stack. */ |
|
1560 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); |
|
1561 if (compile_stack.stack == NULL) |
|
1562 return REG_ESPACE; |
|
1563 |
|
1564 compile_stack.size = INIT_COMPILE_STACK_SIZE; |
|
1565 compile_stack.avail = 0; |
|
1566 |
|
1567 /* Initialize the pattern buffer. */ |
|
1568 bufp->syntax = syntax; |
|
1569 bufp->fastmap_accurate = 0; |
|
1570 bufp->not_bol = bufp->not_eol = 0; |
|
1571 |
|
1572 /* Set `used' to zero, so that if we return an error, the pattern |
|
1573 printer (for debugging) will think there's no pattern. We reset it |
|
1574 at the end. */ |
|
1575 bufp->used = 0; |
|
1576 |
|
1577 /* Always count groups, whether or not bufp->no_sub is set. */ |
|
1578 bufp->re_nsub = 0; |
|
1579 |
|
1580 #if !defined (emacs) && !defined (SYNTAX_TABLE) |
|
1581 /* Initialize the syntax table. */ |
|
1582 init_syntax_once (); |
|
1583 #endif |
|
1584 |
|
1585 if (bufp->allocated == 0) |
|
1586 { |
|
1587 if (bufp->buffer) |
|
1588 { /* If zero allocated, but buffer is non-null, try to realloc |
|
1589 enough space. This loses if buffer's address is bogus, but |
|
1590 that is the user's responsibility. */ |
|
1591 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); |
|
1592 } |
|
1593 else |
|
1594 { /* Caller did not allocate a buffer. Do it for them. */ |
|
1595 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); |
|
1596 } |
|
1597 if (!bufp->buffer) return REG_ESPACE; |
|
1598 |
|
1599 bufp->allocated = INIT_BUF_SIZE; |
|
1600 } |
|
1601 |
|
1602 begalt = b = bufp->buffer; |
|
1603 |
|
1604 /* Loop through the uncompiled pattern until we're at the end. */ |
|
1605 while (p != pend) |
|
1606 { |
|
1607 PATFETCH (c); |
|
1608 |
|
1609 switch (c) |
|
1610 { |
|
1611 case '^': |
|
1612 { |
|
1613 if ( /* If at start of pattern, it's an operator. */ |
|
1614 p == pattern + 1 |
|
1615 /* If context independent, it's an operator. */ |
|
1616 || syntax & RE_CONTEXT_INDEP_ANCHORS |
|
1617 /* Otherwise, depends on what's come before. */ |
|
1618 || at_begline_loc_p (pattern, p, syntax)) |
|
1619 BUF_PUSH (begline); |
|
1620 else |
|
1621 goto normal_char; |
|
1622 } |
|
1623 break; |
|
1624 |
|
1625 |
|
1626 case '$': |
|
1627 { |
|
1628 if ( /* If at end of pattern, it's an operator. */ |
|
1629 p == pend |
|
1630 /* If context independent, it's an operator. */ |
|
1631 || syntax & RE_CONTEXT_INDEP_ANCHORS |
|
1632 /* Otherwise, depends on what's next. */ |
|
1633 || at_endline_loc_p (p, pend, syntax)) |
|
1634 BUF_PUSH (endline); |
|
1635 else |
|
1636 goto normal_char; |
|
1637 } |
|
1638 break; |
|
1639 |
|
1640 |
|
1641 case '+': |
|
1642 case '?': |
|
1643 if ((syntax & RE_BK_PLUS_QM) |
|
1644 || (syntax & RE_LIMITED_OPS)) |
|
1645 goto normal_char; |
|
1646 handle_plus: |
|
1647 case '*': |
|
1648 /* If there is no previous pattern... */ |
|
1649 if (!laststart) |
|
1650 { |
|
1651 if (syntax & RE_CONTEXT_INVALID_OPS) |
|
1652 return REG_BADRPT; |
|
1653 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) |
|
1654 goto normal_char; |
|
1655 } |
|
1656 |
|
1657 { |
|
1658 /* Are we optimizing this jump? */ |
|
1659 boolean keep_string_p = false; |
|
1660 |
|
1661 /* 1 means zero (many) matches is allowed. */ |
|
1662 char zero_times_ok = 0, many_times_ok = 0; |
|
1663 |
|
1664 /* If there is a sequence of repetition chars, collapse it |
|
1665 down to just one (the right one). We can't combine |
|
1666 interval operators with these because of, e.g., `a{2}*', |
|
1667 which should only match an even number of `a's. */ |
|
1668 |
|
1669 for (;;) |
|
1670 { |
|
1671 zero_times_ok |= c != '+'; |
|
1672 many_times_ok |= c != '?'; |
|
1673 |
|
1674 if (p == pend) |
|
1675 break; |
|
1676 |
|
1677 PATFETCH (c); |
|
1678 |
|
1679 if (c == '*' |
|
1680 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) |
|
1681 ; |
|
1682 |
|
1683 else if (syntax & RE_BK_PLUS_QM && c == '\\') |
|
1684 { |
|
1685 if (p == pend) return REG_EESCAPE; |
|
1686 |
|
1687 PATFETCH (c1); |
|
1688 if (!(c1 == '+' || c1 == '?')) |
|
1689 { |
|
1690 PATUNFETCH; |
|
1691 PATUNFETCH; |
|
1692 break; |
|
1693 } |
|
1694 |
|
1695 c = c1; |
|
1696 } |
|
1697 else |
|
1698 { |
|
1699 PATUNFETCH; |
|
1700 break; |
|
1701 } |
|
1702 |
|
1703 /* If we get here, we found another repeat character. */ |
|
1704 } |
|
1705 |
|
1706 /* Star, etc. applied to an empty pattern is equivalent |
|
1707 to an empty pattern. */ |
|
1708 if (!laststart) |
|
1709 break; |
|
1710 |
|
1711 /* Now we know whether or not zero matches is allowed |
|
1712 and also whether or not two or more matches is allowed. */ |
|
1713 if (many_times_ok) |
|
1714 { /* More than one repetition is allowed, so put in at the |
|
1715 end a backward relative jump from `b' to before the next |
|
1716 jump we're going to put in below (which jumps from |
|
1717 laststart to after this jump). |
|
1718 |
|
1719 But if we are at the `*' in the exact sequence `.*\n', |
|
1720 insert an unconditional jump backwards to the ., |
|
1721 instead of the beginning of the loop. This way we only |
|
1722 push a failure point once, instead of every time |
|
1723 through the loop. */ |
|
1724 assert (p - 1 > pattern); |
|
1725 |
|
1726 /* Allocate the space for the jump. */ |
|
1727 GET_BUFFER_SPACE (3); |
|
1728 |
|
1729 /* We know we are not at the first character of the pattern, |
|
1730 because laststart was nonzero. And we've already |
|
1731 incremented `p', by the way, to be the character after |
|
1732 the `*'. Do we have to do something analogous here |
|
1733 for null bytes, because of RE_DOT_NOT_NULL? */ |
|
1734 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') |
45
|
1735 && zero_times_ok |
2
|
1736 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') |
|
1737 && !(syntax & RE_DOT_NEWLINE)) |
|
1738 { /* We have .*\n. */ |
|
1739 STORE_JUMP (jump, b, laststart); |
|
1740 keep_string_p = true; |
|
1741 } |
|
1742 else |
|
1743 /* Anything else. */ |
|
1744 STORE_JUMP (maybe_pop_jump, b, laststart - 3); |
|
1745 |
|
1746 /* We've added more stuff to the buffer. */ |
|
1747 b += 3; |
|
1748 } |
|
1749 |
|
1750 /* On failure, jump from laststart to b + 3, which will be the |
|
1751 end of the buffer after this jump is inserted. */ |
|
1752 GET_BUFFER_SPACE (3); |
|
1753 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump |
|
1754 : on_failure_jump, |
|
1755 laststart, b + 3); |
|
1756 pending_exact = 0; |
|
1757 b += 3; |
|
1758 |
|
1759 if (!zero_times_ok) |
|
1760 { |
|
1761 /* At least one repetition is required, so insert a |
|
1762 `dummy_failure_jump' before the initial |
|
1763 `on_failure_jump' instruction of the loop. This |
|
1764 effects a skip over that instruction the first time |
|
1765 we hit that loop. */ |
|
1766 GET_BUFFER_SPACE (3); |
|
1767 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); |
|
1768 b += 3; |
|
1769 } |
|
1770 } |
|
1771 break; |
|
1772 |
|
1773 |
|
1774 case '.': |
|
1775 laststart = b; |
|
1776 BUF_PUSH (anychar); |
|
1777 break; |
|
1778 |
|
1779 |
|
1780 case '[': |
|
1781 { |
|
1782 boolean had_char_class = false; |
|
1783 |
|
1784 if (p == pend) return REG_EBRACK; |
|
1785 |
|
1786 /* Ensure that we have enough space to push a charset: the |
|
1787 opcode, the length count, and the bitset; 34 bytes in all. */ |
|
1788 GET_BUFFER_SPACE (34); |
|
1789 |
|
1790 laststart = b; |
|
1791 |
|
1792 /* We test `*p == '^' twice, instead of using an if |
|
1793 statement, so we only need one BUF_PUSH. */ |
|
1794 BUF_PUSH (*p == '^' ? charset_not : charset); |
|
1795 if (*p == '^') |
|
1796 p++; |
|
1797 |
|
1798 /* Remember the first position in the bracket expression. */ |
|
1799 p1 = p; |
|
1800 |
|
1801 /* Push the number of bytes in the bitmap. */ |
|
1802 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); |
|
1803 |
|
1804 /* Clear the whole map. */ |
|
1805 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); |
|
1806 |
|
1807 /* charset_not matches newline according to a syntax bit. */ |
|
1808 if ((re_opcode_t) b[-2] == charset_not |
|
1809 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
|
1810 SET_LIST_BIT ('\n'); |
|
1811 |
|
1812 /* Read in characters and ranges, setting map bits. */ |
|
1813 for (;;) |
|
1814 { |
|
1815 if (p == pend) return REG_EBRACK; |
|
1816 |
|
1817 PATFETCH (c); |
|
1818 |
|
1819 /* \ might escape characters inside [...] and [^...]. */ |
|
1820 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') |
|
1821 { |
|
1822 if (p == pend) return REG_EESCAPE; |
|
1823 |
|
1824 PATFETCH (c1); |
|
1825 SET_LIST_BIT (c1); |
|
1826 continue; |
|
1827 } |
|
1828 |
|
1829 /* Could be the end of the bracket expression. If it's |
|
1830 not (i.e., when the bracket expression is `[]' so |
|
1831 far), the ']' character bit gets set way below. */ |
|
1832 if (c == ']' && p != p1 + 1) |
|
1833 break; |
|
1834 |
|
1835 /* Look ahead to see if it's a range when the last thing |
|
1836 was a character class. */ |
|
1837 if (had_char_class && c == '-' && *p != ']') |
|
1838 return REG_ERANGE; |
|
1839 |
|
1840 /* Look ahead to see if it's a range when the last thing |
|
1841 was a character: if this is a hyphen not at the |
|
1842 beginning or the end of a list, then it's the range |
|
1843 operator. */ |
|
1844 if (c == '-' |
|
1845 && !(p - 2 >= pattern && p[-2] == '[') |
|
1846 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
|
1847 && *p != ']') |
|
1848 { |
|
1849 reg_errcode_t ret |
|
1850 = compile_range (&p, pend, translate, syntax, b); |
|
1851 if (ret != REG_NOERROR) return ret; |
|
1852 } |
|
1853 |
|
1854 else if (p[0] == '-' && p[1] != ']') |
|
1855 { /* This handles ranges made up of characters only. */ |
|
1856 reg_errcode_t ret; |
|
1857 |
|
1858 /* Move past the `-'. */ |
|
1859 PATFETCH (c1); |
|
1860 |
|
1861 ret = compile_range (&p, pend, translate, syntax, b); |
|
1862 if (ret != REG_NOERROR) return ret; |
|
1863 } |
|
1864 |
|
1865 /* See if we're at the beginning of a possible character |
|
1866 class. */ |
|
1867 |
|
1868 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') |
|
1869 { /* Leave room for the null. */ |
|
1870 char str[CHAR_CLASS_MAX_LENGTH + 1]; |
|
1871 |
|
1872 PATFETCH (c); |
|
1873 c1 = 0; |
|
1874 |
|
1875 /* If pattern is `[[:'. */ |
|
1876 if (p == pend) return REG_EBRACK; |
|
1877 |
|
1878 for (;;) |
|
1879 { |
|
1880 PATFETCH (c); |
|
1881 if (c == ':' || c == ']' || p == pend |
|
1882 || c1 == CHAR_CLASS_MAX_LENGTH) |
|
1883 break; |
|
1884 str[c1++] = c; |
|
1885 } |
|
1886 str[c1] = '\0'; |
|
1887 |
|
1888 /* If isn't a word bracketed by `[:' and:`]': |
|
1889 undo the ending character, the letters, and leave |
|
1890 the leading `:' and `[' (but set bits for them). */ |
|
1891 if (c == ':' && *p == ']') |
|
1892 { |
|
1893 int ch; |
|
1894 boolean is_alnum = STREQ (str, "alnum"); |
|
1895 boolean is_alpha = STREQ (str, "alpha"); |
|
1896 boolean is_blank = STREQ (str, "blank"); |
|
1897 boolean is_cntrl = STREQ (str, "cntrl"); |
|
1898 boolean is_digit = STREQ (str, "digit"); |
|
1899 boolean is_graph = STREQ (str, "graph"); |
|
1900 boolean is_lower = STREQ (str, "lower"); |
|
1901 boolean is_print = STREQ (str, "print"); |
|
1902 boolean is_punct = STREQ (str, "punct"); |
|
1903 boolean is_space = STREQ (str, "space"); |
|
1904 boolean is_upper = STREQ (str, "upper"); |
|
1905 boolean is_xdigit = STREQ (str, "xdigit"); |
|
1906 |
|
1907 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE; |
|
1908 |
|
1909 /* Throw away the ] at the end of the character |
|
1910 class. */ |
|
1911 PATFETCH (c); |
|
1912 |
|
1913 if (p == pend) return REG_EBRACK; |
|
1914 |
|
1915 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) |
|
1916 { |
28
|
1917 if ( (is_alnum && ISALNUM (ch)) |
|
1918 || (is_alpha && ISALPHA (ch)) |
|
1919 || (is_blank && ISBLANK (ch)) |
|
1920 || (is_cntrl && ISCNTRL (ch)) |
|
1921 || (is_digit && ISDIGIT (ch)) |
|
1922 || (is_graph && ISGRAPH (ch)) |
|
1923 || (is_lower && ISLOWER (ch)) |
|
1924 || (is_print && ISPRINT (ch)) |
|
1925 || (is_punct && ISPUNCT (ch)) |
|
1926 || (is_space && ISSPACE (ch)) |
|
1927 || (is_upper && ISUPPER (ch)) |
|
1928 || (is_xdigit && ISXDIGIT (ch))) |
2
|
1929 SET_LIST_BIT (ch); |
|
1930 } |
|
1931 had_char_class = true; |
|
1932 } |
|
1933 else |
|
1934 { |
|
1935 c1++; |
|
1936 while (c1--) |
|
1937 PATUNFETCH; |
|
1938 SET_LIST_BIT ('['); |
|
1939 SET_LIST_BIT (':'); |
|
1940 had_char_class = false; |
|
1941 } |
|
1942 } |
|
1943 else |
|
1944 { |
|
1945 had_char_class = false; |
|
1946 SET_LIST_BIT (c); |
|
1947 } |
|
1948 } |
|
1949 |
|
1950 /* Discard any (non)matching list bytes that are all 0 at the |
|
1951 end of the map. Decrease the map-length byte too. */ |
|
1952 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) |
|
1953 b[-1]--; |
|
1954 b += b[-1]; |
|
1955 } |
|
1956 break; |
|
1957 |
|
1958 |
|
1959 case '(': |
|
1960 if (syntax & RE_NO_BK_PARENS) |
|
1961 goto handle_open; |
|
1962 else |
|
1963 goto normal_char; |
|
1964 |
|
1965 |
|
1966 case ')': |
|
1967 if (syntax & RE_NO_BK_PARENS) |
|
1968 goto handle_close; |
|
1969 else |
|
1970 goto normal_char; |
|
1971 |
|
1972 |
|
1973 case '\n': |
|
1974 if (syntax & RE_NEWLINE_ALT) |
|
1975 goto handle_alt; |
|
1976 else |
|
1977 goto normal_char; |
|
1978 |
|
1979 |
|
1980 case '|': |
|
1981 if (syntax & RE_NO_BK_VBAR) |
|
1982 goto handle_alt; |
|
1983 else |
|
1984 goto normal_char; |
|
1985 |
|
1986 |
|
1987 case '{': |
|
1988 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) |
|
1989 goto handle_interval; |
|
1990 else |
|
1991 goto normal_char; |
|
1992 |
|
1993 |
|
1994 case '\\': |
|
1995 if (p == pend) return REG_EESCAPE; |
|
1996 |
|
1997 /* Do not translate the character after the \, so that we can |
|
1998 distinguish, e.g., \B from \b, even if we normally would |
|
1999 translate, e.g., B to b. */ |
|
2000 PATFETCH_RAW (c); |
|
2001 |
|
2002 switch (c) |
|
2003 { |
|
2004 case '(': |
|
2005 if (syntax & RE_NO_BK_PARENS) |
|
2006 goto normal_backslash; |
|
2007 |
|
2008 handle_open: |
|
2009 bufp->re_nsub++; |
|
2010 regnum++; |
|
2011 |
|
2012 if (COMPILE_STACK_FULL) |
|
2013 { |
|
2014 RETALLOC (compile_stack.stack, compile_stack.size << 1, |
|
2015 compile_stack_elt_t); |
|
2016 if (compile_stack.stack == NULL) return REG_ESPACE; |
|
2017 |
|
2018 compile_stack.size <<= 1; |
|
2019 } |
|
2020 |
|
2021 /* These are the values to restore when we hit end of this |
|
2022 group. They are all relative offsets, so that if the |
|
2023 whole pattern moves because of realloc, they will still |
|
2024 be valid. */ |
|
2025 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; |
|
2026 COMPILE_STACK_TOP.fixup_alt_jump |
|
2027 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; |
|
2028 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; |
|
2029 COMPILE_STACK_TOP.regnum = regnum; |
|
2030 |
|
2031 /* We will eventually replace the 0 with the number of |
|
2032 groups inner to this one. But do not push a |
|
2033 start_memory for groups beyond the last one we can |
|
2034 represent in the compiled pattern. */ |
|
2035 if (regnum <= MAX_REGNUM) |
|
2036 { |
|
2037 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; |
|
2038 BUF_PUSH_3 (start_memory, regnum, 0); |
|
2039 } |
|
2040 |
|
2041 compile_stack.avail++; |
|
2042 |
|
2043 fixup_alt_jump = 0; |
|
2044 laststart = 0; |
|
2045 begalt = b; |
45
|
2046 /* If we've reached MAX_REGNUM groups, then this open |
|
2047 won't actually generate any code, so we'll have to |
|
2048 clear pending_exact explicitly. */ |
|
2049 pending_exact = 0; |
2
|
2050 break; |
|
2051 |
|
2052 |
|
2053 case ')': |
|
2054 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; |
|
2055 |
|
2056 if (COMPILE_STACK_EMPTY) |
|
2057 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
|
2058 goto normal_backslash; |
|
2059 else |
|
2060 return REG_ERPAREN; |
|
2061 |
|
2062 handle_close: |
|
2063 if (fixup_alt_jump) |
|
2064 { /* Push a dummy failure point at the end of the |
|
2065 alternative for a possible future |
|
2066 `pop_failure_jump' to pop. See comments at |
|
2067 `push_dummy_failure' in `re_match_2'. */ |
|
2068 BUF_PUSH (push_dummy_failure); |
|
2069 |
|
2070 /* We allocated space for this jump when we assigned |
|
2071 to `fixup_alt_jump', in the `handle_alt' case below. */ |
|
2072 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); |
|
2073 } |
|
2074 |
|
2075 /* See similar code for backslashed left paren above. */ |
|
2076 if (COMPILE_STACK_EMPTY) |
|
2077 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
|
2078 goto normal_char; |
|
2079 else |
|
2080 return REG_ERPAREN; |
|
2081 |
|
2082 /* Since we just checked for an empty stack above, this |
|
2083 ``can't happen''. */ |
|
2084 assert (compile_stack.avail != 0); |
|
2085 { |
|
2086 /* We don't just want to restore into `regnum', because |
|
2087 later groups should continue to be numbered higher, |
|
2088 as in `(ab)c(de)' -- the second group is #2. */ |
|
2089 regnum_t this_group_regnum; |
|
2090 |
|
2091 compile_stack.avail--; |
|
2092 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; |
|
2093 fixup_alt_jump |
|
2094 = COMPILE_STACK_TOP.fixup_alt_jump |
|
2095 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 |
|
2096 : 0; |
|
2097 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; |
|
2098 this_group_regnum = COMPILE_STACK_TOP.regnum; |
45
|
2099 /* If we've reached MAX_REGNUM groups, then this open |
|
2100 won't actually generate any code, so we'll have to |
|
2101 clear pending_exact explicitly. */ |
|
2102 pending_exact = 0; |
2
|
2103 |
|
2104 /* We're at the end of the group, so now we know how many |
|
2105 groups were inside this one. */ |
|
2106 if (this_group_regnum <= MAX_REGNUM) |
|
2107 { |
|
2108 unsigned char *inner_group_loc |
|
2109 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; |
|
2110 |
|
2111 *inner_group_loc = regnum - this_group_regnum; |
|
2112 BUF_PUSH_3 (stop_memory, this_group_regnum, |
|
2113 regnum - this_group_regnum); |
|
2114 } |
|
2115 } |
|
2116 break; |
|
2117 |
|
2118 |
|
2119 case '|': /* `\|'. */ |
|
2120 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) |
|
2121 goto normal_backslash; |
|
2122 handle_alt: |
|
2123 if (syntax & RE_LIMITED_OPS) |
|
2124 goto normal_char; |
|
2125 |
|
2126 /* Insert before the previous alternative a jump which |
|
2127 jumps to this alternative if the former fails. */ |
|
2128 GET_BUFFER_SPACE (3); |
|
2129 INSERT_JUMP (on_failure_jump, begalt, b + 6); |
|
2130 pending_exact = 0; |
|
2131 b += 3; |
|
2132 |
|
2133 /* The alternative before this one has a jump after it |
|
2134 which gets executed if it gets matched. Adjust that |
|
2135 jump so it will jump to this alternative's analogous |
|
2136 jump (put in below, which in turn will jump to the next |
|
2137 (if any) alternative's such jump, etc.). The last such |
|
2138 jump jumps to the correct final destination. A picture: |
|
2139 _____ _____ |
|
2140 | | | | |
|
2141 | v | v |
|
2142 a | b | c |
|
2143 |
23
|
2144 If we are at `b', then fixup_alt_jump right now points to a |
|
2145 three-byte space after `a'. We'll put in the jump, set |
|
2146 fixup_alt_jump to right after `b', and leave behind three |
|
2147 bytes which we'll fill in when we get to after `c'. */ |
2
|
2148 |
|
2149 if (fixup_alt_jump) |
|
2150 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
|
2151 |
|
2152 /* Mark and leave space for a jump after this alternative, |
|
2153 to be filled in later either by next alternative or |
|
2154 when know we're at the end of a series of alternatives. */ |
|
2155 fixup_alt_jump = b; |
|
2156 GET_BUFFER_SPACE (3); |
|
2157 b += 3; |
|
2158 |
|
2159 laststart = 0; |
|
2160 begalt = b; |
|
2161 break; |
|
2162 |
|
2163 |
|
2164 case '{': |
|
2165 /* If \{ is a literal. */ |
|
2166 if (!(syntax & RE_INTERVALS) |
|
2167 /* If we're at `\{' and it's not the open-interval |
|
2168 operator. */ |
|
2169 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
|
2170 || (p - 2 == pattern && p == pend)) |
|
2171 goto normal_backslash; |
|
2172 |
|
2173 handle_interval: |
|
2174 { |
|
2175 /* If got here, then the syntax allows intervals. */ |
|
2176 |
|
2177 /* At least (most) this many matches must be made. */ |
|
2178 int lower_bound = -1, upper_bound = -1; |
|
2179 |
|
2180 beg_interval = p - 1; |
|
2181 |
|
2182 if (p == pend) |
|
2183 { |
|
2184 if (syntax & RE_NO_BK_BRACES) |
|
2185 goto unfetch_interval; |
|
2186 else |
|
2187 return REG_EBRACE; |
|
2188 } |
|
2189 |
|
2190 GET_UNSIGNED_NUMBER (lower_bound); |
|
2191 |
|
2192 if (c == ',') |
|
2193 { |
|
2194 GET_UNSIGNED_NUMBER (upper_bound); |
|
2195 if (upper_bound < 0) upper_bound = RE_DUP_MAX; |
|
2196 } |
|
2197 else |
|
2198 /* Interval such as `{1}' => match exactly once. */ |
|
2199 upper_bound = lower_bound; |
|
2200 |
|
2201 if (lower_bound < 0 || upper_bound > RE_DUP_MAX |
|
2202 || lower_bound > upper_bound) |
|
2203 { |
|
2204 if (syntax & RE_NO_BK_BRACES) |
|
2205 goto unfetch_interval; |
|
2206 else |
|
2207 return REG_BADBR; |
|
2208 } |
|
2209 |
|
2210 if (!(syntax & RE_NO_BK_BRACES)) |
|
2211 { |
|
2212 if (c != '\\') return REG_EBRACE; |
|
2213 |
|
2214 PATFETCH (c); |
|
2215 } |
|
2216 |
|
2217 if (c != '}') |
|
2218 { |
|
2219 if (syntax & RE_NO_BK_BRACES) |
|
2220 goto unfetch_interval; |
|
2221 else |
|
2222 return REG_BADBR; |
|
2223 } |
|
2224 |
|
2225 /* We just parsed a valid interval. */ |
|
2226 |
|
2227 /* If it's invalid to have no preceding re. */ |
|
2228 if (!laststart) |
|
2229 { |
|
2230 if (syntax & RE_CONTEXT_INVALID_OPS) |
|
2231 return REG_BADRPT; |
|
2232 else if (syntax & RE_CONTEXT_INDEP_OPS) |
|
2233 laststart = b; |
|
2234 else |
|
2235 goto unfetch_interval; |
|
2236 } |
|
2237 |
|
2238 /* If the upper bound is zero, don't want to succeed at |
|
2239 all; jump from `laststart' to `b + 3', which will be |
|
2240 the end of the buffer after we insert the jump. */ |
|
2241 if (upper_bound == 0) |
|
2242 { |
|
2243 GET_BUFFER_SPACE (3); |
|
2244 INSERT_JUMP (jump, laststart, b + 3); |
|
2245 b += 3; |
|
2246 } |
|
2247 |
|
2248 /* Otherwise, we have a nontrivial interval. When |
|
2249 we're all done, the pattern will look like: |
|
2250 set_number_at <jump count> <upper bound> |
|
2251 set_number_at <succeed_n count> <lower bound> |
|
2252 succeed_n <after jump addr> <succed_n count> |
|
2253 <body of loop> |
|
2254 jump_n <succeed_n addr> <jump count> |
|
2255 (The upper bound and `jump_n' are omitted if |
|
2256 `upper_bound' is 1, though.) */ |
|
2257 else |
|
2258 { /* If the upper bound is > 1, we need to insert |
|
2259 more at the end of the loop. */ |
|
2260 unsigned nbytes = 10 + (upper_bound > 1) * 10; |
|
2261 |
|
2262 GET_BUFFER_SPACE (nbytes); |
|
2263 |
|
2264 /* Initialize lower bound of the `succeed_n', even |
|
2265 though it will be set during matching by its |
|
2266 attendant `set_number_at' (inserted next), |
|
2267 because `re_compile_fastmap' needs to know. |
|
2268 Jump to the `jump_n' we might insert below. */ |
|
2269 INSERT_JUMP2 (succeed_n, laststart, |
|
2270 b + 5 + (upper_bound > 1) * 5, |
|
2271 lower_bound); |
|
2272 b += 5; |
|
2273 |
|
2274 /* Code to initialize the lower bound. Insert |
|
2275 before the `succeed_n'. The `5' is the last two |
|
2276 bytes of this `set_number_at', plus 3 bytes of |
|
2277 the following `succeed_n'. */ |
|
2278 insert_op2 (set_number_at, laststart, 5, lower_bound, b); |
|
2279 b += 5; |
|
2280 |
|
2281 if (upper_bound > 1) |
|
2282 { /* More than one repetition is allowed, so |
|
2283 append a backward jump to the `succeed_n' |
|
2284 that starts this interval. |
|
2285 |
|
2286 When we've reached this during matching, |
|
2287 we'll have matched the interval once, so |
|
2288 jump back only `upper_bound - 1' times. */ |
|
2289 STORE_JUMP2 (jump_n, b, laststart + 5, |
|
2290 upper_bound - 1); |
|
2291 b += 5; |
|
2292 |
|
2293 /* The location we want to set is the second |
|
2294 parameter of the `jump_n'; that is `b-2' as |
|
2295 an absolute address. `laststart' will be |
|
2296 the `set_number_at' we're about to insert; |
|
2297 `laststart+3' the number to set, the source |
|
2298 for the relative address. But we are |
|
2299 inserting into the middle of the pattern -- |
|
2300 so everything is getting moved up by 5. |
|
2301 Conclusion: (b - 2) - (laststart + 3) + 5, |
|
2302 i.e., b - laststart. |
|
2303 |
|
2304 We insert this at the beginning of the loop |
|
2305 so that if we fail during matching, we'll |
|
2306 reinitialize the bounds. */ |
|
2307 insert_op2 (set_number_at, laststart, b - laststart, |
|
2308 upper_bound - 1, b); |
|
2309 b += 5; |
|
2310 } |
|
2311 } |
|
2312 pending_exact = 0; |
|
2313 beg_interval = NULL; |
|
2314 } |
|
2315 break; |
|
2316 |
|
2317 unfetch_interval: |
|
2318 /* If an invalid interval, match the characters as literals. */ |
|
2319 assert (beg_interval); |
|
2320 p = beg_interval; |
|
2321 beg_interval = NULL; |
|
2322 |
|
2323 /* normal_char and normal_backslash need `c'. */ |
|
2324 PATFETCH (c); |
|
2325 |
|
2326 if (!(syntax & RE_NO_BK_BRACES)) |
|
2327 { |
|
2328 if (p > pattern && p[-1] == '\\') |
|
2329 goto normal_backslash; |
|
2330 } |
|
2331 goto normal_char; |
|
2332 |
|
2333 #ifdef emacs |
|
2334 /* There is no way to specify the before_dot and after_dot |
|
2335 operators. rms says this is ok. --karl */ |
|
2336 case '=': |
|
2337 BUF_PUSH (at_dot); |
|
2338 break; |
|
2339 |
|
2340 case 's': |
|
2341 laststart = b; |
|
2342 PATFETCH (c); |
|
2343 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); |
|
2344 break; |
|
2345 |
|
2346 case 'S': |
|
2347 laststart = b; |
|
2348 PATFETCH (c); |
|
2349 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); |
|
2350 break; |
|
2351 #endif /* emacs */ |
|
2352 |
|
2353 |
|
2354 case 'w': |
|
2355 laststart = b; |
|
2356 BUF_PUSH (wordchar); |
|
2357 break; |
|
2358 |
|
2359 |
|
2360 case 'W': |
|
2361 laststart = b; |
|
2362 BUF_PUSH (notwordchar); |
|
2363 break; |
|
2364 |
|
2365 |
|
2366 case '<': |
|
2367 BUF_PUSH (wordbeg); |
|
2368 break; |
|
2369 |
|
2370 case '>': |
|
2371 BUF_PUSH (wordend); |
|
2372 break; |
|
2373 |
|
2374 case 'b': |
|
2375 BUF_PUSH (wordbound); |
|
2376 break; |
|
2377 |
|
2378 case 'B': |
|
2379 BUF_PUSH (notwordbound); |
|
2380 break; |
|
2381 |
|
2382 case '`': |
|
2383 BUF_PUSH (begbuf); |
|
2384 break; |
|
2385 |
|
2386 case '\'': |
|
2387 BUF_PUSH (endbuf); |
|
2388 break; |
|
2389 |
|
2390 case '1': case '2': case '3': case '4': case '5': |
|
2391 case '6': case '7': case '8': case '9': |
|
2392 if (syntax & RE_NO_BK_REFS) |
|
2393 goto normal_char; |
|
2394 |
|
2395 c1 = c - '0'; |
|
2396 |
|
2397 if (c1 > regnum) |
|
2398 return REG_ESUBREG; |
|
2399 |
|
2400 /* Can't back reference to a subexpression if inside of it. */ |
|
2401 if (group_in_compile_stack (compile_stack, c1)) |
|
2402 goto normal_char; |
|
2403 |
|
2404 laststart = b; |
|
2405 BUF_PUSH_2 (duplicate, c1); |
|
2406 break; |
|
2407 |
|
2408 |
|
2409 case '+': |
|
2410 case '?': |
|
2411 if (syntax & RE_BK_PLUS_QM) |
|
2412 goto handle_plus; |
|
2413 else |
|
2414 goto normal_backslash; |
|
2415 |
|
2416 default: |
|
2417 normal_backslash: |
|
2418 /* You might think it would be useful for \ to mean |
|
2419 not to translate; but if we don't translate it |
|
2420 it will never match anything. */ |
|
2421 c = TRANSLATE (c); |
|
2422 goto normal_char; |
|
2423 } |
|
2424 break; |
|
2425 |
|
2426 |
|
2427 default: |
|
2428 /* Expects the character in `c'. */ |
|
2429 normal_char: |
|
2430 /* If no exactn currently being built. */ |
|
2431 if (!pending_exact |
|
2432 |
|
2433 /* If last exactn not at current position. */ |
|
2434 || pending_exact + *pending_exact + 1 != b |
|
2435 |
|
2436 /* We have only one byte following the exactn for the count. */ |
|
2437 || *pending_exact == (1 << BYTEWIDTH) - 1 |
|
2438 |
|
2439 /* If followed by a repetition operator. */ |
|
2440 || *p == '*' || *p == '^' |
|
2441 || ((syntax & RE_BK_PLUS_QM) |
|
2442 ? *p == '\\' && (p[1] == '+' || p[1] == '?') |
|
2443 : (*p == '+' || *p == '?')) |
|
2444 || ((syntax & RE_INTERVALS) |
|
2445 && ((syntax & RE_NO_BK_BRACES) |
|
2446 ? *p == '{' |
|
2447 : (p[0] == '\\' && p[1] == '{')))) |
|
2448 { |
|
2449 /* Start building a new exactn. */ |
|
2450 |
|
2451 laststart = b; |
|
2452 |
|
2453 BUF_PUSH_2 (exactn, 0); |
|
2454 pending_exact = b - 1; |
|
2455 } |
|
2456 |
|
2457 BUF_PUSH (c); |
|
2458 (*pending_exact)++; |
|
2459 break; |
|
2460 } /* switch (c) */ |
|
2461 } /* while p != pend */ |
|
2462 |
|
2463 |
|
2464 /* Through the pattern now. */ |
|
2465 |
|
2466 if (fixup_alt_jump) |
|
2467 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
|
2468 |
|
2469 if (!COMPILE_STACK_EMPTY) |
|
2470 return REG_EPAREN; |
|
2471 |
|
2472 free (compile_stack.stack); |
|
2473 |
|
2474 /* We have succeeded; set the length of the buffer. */ |
|
2475 bufp->used = b - bufp->buffer; |
|
2476 |
|
2477 #ifdef DEBUG |
|
2478 if (debug) |
|
2479 { |
79
|
2480 DEBUG_PRINT1 ("\nCompiled pattern: \n"); |
2
|
2481 print_compiled_pattern (bufp); |
|
2482 } |
|
2483 #endif /* DEBUG */ |
|
2484 |
89
|
2485 #ifndef MATCH_MAY_ALLOCATE |
87
|
2486 /* Initialize the failure stack to the largest possible stack. This |
|
2487 isn't necessary unless we're trying to avoid calling alloca in |
|
2488 the search and match routines. */ |
|
2489 { |
|
2490 int num_regs = bufp->re_nsub + 1; |
|
2491 |
|
2492 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size |
|
2493 is strictly greater than re_max_failures, the largest possible stack |
|
2494 is 2 * re_max_failures failure points. */ |
|
2495 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); |
|
2496 if (fail_stack.stack) |
|
2497 fail_stack.stack = |
|
2498 (fail_stack_elt_t *) realloc (fail_stack.stack, |
|
2499 (fail_stack.size |
|
2500 * sizeof (fail_stack_elt_t))); |
|
2501 else |
|
2502 fail_stack.stack = |
|
2503 (fail_stack_elt_t *) malloc (fail_stack.size |
|
2504 * sizeof (fail_stack_elt_t)); |
|
2505 |
|
2506 /* Initialize some other variables the matcher uses. */ |
|
2507 RETALLOC_IF (regstart, num_regs, const char *); |
|
2508 RETALLOC_IF (regend, num_regs, const char *); |
|
2509 RETALLOC_IF (old_regstart, num_regs, const char *); |
|
2510 RETALLOC_IF (old_regend, num_regs, const char *); |
|
2511 RETALLOC_IF (best_regstart, num_regs, const char *); |
|
2512 RETALLOC_IF (best_regend, num_regs, const char *); |
|
2513 RETALLOC_IF (reg_info, num_regs, register_info_type); |
|
2514 RETALLOC_IF (reg_dummy, num_regs, const char *); |
|
2515 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); |
|
2516 } |
|
2517 #endif |
|
2518 |
2
|
2519 return REG_NOERROR; |
|
2520 } /* regex_compile */ |
|
2521 |
|
2522 /* Subroutines for `regex_compile'. */ |
|
2523 |
|
2524 /* Store OP at LOC followed by two-byte integer parameter ARG. */ |
|
2525 |
|
2526 static void |
|
2527 store_op1 (op, loc, arg) |
|
2528 re_opcode_t op; |
|
2529 unsigned char *loc; |
|
2530 int arg; |
|
2531 { |
|
2532 *loc = (unsigned char) op; |
|
2533 STORE_NUMBER (loc + 1, arg); |
|
2534 } |
|
2535 |
|
2536 |
|
2537 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ |
|
2538 |
|
2539 static void |
|
2540 store_op2 (op, loc, arg1, arg2) |
|
2541 re_opcode_t op; |
|
2542 unsigned char *loc; |
|
2543 int arg1, arg2; |
|
2544 { |
|
2545 *loc = (unsigned char) op; |
|
2546 STORE_NUMBER (loc + 1, arg1); |
|
2547 STORE_NUMBER (loc + 3, arg2); |
|
2548 } |
|
2549 |
|
2550 |
|
2551 /* Copy the bytes from LOC to END to open up three bytes of space at LOC |
|
2552 for OP followed by two-byte integer parameter ARG. */ |
|
2553 |
|
2554 static void |
|
2555 insert_op1 (op, loc, arg, end) |
|
2556 re_opcode_t op; |
|
2557 unsigned char *loc; |
|
2558 int arg; |
|
2559 unsigned char *end; |
|
2560 { |
|
2561 register unsigned char *pfrom = end; |
|
2562 register unsigned char *pto = end + 3; |
|
2563 |
|
2564 while (pfrom != loc) |
|
2565 *--pto = *--pfrom; |
|
2566 |
|
2567 store_op1 (op, loc, arg); |
|
2568 } |
|
2569 |
|
2570 |
|
2571 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ |
|
2572 |
|
2573 static void |
|
2574 insert_op2 (op, loc, arg1, arg2, end) |
|
2575 re_opcode_t op; |
|
2576 unsigned char *loc; |
|
2577 int arg1, arg2; |
|
2578 unsigned char *end; |
|
2579 { |
|
2580 register unsigned char *pfrom = end; |
|
2581 register unsigned char *pto = end + 5; |
|
2582 |
|
2583 while (pfrom != loc) |
|
2584 *--pto = *--pfrom; |
|
2585 |
|
2586 store_op2 (op, loc, arg1, arg2); |
|
2587 } |
|
2588 |
|
2589 |
|
2590 /* P points to just after a ^ in PATTERN. Return true if that ^ comes |
|
2591 after an alternative or a begin-subexpression. We assume there is at |
|
2592 least one character before the ^. */ |
|
2593 |
|
2594 static boolean |
|
2595 at_begline_loc_p (pattern, p, syntax) |
|
2596 const char *pattern, *p; |
|
2597 reg_syntax_t syntax; |
|
2598 { |
|
2599 const char *prev = p - 2; |
|
2600 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
|
2601 |
|
2602 return |
|
2603 /* After a subexpression? */ |
|
2604 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) |
|
2605 /* After an alternative? */ |
|
2606 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); |
|
2607 } |
|
2608 |
|
2609 |
|
2610 /* The dual of at_begline_loc_p. This one is for $. We assume there is |
|
2611 at least one character after the $, i.e., `P < PEND'. */ |
|
2612 |
|
2613 static boolean |
|
2614 at_endline_loc_p (p, pend, syntax) |
|
2615 const char *p, *pend; |
|
2616 int syntax; |
|
2617 { |
|
2618 const char *next = p; |
|
2619 boolean next_backslash = *next == '\\'; |
|
2620 const char *next_next = p + 1 < pend ? p + 1 : NULL; |
|
2621 |
|
2622 return |
|
2623 /* Before a subexpression? */ |
|
2624 (syntax & RE_NO_BK_PARENS ? *next == ')' |
|
2625 : next_backslash && next_next && *next_next == ')') |
|
2626 /* Before an alternative? */ |
|
2627 || (syntax & RE_NO_BK_VBAR ? *next == '|' |
|
2628 : next_backslash && next_next && *next_next == '|'); |
|
2629 } |
|
2630 |
|
2631 |
|
2632 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and |
|
2633 false if it's not. */ |
|
2634 |
|
2635 static boolean |
|
2636 group_in_compile_stack (compile_stack, regnum) |
|
2637 compile_stack_type compile_stack; |
|
2638 regnum_t regnum; |
|
2639 { |
|
2640 int this_element; |
|
2641 |
|
2642 for (this_element = compile_stack.avail - 1; |
|
2643 this_element >= 0; |
|
2644 this_element--) |
|
2645 if (compile_stack.stack[this_element].regnum == regnum) |
|
2646 return true; |
|
2647 |
|
2648 return false; |
|
2649 } |
|
2650 |
|
2651 |
|
2652 /* Read the ending character of a range (in a bracket expression) from the |
|
2653 uncompiled pattern *P_PTR (which ends at PEND). We assume the |
|
2654 starting character is in `P[-2]'. (`P[-1]' is the character `-'.) |
|
2655 Then we set the translation of all bits between the starting and |
|
2656 ending characters (inclusive) in the compiled pattern B. |
|
2657 |
|
2658 Return an error code. |
|
2659 |
|
2660 We use these short variable names so we can use the same macros as |
|
2661 `regex_compile' itself. */ |
|
2662 |
|
2663 static reg_errcode_t |
|
2664 compile_range (p_ptr, pend, translate, syntax, b) |
|
2665 const char **p_ptr, *pend; |
|
2666 char *translate; |
|
2667 reg_syntax_t syntax; |
|
2668 unsigned char *b; |
|
2669 { |
|
2670 unsigned this_char; |
|
2671 |
|
2672 const char *p = *p_ptr; |
31
|
2673 int range_start, range_end; |
2
|
2674 |
|
2675 if (p == pend) |
|
2676 return REG_ERANGE; |
|
2677 |
31
|
2678 /* Even though the pattern is a signed `char *', we need to fetch |
|
2679 with unsigned char *'s; if the high bit of the pattern character |
|
2680 is set, the range endpoints will be negative if we fetch using a |
|
2681 signed char *. |
|
2682 |
|
2683 We also want to fetch the endpoints without translating them; the |
|
2684 appropriate translation is done in the bit-setting loop below. */ |
|
2685 range_start = ((unsigned char *) p)[-2]; |
|
2686 range_end = ((unsigned char *) p)[0]; |
2
|
2687 |
|
2688 /* Have to increment the pointer into the pattern string, so the |
|
2689 caller isn't still at the ending character. */ |
|
2690 (*p_ptr)++; |
|
2691 |
|
2692 /* If the start is after the end, the range is empty. */ |
|
2693 if (range_start > range_end) |
|
2694 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; |
|
2695 |
|
2696 /* Here we see why `this_char' has to be larger than an `unsigned |
|
2697 char' -- the range is inclusive, so if `range_end' == 0xff |
|
2698 (assuming 8-bit characters), we would otherwise go into an infinite |
|
2699 loop, since all characters <= 0xff. */ |
|
2700 for (this_char = range_start; this_char <= range_end; this_char++) |
|
2701 { |
|
2702 SET_LIST_BIT (TRANSLATE (this_char)); |
|
2703 } |
|
2704 |
|
2705 return REG_NOERROR; |
|
2706 } |
|
2707 |
|
2708 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in |
|
2709 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible |
|
2710 characters can start a string that matches the pattern. This fastmap |
|
2711 is used by re_search to skip quickly over impossible starting points. |
|
2712 |
|
2713 The caller must supply the address of a (1 << BYTEWIDTH)-byte data |
|
2714 area as BUFP->fastmap. |
|
2715 |
|
2716 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in |
|
2717 the pattern buffer. |
|
2718 |
|
2719 Returns 0 if we succeed, -2 if an internal error. */ |
|
2720 |
|
2721 int |
|
2722 re_compile_fastmap (bufp) |
|
2723 struct re_pattern_buffer *bufp; |
|
2724 { |
|
2725 int j, k; |
89
|
2726 #ifdef MATCH_MAY_ALLOCATE |
2
|
2727 fail_stack_type fail_stack; |
87
|
2728 #endif |
2
|
2729 #ifndef REGEX_MALLOC |
|
2730 char *destination; |
|
2731 #endif |
|
2732 /* We don't push any register information onto the failure stack. */ |
|
2733 unsigned num_regs = 0; |
|
2734 |
|
2735 register char *fastmap = bufp->fastmap; |
|
2736 unsigned char *pattern = bufp->buffer; |
|
2737 unsigned long size = bufp->used; |
169
|
2738 unsigned char *p = pattern; |
2
|
2739 register unsigned char *pend = pattern + size; |
|
2740 |
|
2741 /* Assume that each path through the pattern can be null until |
|
2742 proven otherwise. We set this false at the bottom of switch |
|
2743 statement, to which we get only if a particular path doesn't |
|
2744 match the empty string. */ |
|
2745 boolean path_can_be_null = true; |
|
2746 |
|
2747 /* We aren't doing a `succeed_n' to begin with. */ |
|
2748 boolean succeed_n_p = false; |
|
2749 |
|
2750 assert (fastmap != NULL && p != NULL); |
|
2751 |
|
2752 INIT_FAIL_STACK (); |
|
2753 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ |
|
2754 bufp->fastmap_accurate = 1; /* It will be when we're done. */ |
|
2755 bufp->can_be_null = 0; |
|
2756 |
|
2757 while (p != pend || !FAIL_STACK_EMPTY ()) |
|
2758 { |
|
2759 if (p == pend) |
|
2760 { |
|
2761 bufp->can_be_null |= path_can_be_null; |
|
2762 |
|
2763 /* Reset for next path. */ |
|
2764 path_can_be_null = true; |
|
2765 |
|
2766 p = fail_stack.stack[--fail_stack.avail]; |
|
2767 } |
|
2768 |
|
2769 /* We should never be about to go beyond the end of the pattern. */ |
|
2770 assert (p < pend); |
|
2771 |
|
2772 #ifdef SWITCH_ENUM_BUG |
|
2773 switch ((int) ((re_opcode_t) *p++)) |
|
2774 #else |
|
2775 switch ((re_opcode_t) *p++) |
|
2776 #endif |
|
2777 { |
|
2778 |
|
2779 /* I guess the idea here is to simply not bother with a fastmap |
|
2780 if a backreference is used, since it's too hard to figure out |
|
2781 the fastmap for the corresponding group. Setting |
|
2782 `can_be_null' stops `re_search_2' from using the fastmap, so |
|
2783 that is all we do. */ |
|
2784 case duplicate: |
|
2785 bufp->can_be_null = 1; |
|
2786 return 0; |
|
2787 |
|
2788 |
|
2789 /* Following are the cases which match a character. These end |
|
2790 with `break'. */ |
|
2791 |
|
2792 case exactn: |
|
2793 fastmap[p[1]] = 1; |
|
2794 break; |
|
2795 |
|
2796 |
|
2797 case charset: |
|
2798 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
|
2799 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) |
|
2800 fastmap[j] = 1; |
|
2801 break; |
|
2802 |
|
2803 |
|
2804 case charset_not: |
|
2805 /* Chars beyond end of map must be allowed. */ |
|
2806 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
|
2807 fastmap[j] = 1; |
|
2808 |
|
2809 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
|
2810 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) |
|
2811 fastmap[j] = 1; |
|
2812 break; |
|
2813 |
|
2814 |
|
2815 case wordchar: |
|
2816 for (j = 0; j < (1 << BYTEWIDTH); j++) |
|
2817 if (SYNTAX (j) == Sword) |
|
2818 fastmap[j] = 1; |
|
2819 break; |
|
2820 |
|
2821 |
|
2822 case notwordchar: |
|
2823 for (j = 0; j < (1 << BYTEWIDTH); j++) |
|
2824 if (SYNTAX (j) != Sword) |
|
2825 fastmap[j] = 1; |
|
2826 break; |
|
2827 |
|
2828 |
|
2829 case anychar: |
|
2830 /* `.' matches anything ... */ |
|
2831 for (j = 0; j < (1 << BYTEWIDTH); j++) |
|
2832 fastmap[j] = 1; |
|
2833 |
|
2834 /* ... except perhaps newline. */ |
|
2835 if (!(bufp->syntax & RE_DOT_NEWLINE)) |
|
2836 fastmap['\n'] = 0; |
|
2837 |
|
2838 /* Return if we have already set `can_be_null'; if we have, |
|
2839 then the fastmap is irrelevant. Something's wrong here. */ |
|
2840 else if (bufp->can_be_null) |
|
2841 return 0; |
|
2842 |
|
2843 /* Otherwise, have to check alternative paths. */ |
|
2844 break; |
|
2845 |
|
2846 |
|
2847 #ifdef emacs |
|
2848 case syntaxspec: |
|
2849 k = *p++; |
|
2850 for (j = 0; j < (1 << BYTEWIDTH); j++) |
|
2851 if (SYNTAX (j) == (enum syntaxcode) k) |
|
2852 fastmap[j] = 1; |
|
2853 break; |
|
2854 |
|
2855 |
|
2856 case notsyntaxspec: |
|
2857 k = *p++; |
|
2858 for (j = 0; j < (1 << BYTEWIDTH); j++) |
|
2859 if (SYNTAX (j) != (enum syntaxcode) k) |
|
2860 fastmap[j] = 1; |
|
2861 break; |
|
2862 |
|
2863 |
|
2864 /* All cases after this match the empty string. These end with |
|
2865 `continue'. */ |
|
2866 |
|
2867 |
|
2868 case before_dot: |
|
2869 case at_dot: |
|
2870 case after_dot: |
|
2871 continue; |
|
2872 #endif /* not emacs */ |
|
2873 |
|
2874 |
|
2875 case no_op: |
|
2876 case begline: |
|
2877 case endline: |
|
2878 case begbuf: |
|
2879 case endbuf: |
|
2880 case wordbound: |
|
2881 case notwordbound: |
|
2882 case wordbeg: |
|
2883 case wordend: |
|
2884 case push_dummy_failure: |
|
2885 continue; |
|
2886 |
|
2887 |
|
2888 case jump_n: |
|
2889 case pop_failure_jump: |
|
2890 case maybe_pop_jump: |
|
2891 case jump: |
|
2892 case jump_past_alt: |
|
2893 case dummy_failure_jump: |
|
2894 EXTRACT_NUMBER_AND_INCR (j, p); |
|
2895 p += j; |
|
2896 if (j > 0) |
|
2897 continue; |
|
2898 |
|
2899 /* Jump backward implies we just went through the body of a |
|
2900 loop and matched nothing. Opcode jumped to should be |
|
2901 `on_failure_jump' or `succeed_n'. Just treat it like an |
|
2902 ordinary jump. For a * loop, it has pushed its failure |
|
2903 point already; if so, discard that as redundant. */ |
|
2904 if ((re_opcode_t) *p != on_failure_jump |
|
2905 && (re_opcode_t) *p != succeed_n) |
|
2906 continue; |
|
2907 |
|
2908 p++; |
|
2909 EXTRACT_NUMBER_AND_INCR (j, p); |
|
2910 p += j; |
|
2911 |
|
2912 /* If what's on the stack is where we are now, pop it. */ |
|
2913 if (!FAIL_STACK_EMPTY () |
|
2914 && fail_stack.stack[fail_stack.avail - 1] == p) |
|
2915 fail_stack.avail--; |
|
2916 |
|
2917 continue; |
|
2918 |
|
2919 |
|
2920 case on_failure_jump: |
|
2921 case on_failure_keep_string_jump: |
|
2922 handle_on_failure_jump: |
|
2923 EXTRACT_NUMBER_AND_INCR (j, p); |
|
2924 |
|
2925 /* For some patterns, e.g., `(a?)?', `p+j' here points to the |
|
2926 end of the pattern. We don't want to push such a point, |
|
2927 since when we restore it above, entering the switch will |
|
2928 increment `p' past the end of the pattern. We don't need |
|
2929 to push such a point since we obviously won't find any more |
|
2930 fastmap entries beyond `pend'. Such a pattern can match |
|
2931 the null string, though. */ |
|
2932 if (p + j < pend) |
|
2933 { |
|
2934 if (!PUSH_PATTERN_OP (p + j, fail_stack)) |
|
2935 return -2; |
|
2936 } |
|
2937 else |
|
2938 bufp->can_be_null = 1; |
|
2939 |
|
2940 if (succeed_n_p) |
|
2941 { |
|
2942 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ |
|
2943 succeed_n_p = false; |
|
2944 } |
|
2945 |
|
2946 continue; |
|
2947 |
|
2948 |
|
2949 case succeed_n: |
|
2950 /* Get to the number of times to succeed. */ |
|
2951 p += 2; |
|
2952 |
|
2953 /* Increment p past the n for when k != 0. */ |
|
2954 EXTRACT_NUMBER_AND_INCR (k, p); |
|
2955 if (k == 0) |
|
2956 { |
|
2957 p -= 4; |
|
2958 succeed_n_p = true; /* Spaghetti code alert. */ |
|
2959 goto handle_on_failure_jump; |
|
2960 } |
|
2961 continue; |
|
2962 |
|
2963 |
|
2964 case set_number_at: |
|
2965 p += 4; |
|
2966 continue; |
|
2967 |
|
2968 |
|
2969 case start_memory: |
|
2970 case stop_memory: |
|
2971 p += 2; |
|
2972 continue; |
|
2973 |
|
2974 |
|
2975 default: |
|
2976 abort (); /* We have listed all the cases. */ |
|
2977 } /* switch *p++ */ |
|
2978 |
|
2979 /* Getting here means we have found the possible starting |
|
2980 characters for one path of the pattern -- and that the empty |
|
2981 string does not match. We need not follow this path further. |
|
2982 Instead, look at the next alternative (remembered on the |
|
2983 stack), or quit if no more. The test at the top of the loop |
|
2984 does these things. */ |
|
2985 path_can_be_null = false; |
|
2986 p = pend; |
|
2987 } /* while p */ |
|
2988 |
|
2989 /* Set `can_be_null' for the last path (also the first path, if the |
|
2990 pattern is empty). */ |
|
2991 bufp->can_be_null |= path_can_be_null; |
|
2992 return 0; |
|
2993 } /* re_compile_fastmap */ |
|
2994 |
|
2995 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
|
2996 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use |
|
2997 this memory for recording register information. STARTS and ENDS |
|
2998 must be allocated using the malloc library routine, and must each |
|
2999 be at least NUM_REGS * sizeof (regoff_t) bytes long. |
|
3000 |
|
3001 If NUM_REGS == 0, then subsequent matches should allocate their own |
|
3002 register data. |
|
3003 |
|
3004 Unless this function is called, the first search or match using |
|
3005 PATTERN_BUFFER will allocate its own register data, without |
|
3006 freeing the old data. */ |
|
3007 |
|
3008 void |
|
3009 re_set_registers (bufp, regs, num_regs, starts, ends) |
|
3010 struct re_pattern_buffer *bufp; |
|
3011 struct re_registers *regs; |
|
3012 unsigned num_regs; |
|
3013 regoff_t *starts, *ends; |
|
3014 { |
|
3015 if (num_regs) |
|
3016 { |
|
3017 bufp->regs_allocated = REGS_REALLOCATE; |
|
3018 regs->num_regs = num_regs; |
|
3019 regs->start = starts; |
|
3020 regs->end = ends; |
|
3021 } |
|
3022 else |
|
3023 { |
|
3024 bufp->regs_allocated = REGS_UNALLOCATED; |
|
3025 regs->num_regs = 0; |
173
|
3026 regs->start = regs->end = (regoff_t *) 0; |
2
|
3027 } |
|
3028 } |
|
3029 |
|
3030 /* Searching routines. */ |
|
3031 |
|
3032 /* Like re_search_2, below, but only one string is specified, and |
|
3033 doesn't let you say where to stop matching. */ |
|
3034 |
|
3035 int |
|
3036 re_search (bufp, string, size, startpos, range, regs) |
|
3037 struct re_pattern_buffer *bufp; |
|
3038 const char *string; |
|
3039 int size, startpos, range; |
|
3040 struct re_registers *regs; |
|
3041 { |
|
3042 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, |
|
3043 regs, size); |
|
3044 } |
|
3045 |
|
3046 |
|
3047 /* Using the compiled pattern in BUFP->buffer, first tries to match the |
|
3048 virtual concatenation of STRING1 and STRING2, starting first at index |
|
3049 STARTPOS, then at STARTPOS + 1, and so on. |
|
3050 |
|
3051 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. |
|
3052 |
|
3053 RANGE is how far to scan while trying to match. RANGE = 0 means try |
|
3054 only at STARTPOS; in general, the last start tried is STARTPOS + |
|
3055 RANGE. |
|
3056 |
|
3057 In REGS, return the indices of the virtual concatenation of STRING1 |
|
3058 and STRING2 that matched the entire BUFP->buffer and its contained |
|
3059 subexpressions. |
|
3060 |
|
3061 Do not consider matching one past the index STOP in the virtual |
|
3062 concatenation of STRING1 and STRING2. |
|
3063 |
|
3064 We return either the position in the strings at which the match was |
|
3065 found, -1 if no match, or -2 if error (such as failure |
|
3066 stack overflow). */ |
|
3067 |
|
3068 int |
|
3069 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) |
|
3070 struct re_pattern_buffer *bufp; |
|
3071 const char *string1, *string2; |
|
3072 int size1, size2; |
|
3073 int startpos; |
|
3074 int range; |
|
3075 struct re_registers *regs; |
|
3076 int stop; |
|
3077 { |
|
3078 int val; |
|
3079 register char *fastmap = bufp->fastmap; |
|
3080 register char *translate = bufp->translate; |
|
3081 int total_size = size1 + size2; |
|
3082 int endpos = startpos + range; |
|
3083 |
|
3084 /* Check for out-of-range STARTPOS. */ |
|
3085 if (startpos < 0 || startpos > total_size) |
|
3086 return -1; |
|
3087 |
|
3088 /* Fix up RANGE if it might eventually take us outside |
|
3089 the virtual concatenation of STRING1 and STRING2. */ |
|
3090 if (endpos < -1) |
|
3091 range = -1 - startpos; |
|
3092 else if (endpos > total_size) |
|
3093 range = total_size - startpos; |
|
3094 |
|
3095 /* If the search isn't to be a backwards one, don't waste time in a |
23
|
3096 search for a pattern that must be anchored. */ |
|
3097 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) |
2
|
3098 { |
|
3099 if (startpos > 0) |
|
3100 return -1; |
|
3101 else |
|
3102 range = 1; |
|
3103 } |
|
3104 |
23
|
3105 /* Update the fastmap now if not correct already. */ |
|
3106 if (fastmap && !bufp->fastmap_accurate) |
|
3107 if (re_compile_fastmap (bufp) == -2) |
|
3108 return -2; |
|
3109 |
|
3110 /* Loop through the string, looking for a place to start matching. */ |
2
|
3111 for (;;) |
|
3112 { |
|
3113 /* If a fastmap is supplied, skip quickly over characters that |
|
3114 cannot be the start of a match. If the pattern can match the |
|
3115 null string, however, we don't need to skip characters; we want |
|
3116 the first null string. */ |
|
3117 if (fastmap && startpos < total_size && !bufp->can_be_null) |
|
3118 { |
|
3119 if (range > 0) /* Searching forwards. */ |
|
3120 { |
|
3121 register const char *d; |
|
3122 register int lim = 0; |
|
3123 int irange = range; |
|
3124 |
|
3125 if (startpos < size1 && startpos + range >= size1) |
|
3126 lim = range - (size1 - startpos); |
|
3127 |
|
3128 d = (startpos >= size1 ? string2 - size1 : string1) + startpos; |
|
3129 |
|
3130 /* Written out as an if-else to avoid testing `translate' |
|
3131 inside the loop. */ |
|
3132 if (translate) |
|
3133 while (range > lim |
38
|
3134 && !fastmap[(unsigned char) |
|
3135 translate[(unsigned char) *d++]]) |
2
|
3136 range--; |
|
3137 else |
|
3138 while (range > lim && !fastmap[(unsigned char) *d++]) |
|
3139 range--; |
|
3140 |
|
3141 startpos += irange - range; |
|
3142 } |
|
3143 else /* Searching backwards. */ |
|
3144 { |
|
3145 register char c = (size1 == 0 || startpos >= size1 |
|
3146 ? string2[startpos - size1] |
|
3147 : string1[startpos]); |
|
3148 |
23
|
3149 if (!fastmap[(unsigned char) TRANSLATE (c)]) |
2
|
3150 goto advance; |
|
3151 } |
|
3152 } |
|
3153 |
|
3154 /* If can't match the null string, and that's all we have left, fail. */ |
|
3155 if (range >= 0 && startpos == total_size && fastmap |
|
3156 && !bufp->can_be_null) |
|
3157 return -1; |
|
3158 |
|
3159 val = re_match_2 (bufp, string1, size1, string2, size2, |
|
3160 startpos, regs, stop); |
|
3161 if (val >= 0) |
|
3162 return startpos; |
|
3163 |
|
3164 if (val == -2) |
|
3165 return -2; |
|
3166 |
|
3167 advance: |
|
3168 if (!range) |
|
3169 break; |
|
3170 else if (range > 0) |
|
3171 { |
|
3172 range--; |
|
3173 startpos++; |
|
3174 } |
|
3175 else |
|
3176 { |
|
3177 range++; |
|
3178 startpos--; |
|
3179 } |
|
3180 } |
|
3181 return -1; |
|
3182 } /* re_search_2 */ |
|
3183 |
|
3184 /* Declarations and macros for re_match_2. */ |
|
3185 |
|
3186 static int bcmp_translate (); |
|
3187 static boolean alt_match_null_string_p (), |
|
3188 common_op_match_null_string_p (), |
|
3189 group_match_null_string_p (); |
|
3190 |
|
3191 /* This converts PTR, a pointer into one of the search strings `string1' |
|
3192 and `string2' into an offset from the beginning of that string. */ |
169
|
3193 #define POINTER_TO_OFFSET(ptr) \ |
|
3194 (FIRST_STRING_P (ptr) \ |
|
3195 ? ((regoff_t) ((ptr) - string1)) \ |
|
3196 : ((regoff_t) ((ptr) - string2 + size1))) |
2
|
3197 |
|
3198 /* Macros for dealing with the split strings in re_match_2. */ |
|
3199 |
|
3200 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) |
|
3201 |
|
3202 /* Call before fetching a character with *d. This switches over to |
|
3203 string2 if necessary. */ |
|
3204 #define PREFETCH() \ |
|
3205 while (d == dend) \ |
|
3206 { \ |
|
3207 /* End of string2 => fail. */ \ |
|
3208 if (dend == end_match_2) \ |
|
3209 goto fail; \ |
|
3210 /* End of string1 => advance to string2. */ \ |
|
3211 d = string2; \ |
|
3212 dend = end_match_2; \ |
|
3213 } |
|
3214 |
|
3215 |
|
3216 /* Test if at very beginning or at very end of the virtual concatenation |
|
3217 of `string1' and `string2'. If only one string, it's `string2'. */ |
23
|
3218 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) |
|
3219 #define AT_STRINGS_END(d) ((d) == end2) |
2
|
3220 |
|
3221 |
|
3222 /* Test if D points to a character which is word-constituent. We have |
|
3223 two special cases to check for: if past the end of string1, look at |
|
3224 the first character in string2; and if before the beginning of |
23
|
3225 string2, look at the last character in string1. */ |
|
3226 #define WORDCHAR_P(d) \ |
2
|
3227 (SYNTAX ((d) == end1 ? *string2 \ |
23
|
3228 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ |
|
3229 == Sword) |
2
|
3230 |
|
3231 /* Test if the character before D and the one at D differ with respect |
|
3232 to being word-constituent. */ |
|
3233 #define AT_WORD_BOUNDARY(d) \ |
23
|
3234 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ |
|
3235 || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) |
2
|
3236 |
|
3237 |
|
3238 /* Free everything we malloc. */ |
89
|
3239 #ifdef MATCH_MAY_ALLOCATE |
2
|
3240 #ifdef REGEX_MALLOC |
|
3241 #define FREE_VAR(var) if (var) free (var); var = NULL |
|
3242 #define FREE_VARIABLES() \ |
|
3243 do { \ |
|
3244 FREE_VAR (fail_stack.stack); \ |
|
3245 FREE_VAR (regstart); \ |
|
3246 FREE_VAR (regend); \ |
|
3247 FREE_VAR (old_regstart); \ |
|
3248 FREE_VAR (old_regend); \ |
|
3249 FREE_VAR (best_regstart); \ |
|
3250 FREE_VAR (best_regend); \ |
|
3251 FREE_VAR (reg_info); \ |
|
3252 FREE_VAR (reg_dummy); \ |
|
3253 FREE_VAR (reg_info_dummy); \ |
|
3254 } while (0) |
|
3255 #else /* not REGEX_MALLOC */ |
|
3256 /* Some MIPS systems (at least) want this to free alloca'd storage. */ |
|
3257 #define FREE_VARIABLES() alloca (0) |
|
3258 #endif /* not REGEX_MALLOC */ |
89
|
3259 #else |
|
3260 #define FREE_VARIABLES() /* Do nothing! */ |
|
3261 #endif /* not MATCH_MAY_ALLOCATE */ |
2
|
3262 |
|
3263 /* These values must meet several constraints. They must not be valid |
|
3264 register values; since we have a limit of 255 registers (because |
|
3265 we use only one byte in the pattern for the register number), we can |
|
3266 use numbers larger than 255. They must differ by 1, because of |
|
3267 NUM_FAILURE_ITEMS above. And the value for the lowest register must |
|
3268 be larger than the value for the highest register, so we do not try |
|
3269 to actually save any registers when none are active. */ |
|
3270 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) |
|
3271 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) |
|
3272 |
|
3273 /* Matching routines. */ |
|
3274 |
|
3275 #ifndef emacs /* Emacs never uses this. */ |
|
3276 /* re_match is like re_match_2 except it takes only a single string. */ |
|
3277 |
|
3278 int |
|
3279 re_match (bufp, string, size, pos, regs) |
|
3280 struct re_pattern_buffer *bufp; |
|
3281 const char *string; |
|
3282 int size, pos; |
|
3283 struct re_registers *regs; |
|
3284 { |
|
3285 return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size); |
|
3286 } |
|
3287 #endif /* not emacs */ |
|
3288 |
|
3289 |
|
3290 /* re_match_2 matches the compiled pattern in BUFP against the |
|
3291 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 |
|
3292 and SIZE2, respectively). We start matching at POS, and stop |
|
3293 matching at STOP. |
|
3294 |
|
3295 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we |
|
3296 store offsets for the substring each group matched in REGS. See the |
|
3297 documentation for exactly how many groups we fill. |
|
3298 |
|
3299 We return -1 if no match, -2 if an internal error (such as the |
|
3300 failure stack overflowing). Otherwise, we return the length of the |
|
3301 matched substring. */ |
|
3302 |
|
3303 int |
|
3304 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
|
3305 struct re_pattern_buffer *bufp; |
|
3306 const char *string1, *string2; |
|
3307 int size1, size2; |
|
3308 int pos; |
|
3309 struct re_registers *regs; |
|
3310 int stop; |
|
3311 { |
|
3312 /* General temporaries. */ |
|
3313 int mcnt; |
|
3314 unsigned char *p1; |
|
3315 |
|
3316 /* Just past the end of the corresponding string. */ |
|
3317 const char *end1, *end2; |
|
3318 |
|
3319 /* Pointers into string1 and string2, just past the last characters in |
|
3320 each to consider matching. */ |
|
3321 const char *end_match_1, *end_match_2; |
|
3322 |
|
3323 /* Where we are in the data, and the end of the current string. */ |
|
3324 const char *d, *dend; |
|
3325 |
|
3326 /* Where we are in the pattern, and the end of the pattern. */ |
|
3327 unsigned char *p = bufp->buffer; |
|
3328 register unsigned char *pend = p + bufp->used; |
|
3329 |
|
3330 /* We use this to map every character in the string. */ |
|
3331 char *translate = bufp->translate; |
|
3332 |
|
3333 /* Failure point stack. Each place that can handle a failure further |
|
3334 down the line pushes a failure point on this stack. It consists of |
|
3335 restart, regend, and reg_info for all registers corresponding to |
|
3336 the subexpressions we're currently inside, plus the number of such |
|
3337 registers, and, finally, two char *'s. The first char * is where |
|
3338 to resume scanning the pattern; the second one is where to resume |
|
3339 scanning the strings. If the latter is zero, the failure point is |
|
3340 a ``dummy''; if a failure happens and the failure point is a dummy, |
|
3341 it gets discarded and the next next one is tried. */ |
89
|
3342 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
2
|
3343 fail_stack_type fail_stack; |
87
|
3344 #endif |
2
|
3345 #ifdef DEBUG |
|
3346 static unsigned failure_id = 0; |
23
|
3347 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; |
2
|
3348 #endif |
|
3349 |
|
3350 /* We fill all the registers internally, independent of what we |
|
3351 return, for use in backreferences. The number here includes |
|
3352 an element for register zero. */ |
|
3353 unsigned num_regs = bufp->re_nsub + 1; |
|
3354 |
|
3355 /* The currently active registers. */ |
|
3356 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
|
3357 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
|
3358 |
|
3359 /* Information on the contents of registers. These are pointers into |
|
3360 the input strings; they record just what was matched (on this |
|
3361 attempt) by a subexpression part of the pattern, that is, the |
|
3362 regnum-th regstart pointer points to where in the pattern we began |
|
3363 matching and the regnum-th regend points to right after where we |
|
3364 stopped matching the regnum-th subexpression. (The zeroth register |
|
3365 keeps track of what the whole pattern matches.) */ |
89
|
3366 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
2
|
3367 const char **regstart, **regend; |
87
|
3368 #endif |
2
|
3369 |
|
3370 /* If a group that's operated upon by a repetition operator fails to |
|
3371 match anything, then the register for its start will need to be |
|
3372 restored because it will have been set to wherever in the string we |
|
3373 are when we last see its open-group operator. Similarly for a |
|
3374 register's end. */ |
89
|
3375 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
2
|
3376 const char **old_regstart, **old_regend; |
87
|
3377 #endif |
2
|
3378 |
|
3379 /* The is_active field of reg_info helps us keep track of which (possibly |
|
3380 nested) subexpressions we are currently in. The matched_something |
|
3381 field of reg_info[reg_num] helps us tell whether or not we have |
|
3382 matched any of the pattern so far this time through the reg_num-th |
|
3383 subexpression. These two fields get reset each time through any |
|
3384 loop their register is in. */ |
89
|
3385 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
2
|
3386 register_info_type *reg_info; |
87
|
3387 #endif |
2
|
3388 |
|
3389 /* The following record the register info as found in the above |
|
3390 variables when we find a match better than any we've seen before. |
|
3391 This happens as we backtrack through the failure points, which in |
|
3392 turn happens only if we have not yet matched the entire string. */ |
|
3393 unsigned best_regs_set = false; |
89
|
3394 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
2
|
3395 const char **best_regstart, **best_regend; |
87
|
3396 #endif |
2
|
3397 |
|
3398 /* Logically, this is `best_regend[0]'. But we don't want to have to |
|
3399 allocate space for that if we're not allocating space for anything |
|
3400 else (see below). Also, we never need info about register 0 for |
|
3401 any of the other register vectors, and it seems rather a kludge to |
|
3402 treat `best_regend' differently than the rest. So we keep track of |
|
3403 the end of the best match so far in a separate variable. We |
|
3404 initialize this to NULL so that when we backtrack the first time |
|
3405 and need to test it, it's not garbage. */ |
|
3406 const char *match_end = NULL; |
|
3407 |
|
3408 /* Used when we pop values we don't care about. */ |
89
|
3409 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
2
|
3410 const char **reg_dummy; |
|
3411 register_info_type *reg_info_dummy; |
87
|
3412 #endif |
2
|
3413 |
|
3414 #ifdef DEBUG |
|
3415 /* Counts the total number of registers pushed. */ |
|
3416 unsigned num_regs_pushed = 0; |
|
3417 #endif |
|
3418 |
|
3419 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); |
|
3420 |
|
3421 INIT_FAIL_STACK (); |
|
3422 |
89
|
3423 #ifdef MATCH_MAY_ALLOCATE |
2
|
3424 /* Do not bother to initialize all the register variables if there are |
|
3425 no groups in the pattern, as it takes a fair amount of time. If |
|
3426 there are groups, we include space for register 0 (the whole |
|
3427 pattern), even though we never use it, since it simplifies the |
|
3428 array indexing. We should fix this. */ |
|
3429 if (bufp->re_nsub) |
|
3430 { |
|
3431 regstart = REGEX_TALLOC (num_regs, const char *); |
|
3432 regend = REGEX_TALLOC (num_regs, const char *); |
|
3433 old_regstart = REGEX_TALLOC (num_regs, const char *); |
|
3434 old_regend = REGEX_TALLOC (num_regs, const char *); |
|
3435 best_regstart = REGEX_TALLOC (num_regs, const char *); |
|
3436 best_regend = REGEX_TALLOC (num_regs, const char *); |
|
3437 reg_info = REGEX_TALLOC (num_regs, register_info_type); |
|
3438 reg_dummy = REGEX_TALLOC (num_regs, const char *); |
|
3439 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); |
|
3440 |
|
3441 if (!(regstart && regend && old_regstart && old_regend && reg_info |
|
3442 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) |
|
3443 { |
|
3444 FREE_VARIABLES (); |
|
3445 return -2; |
|
3446 } |
|
3447 } |
87
|
3448 #if defined (REGEX_MALLOC) |
2
|
3449 else |
|
3450 { |
|
3451 /* We must initialize all our variables to NULL, so that |
23
|
3452 `FREE_VARIABLES' doesn't try to free them. */ |
2
|
3453 regstart = regend = old_regstart = old_regend = best_regstart |
|
3454 = best_regend = reg_dummy = NULL; |
|
3455 reg_info = reg_info_dummy = (register_info_type *) NULL; |
|
3456 } |
|
3457 #endif /* REGEX_MALLOC */ |
89
|
3458 #endif /* MATCH_MAY_ALLOCATE */ |
2
|
3459 |
|
3460 /* The starting position is bogus. */ |
|
3461 if (pos < 0 || pos > size1 + size2) |
|
3462 { |
|
3463 FREE_VARIABLES (); |
|
3464 return -1; |
|
3465 } |
|
3466 |
|
3467 /* Initialize subexpression text positions to -1 to mark ones that no |
|
3468 start_memory/stop_memory has been seen for. Also initialize the |
|
3469 register information struct. */ |
|
3470 for (mcnt = 1; mcnt < num_regs; mcnt++) |
|
3471 { |
|
3472 regstart[mcnt] = regend[mcnt] |
|
3473 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; |
|
3474 |
|
3475 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; |
|
3476 IS_ACTIVE (reg_info[mcnt]) = 0; |
|
3477 MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
|
3478 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
|
3479 } |
|
3480 |
|
3481 /* We move `string1' into `string2' if the latter's empty -- but not if |
|
3482 `string1' is null. */ |
|
3483 if (size2 == 0 && string1 != NULL) |
|
3484 { |
|
3485 string2 = string1; |
|
3486 size2 = size1; |
|
3487 string1 = 0; |
|
3488 size1 = 0; |
|
3489 } |
|
3490 end1 = string1 + size1; |
|
3491 end2 = string2 + size2; |
|
3492 |
|
3493 /* Compute where to stop matching, within the two strings. */ |
|
3494 if (stop <= size1) |
|
3495 { |
|
3496 end_match_1 = string1 + stop; |
|
3497 end_match_2 = string2; |
|
3498 } |
|
3499 else |
|
3500 { |
|
3501 end_match_1 = end1; |
|
3502 end_match_2 = string2 + stop - size1; |
|
3503 } |
|
3504 |
|
3505 /* `p' scans through the pattern as `d' scans through the data. |
|
3506 `dend' is the end of the input string that `d' points within. `d' |
|
3507 is advanced into the following input string whenever necessary, but |
|
3508 this happens before fetching; therefore, at the beginning of the |
|
3509 loop, `d' can be pointing at the end of a string, but it cannot |
|
3510 equal `string2'. */ |
|
3511 if (size1 > 0 && pos <= size1) |
|
3512 { |
|
3513 d = string1 + pos; |
|
3514 dend = end_match_1; |
|
3515 } |
|
3516 else |
|
3517 { |
|
3518 d = string2 + pos - size1; |
|
3519 dend = end_match_2; |
|
3520 } |
|
3521 |
|
3522 DEBUG_PRINT1 ("The compiled pattern is: "); |
|
3523 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); |
|
3524 DEBUG_PRINT1 ("The string to match is: `"); |
|
3525 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); |
|
3526 DEBUG_PRINT1 ("'\n"); |
|
3527 |
|
3528 /* This loops over pattern commands. It exits by returning from the |
|
3529 function if the match is complete, or it drops through if the match |
|
3530 fails at this starting point in the input data. */ |
|
3531 for (;;) |
|
3532 { |
|
3533 DEBUG_PRINT2 ("\n0x%x: ", p); |
|
3534 |
|
3535 if (p == pend) |
|
3536 { /* End of pattern means we might have succeeded. */ |
23
|
3537 DEBUG_PRINT1 ("end of pattern ... "); |
|
3538 |
|
3539 /* If we haven't matched the entire string, and we want the |
|
3540 longest match, try backtracking. */ |
2
|
3541 if (d != end_match_2) |
|
3542 { |
|
3543 DEBUG_PRINT1 ("backtracking.\n"); |
|
3544 |
|
3545 if (!FAIL_STACK_EMPTY ()) |
|
3546 { /* More failure points to try. */ |
|
3547 boolean same_str_p = (FIRST_STRING_P (match_end) |
|
3548 == MATCHING_IN_FIRST_STRING); |
|
3549 |
|
3550 /* If exceeds best match so far, save it. */ |
|
3551 if (!best_regs_set |
|
3552 || (same_str_p && d > match_end) |
|
3553 || (!same_str_p && !MATCHING_IN_FIRST_STRING)) |
|
3554 { |
|
3555 best_regs_set = true; |
|
3556 match_end = d; |
|
3557 |
|
3558 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); |
|
3559 |
|
3560 for (mcnt = 1; mcnt < num_regs; mcnt++) |
|
3561 { |
|
3562 best_regstart[mcnt] = regstart[mcnt]; |
|
3563 best_regend[mcnt] = regend[mcnt]; |
|
3564 } |
|
3565 } |
|
3566 goto fail; |
|
3567 } |
|
3568 |
|
3569 /* If no failure points, don't restore garbage. */ |
|
3570 else if (best_regs_set) |
|
3571 { |
|
3572 restore_best_regs: |
|
3573 /* Restore best match. It may happen that `dend == |
|
3574 end_match_1' while the restored d is in string2. |
|
3575 For example, the pattern `x.*y.*z' against the |
|
3576 strings `x-' and `y-z-', if the two strings are |
|
3577 not consecutive in memory. */ |
23
|
3578 DEBUG_PRINT1 ("Restoring best registers.\n"); |
|
3579 |
2
|
3580 d = match_end; |
|
3581 dend = ((d >= string1 && d <= end1) |
|
3582 ? end_match_1 : end_match_2); |
|
3583 |
|
3584 for (mcnt = 1; mcnt < num_regs; mcnt++) |
|
3585 { |
|
3586 regstart[mcnt] = best_regstart[mcnt]; |
|
3587 regend[mcnt] = best_regend[mcnt]; |
|
3588 } |
|
3589 } |
|
3590 } /* d != end_match_2 */ |
|
3591 |
23
|
3592 DEBUG_PRINT1 ("Accepting match.\n"); |
2
|
3593 |
|
3594 /* If caller wants register contents data back, do it. */ |
|
3595 if (regs && !bufp->no_sub) |
|
3596 { |
|
3597 /* Have the register data arrays been allocated? */ |
|
3598 if (bufp->regs_allocated == REGS_UNALLOCATED) |
|
3599 { /* No. So allocate them with malloc. We need one |
|
3600 extra element beyond `num_regs' for the `-1' marker |
|
3601 GNU code uses. */ |
|
3602 regs->num_regs = MAX (RE_NREGS, num_regs + 1); |
|
3603 regs->start = TALLOC (regs->num_regs, regoff_t); |
|
3604 regs->end = TALLOC (regs->num_regs, regoff_t); |
|
3605 if (regs->start == NULL || regs->end == NULL) |
|
3606 return -2; |
|
3607 bufp->regs_allocated = REGS_REALLOCATE; |
|
3608 } |
|
3609 else if (bufp->regs_allocated == REGS_REALLOCATE) |
|
3610 { /* Yes. If we need more elements than were already |
|
3611 allocated, reallocate them. If we need fewer, just |
|
3612 leave it alone. */ |
|
3613 if (regs->num_regs < num_regs + 1) |
|
3614 { |
|
3615 regs->num_regs = num_regs + 1; |
|
3616 RETALLOC (regs->start, regs->num_regs, regoff_t); |
|
3617 RETALLOC (regs->end, regs->num_regs, regoff_t); |
|
3618 if (regs->start == NULL || regs->end == NULL) |
|
3619 return -2; |
|
3620 } |
|
3621 } |
|
3622 else |
54
|
3623 { |
|
3624 /* These braces fend off a "empty body in an else-statement" |
|
3625 warning under GCC when assert expands to nothing. */ |
|
3626 assert (bufp->regs_allocated == REGS_FIXED); |
|
3627 } |
2
|
3628 |
|
3629 /* Convert the pointer data in `regstart' and `regend' to |
|
3630 indices. Register zero has to be set differently, |
|
3631 since we haven't kept track of any info for it. */ |
|
3632 if (regs->num_regs > 0) |
|
3633 { |
|
3634 regs->start[0] = pos; |
169
|
3635 regs->end[0] = (MATCHING_IN_FIRST_STRING |
|
3636 ? ((regoff_t) (d - string1)) |
|
3637 : ((regoff_t) (d - string2 + size1))); |
2
|
3638 } |
|
3639 |
|
3640 /* Go through the first `min (num_regs, regs->num_regs)' |
|
3641 registers, since that is all we initialized. */ |
|
3642 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) |
|
3643 { |
|
3644 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) |
|
3645 regs->start[mcnt] = regs->end[mcnt] = -1; |
|
3646 else |
|
3647 { |
169
|
3648 regs->start[mcnt] |
|
3649 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); |
|
3650 regs->end[mcnt] |
|
3651 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); |
2
|
3652 } |
|
3653 } |
|
3654 |
|
3655 /* If the regs structure we return has more elements than |
|
3656 were in the pattern, set the extra elements to -1. If |
|
3657 we (re)allocated the registers, this is the case, |
|
3658 because we always allocate enough to have at least one |
|
3659 -1 at the end. */ |
|
3660 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) |
|
3661 regs->start[mcnt] = regs->end[mcnt] = -1; |
|
3662 } /* regs && !bufp->no_sub */ |
|
3663 |
|
3664 FREE_VARIABLES (); |
23
|
3665 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
|
3666 nfailure_points_pushed, nfailure_points_popped, |
|
3667 nfailure_points_pushed - nfailure_points_popped); |
|
3668 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
2
|
3669 |
|
3670 mcnt = d - pos - (MATCHING_IN_FIRST_STRING |
|
3671 ? string1 |
|
3672 : string2 - size1); |
|
3673 |
|
3674 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); |
|
3675 |
|
3676 return mcnt; |
|
3677 } |
|
3678 |
|
3679 /* Otherwise match next pattern command. */ |
|
3680 #ifdef SWITCH_ENUM_BUG |
|
3681 switch ((int) ((re_opcode_t) *p++)) |
|
3682 #else |
|
3683 switch ((re_opcode_t) *p++) |
|
3684 #endif |
|
3685 { |
|
3686 /* Ignore these. Used to ignore the n of succeed_n's which |
|
3687 currently have n == 0. */ |
|
3688 case no_op: |
|
3689 DEBUG_PRINT1 ("EXECUTING no_op.\n"); |
|
3690 break; |
|
3691 |
|
3692 |
|
3693 /* Match the next n pattern characters exactly. The following |
|
3694 byte in the pattern defines n, and the n bytes after that |
|
3695 are the characters to match. */ |
|
3696 case exactn: |
|
3697 mcnt = *p++; |
|
3698 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); |
|
3699 |
|
3700 /* This is written out as an if-else so we don't waste time |
|
3701 testing `translate' inside the loop. */ |
|
3702 if (translate) |
|
3703 { |
|
3704 do |
|
3705 { |
|
3706 PREFETCH (); |
|
3707 if (translate[(unsigned char) *d++] != (char) *p++) |
|
3708 goto fail; |
|
3709 } |
|
3710 while (--mcnt); |
|
3711 } |
|
3712 else |
|
3713 { |
|
3714 do |
|
3715 { |
|
3716 PREFETCH (); |
|
3717 if (*d++ != (char) *p++) goto fail; |
|
3718 } |
|
3719 while (--mcnt); |
|
3720 } |
|
3721 SET_REGS_MATCHED (); |
|
3722 break; |
|
3723 |
|
3724 |
|
3725 /* Match any character except possibly a newline or a null. */ |
|
3726 case anychar: |
|
3727 DEBUG_PRINT1 ("EXECUTING anychar.\n"); |
|
3728 |
|
3729 PREFETCH (); |
|
3730 |
|
3731 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') |
|
3732 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) |
|
3733 goto fail; |
|
3734 |
|
3735 SET_REGS_MATCHED (); |
|
3736 DEBUG_PRINT2 (" Matched `%d'.\n", *d); |
|
3737 d++; |
|
3738 break; |
|
3739 |
|
3740 |
|
3741 case charset: |
|
3742 case charset_not: |
|
3743 { |
|
3744 register unsigned char c; |
|
3745 boolean not = (re_opcode_t) *(p - 1) == charset_not; |
|
3746 |
|
3747 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); |
|
3748 |
|
3749 PREFETCH (); |
|
3750 c = TRANSLATE (*d); /* The character to match. */ |
|
3751 |
|
3752 /* Cast to `unsigned' instead of `unsigned char' in case the |
|
3753 bit list is a full 32 bytes long. */ |
|
3754 if (c < (unsigned) (*p * BYTEWIDTH) |
|
3755 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
|
3756 not = !not; |
|
3757 |
|
3758 p += 1 + *p; |
|
3759 |
|
3760 if (!not) goto fail; |
|
3761 |
|
3762 SET_REGS_MATCHED (); |
|
3763 d++; |
|
3764 break; |
|
3765 } |
|
3766 |
|
3767 |
|
3768 /* The beginning of a group is represented by start_memory. |
|
3769 The arguments are the register number in the next byte, and the |
|
3770 number of groups inner to this one in the next. The text |
|
3771 matched within the group is recorded (in the internal |
|
3772 registers data structure) under the register number. */ |
|
3773 case start_memory: |
|
3774 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); |
|
3775 |
|
3776 /* Find out if this group can match the empty string. */ |
|
3777 p1 = p; /* To send to group_match_null_string_p. */ |
|
3778 |
|
3779 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) |
|
3780 REG_MATCH_NULL_STRING_P (reg_info[*p]) |
|
3781 = group_match_null_string_p (&p1, pend, reg_info); |
|
3782 |
|
3783 /* Save the position in the string where we were the last time |
|
3784 we were at this open-group operator in case the group is |
|
3785 operated upon by a repetition operator, e.g., with `(a*)*b' |
|
3786 against `ab'; then we want to ignore where we are now in |
|
3787 the string in case this attempt to match fails. */ |
|
3788 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
|
3789 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] |
|
3790 : regstart[*p]; |
|
3791 DEBUG_PRINT2 (" old_regstart: %d\n", |
|
3792 POINTER_TO_OFFSET (old_regstart[*p])); |
|
3793 |
|
3794 regstart[*p] = d; |
|
3795 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); |
|
3796 |
|
3797 IS_ACTIVE (reg_info[*p]) = 1; |
|
3798 MATCHED_SOMETHING (reg_info[*p]) = 0; |
|
3799 |
|
3800 /* This is the new highest active register. */ |
|
3801 highest_active_reg = *p; |
|
3802 |
|
3803 /* If nothing was active before, this is the new lowest active |
|
3804 register. */ |
|
3805 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
|
3806 lowest_active_reg = *p; |
|
3807 |
|
3808 /* Move past the register number and inner group count. */ |
|
3809 p += 2; |
|
3810 break; |
|
3811 |
|
3812 |
|
3813 /* The stop_memory opcode represents the end of a group. Its |
|
3814 arguments are the same as start_memory's: the register |
|
3815 number, and the number of inner groups. */ |
|
3816 case stop_memory: |
|
3817 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); |
|
3818 |
|
3819 /* We need to save the string position the last time we were at |
|
3820 this close-group operator in case the group is operated |
|
3821 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' |
|
3822 against `aba'; then we want to ignore where we are now in |
|
3823 the string in case this attempt to match fails. */ |
|
3824 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
|
3825 ? REG_UNSET (regend[*p]) ? d : regend[*p] |
|
3826 : regend[*p]; |
|
3827 DEBUG_PRINT2 (" old_regend: %d\n", |
|
3828 POINTER_TO_OFFSET (old_regend[*p])); |
|
3829 |
|
3830 regend[*p] = d; |
|
3831 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); |
|
3832 |
|
3833 /* This register isn't active anymore. */ |
|
3834 IS_ACTIVE (reg_info[*p]) = 0; |
|
3835 |
|
3836 /* If this was the only register active, nothing is active |
|
3837 anymore. */ |
|
3838 if (lowest_active_reg == highest_active_reg) |
|
3839 { |
|
3840 lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
|
3841 highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
|
3842 } |
|
3843 else |
|
3844 { /* We must scan for the new highest active register, since |
|
3845 it isn't necessarily one less than now: consider |
|
3846 (a(b)c(d(e)f)g). When group 3 ends, after the f), the |
|
3847 new highest active register is 1. */ |
|
3848 unsigned char r = *p - 1; |
|
3849 while (r > 0 && !IS_ACTIVE (reg_info[r])) |
|
3850 r--; |
|
3851 |
|
3852 /* If we end up at register zero, that means that we saved |
|
3853 the registers as the result of an `on_failure_jump', not |
|
3854 a `start_memory', and we jumped to past the innermost |
|
3855 `stop_memory'. For example, in ((.)*) we save |
|
3856 registers 1 and 2 as a result of the *, but when we pop |
|
3857 back to the second ), we are at the stop_memory 1. |
|
3858 Thus, nothing is active. */ |
|
3859 if (r == 0) |
|
3860 { |
|
3861 lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
|
3862 highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
|
3863 } |
|
3864 else |
|
3865 highest_active_reg = r; |
|
3866 } |
|
3867 |
|
3868 /* If just failed to match something this time around with a |
|
3869 group that's operated on by a repetition operator, try to |
23
|
3870 force exit from the ``loop'', and restore the register |
2
|
3871 information for this group that we had before trying this |
|
3872 last match. */ |
|
3873 if ((!MATCHED_SOMETHING (reg_info[*p]) |
|
3874 || (re_opcode_t) p[-3] == start_memory) |
|
3875 && (p + 2) < pend) |
|
3876 { |
|
3877 boolean is_a_jump_n = false; |
|
3878 |
|
3879 p1 = p + 2; |
|
3880 mcnt = 0; |
|
3881 switch ((re_opcode_t) *p1++) |
|
3882 { |
|
3883 case jump_n: |
|
3884 is_a_jump_n = true; |
|
3885 case pop_failure_jump: |
|
3886 case maybe_pop_jump: |
|
3887 case jump: |
|
3888 case dummy_failure_jump: |
|
3889 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
3890 if (is_a_jump_n) |
|
3891 p1 += 2; |
|
3892 break; |
|
3893 |
|
3894 default: |
|
3895 /* do nothing */ ; |
|
3896 } |
|
3897 p1 += mcnt; |
|
3898 |
|
3899 /* If the next operation is a jump backwards in the pattern |
|
3900 to an on_failure_jump right before the start_memory |
|
3901 corresponding to this stop_memory, exit from the loop |
|
3902 by forcing a failure after pushing on the stack the |
|
3903 on_failure_jump's jump in the pattern, and d. */ |
|
3904 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump |
|
3905 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) |
|
3906 { |
|
3907 /* If this group ever matched anything, then restore |
|
3908 what its registers were before trying this last |
|
3909 failed match, e.g., with `(a*)*b' against `ab' for |
|
3910 regstart[1], and, e.g., with `((a*)*(b*)*)*' |
|
3911 against `aba' for regend[3]. |
|
3912 |
|
3913 Also restore the registers for inner groups for, |
|
3914 e.g., `((a*)(b*))*' against `aba' (register 3 would |
|
3915 otherwise get trashed). */ |
|
3916 |
|
3917 if (EVER_MATCHED_SOMETHING (reg_info[*p])) |
|
3918 { |
|
3919 unsigned r; |
|
3920 |
|
3921 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; |
|
3922 |
|
3923 /* Restore this and inner groups' (if any) registers. */ |
|
3924 for (r = *p; r < *p + *(p + 1); r++) |
|
3925 { |
|
3926 regstart[r] = old_regstart[r]; |
|
3927 |
|
3928 /* xx why this test? */ |
|
3929 if ((int) old_regend[r] >= (int) regstart[r]) |
|
3930 regend[r] = old_regend[r]; |
|
3931 } |
|
3932 } |
|
3933 p1++; |
|
3934 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
3935 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); |
|
3936 |
|
3937 goto fail; |
|
3938 } |
|
3939 } |
|
3940 |
|
3941 /* Move past the register number and the inner group count. */ |
|
3942 p += 2; |
|
3943 break; |
|
3944 |
|
3945 |
|
3946 /* \<digit> has been turned into a `duplicate' command which is |
|
3947 followed by the numeric value of <digit> as the register number. */ |
|
3948 case duplicate: |
|
3949 { |
|
3950 register const char *d2, *dend2; |
|
3951 int regno = *p++; /* Get which register to match against. */ |
|
3952 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
|
3953 |
|
3954 /* Can't back reference a group which we've never matched. */ |
|
3955 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) |
|
3956 goto fail; |
|
3957 |
|
3958 /* Where in input to try to start matching. */ |
|
3959 d2 = regstart[regno]; |
|
3960 |
|
3961 /* Where to stop matching; if both the place to start and |
|
3962 the place to stop matching are in the same string, then |
|
3963 set to the place to stop, otherwise, for now have to use |
|
3964 the end of the first string. */ |
|
3965 |
|
3966 dend2 = ((FIRST_STRING_P (regstart[regno]) |
|
3967 == FIRST_STRING_P (regend[regno])) |
|
3968 ? regend[regno] : end_match_1); |
|
3969 for (;;) |
|
3970 { |
|
3971 /* If necessary, advance to next segment in register |
|
3972 contents. */ |
|
3973 while (d2 == dend2) |
|
3974 { |
|
3975 if (dend2 == end_match_2) break; |
|
3976 if (dend2 == regend[regno]) break; |
|
3977 |
|
3978 /* End of string1 => advance to string2. */ |
|
3979 d2 = string2; |
|
3980 dend2 = regend[regno]; |
|
3981 } |
|
3982 /* At end of register contents => success */ |
|
3983 if (d2 == dend2) break; |
|
3984 |
|
3985 /* If necessary, advance to next segment in data. */ |
|
3986 PREFETCH (); |
|
3987 |
|
3988 /* How many characters left in this segment to match. */ |
|
3989 mcnt = dend - d; |
|
3990 |
|
3991 /* Want how many consecutive characters we can match in |
|
3992 one shot, so, if necessary, adjust the count. */ |
|
3993 if (mcnt > dend2 - d2) |
|
3994 mcnt = dend2 - d2; |
|
3995 |
|
3996 /* Compare that many; failure if mismatch, else move |
|
3997 past them. */ |
|
3998 if (translate |
|
3999 ? bcmp_translate (d, d2, mcnt, translate) |
|
4000 : bcmp (d, d2, mcnt)) |
|
4001 goto fail; |
|
4002 d += mcnt, d2 += mcnt; |
|
4003 } |
|
4004 } |
|
4005 break; |
|
4006 |
|
4007 |
|
4008 /* begline matches the empty string at the beginning of the string |
|
4009 (unless `not_bol' is set in `bufp'), and, if |
|
4010 `newline_anchor' is set, after newlines. */ |
|
4011 case begline: |
|
4012 DEBUG_PRINT1 ("EXECUTING begline.\n"); |
|
4013 |
23
|
4014 if (AT_STRINGS_BEG (d)) |
2
|
4015 { |
|
4016 if (!bufp->not_bol) break; |
|
4017 } |
|
4018 else if (d[-1] == '\n' && bufp->newline_anchor) |
|
4019 { |
|
4020 break; |
|
4021 } |
|
4022 /* In all other cases, we fail. */ |
|
4023 goto fail; |
|
4024 |
|
4025 |
|
4026 /* endline is the dual of begline. */ |
|
4027 case endline: |
|
4028 DEBUG_PRINT1 ("EXECUTING endline.\n"); |
|
4029 |
23
|
4030 if (AT_STRINGS_END (d)) |
2
|
4031 { |
|
4032 if (!bufp->not_eol) break; |
|
4033 } |
|
4034 |
|
4035 /* We have to ``prefetch'' the next character. */ |
|
4036 else if ((d == end1 ? *string2 : *d) == '\n' |
|
4037 && bufp->newline_anchor) |
|
4038 { |
|
4039 break; |
|
4040 } |
|
4041 goto fail; |
|
4042 |
|
4043 |
|
4044 /* Match at the very beginning of the data. */ |
|
4045 case begbuf: |
|
4046 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); |
23
|
4047 if (AT_STRINGS_BEG (d)) |
2
|
4048 break; |
|
4049 goto fail; |
|
4050 |
|
4051 |
|
4052 /* Match at the very end of the data. */ |
|
4053 case endbuf: |
|
4054 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); |
23
|
4055 if (AT_STRINGS_END (d)) |
2
|
4056 break; |
|
4057 goto fail; |
|
4058 |
|
4059 |
|
4060 /* on_failure_keep_string_jump is used to optimize `.*\n'. It |
|
4061 pushes NULL as the value for the string on the stack. Then |
|
4062 `pop_failure_point' will keep the current value for the |
|
4063 string, instead of restoring it. To see why, consider |
|
4064 matching `foo\nbar' against `.*\n'. The .* matches the foo; |
|
4065 then the . fails against the \n. But the next thing we want |
|
4066 to do is match the \n against the \n; if we restored the |
|
4067 string value, we would be back at the foo. |
|
4068 |
|
4069 Because this is used only in specific cases, we don't need to |
|
4070 check all the things that `on_failure_jump' does, to make |
|
4071 sure the right things get saved on the stack. Hence we don't |
|
4072 share its code. The only reason to push anything on the |
|
4073 stack at all is that otherwise we would have to change |
|
4074 `anychar's code to do something besides goto fail in this |
|
4075 case; that seems worse than this. */ |
|
4076 case on_failure_keep_string_jump: |
|
4077 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); |
|
4078 |
|
4079 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
|
4080 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); |
|
4081 |
|
4082 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); |
|
4083 break; |
|
4084 |
|
4085 |
|
4086 /* Uses of on_failure_jump: |
|
4087 |
|
4088 Each alternative starts with an on_failure_jump that points |
|
4089 to the beginning of the next alternative. Each alternative |
|
4090 except the last ends with a jump that in effect jumps past |
|
4091 the rest of the alternatives. (They really jump to the |
|
4092 ending jump of the following alternative, because tensioning |
|
4093 these jumps is a hassle.) |
|
4094 |
|
4095 Repeats start with an on_failure_jump that points past both |
|
4096 the repetition text and either the following jump or |
|
4097 pop_failure_jump back to this on_failure_jump. */ |
|
4098 case on_failure_jump: |
|
4099 on_failure: |
|
4100 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); |
|
4101 |
|
4102 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
|
4103 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); |
|
4104 |
|
4105 /* If this on_failure_jump comes right before a group (i.e., |
|
4106 the original * applied to a group), save the information |
|
4107 for that group and all inner ones, so that if we fail back |
|
4108 to this point, the group's information will be correct. |
23
|
4109 For example, in \(a*\)*\1, we need the preceding group, |
2
|
4110 and in \(\(a*\)b*\)\2, we need the inner group. */ |
|
4111 |
|
4112 /* We can't use `p' to check ahead because we push |
|
4113 a failure point to `p + mcnt' after we do this. */ |
|
4114 p1 = p; |
|
4115 |
|
4116 /* We need to skip no_op's before we look for the |
|
4117 start_memory in case this on_failure_jump is happening as |
|
4118 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 |
|
4119 against aba. */ |
|
4120 while (p1 < pend && (re_opcode_t) *p1 == no_op) |
|
4121 p1++; |
|
4122 |
|
4123 if (p1 < pend && (re_opcode_t) *p1 == start_memory) |
|
4124 { |
|
4125 /* We have a new highest active register now. This will |
|
4126 get reset at the start_memory we are about to get to, |
|
4127 but we will have saved all the registers relevant to |
|
4128 this repetition op, as described above. */ |
|
4129 highest_active_reg = *(p1 + 1) + *(p1 + 2); |
|
4130 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
|
4131 lowest_active_reg = *(p1 + 1); |
|
4132 } |
|
4133 |
|
4134 DEBUG_PRINT1 (":\n"); |
|
4135 PUSH_FAILURE_POINT (p + mcnt, d, -2); |
|
4136 break; |
|
4137 |
|
4138 |
23
|
4139 /* A smart repeat ends with `maybe_pop_jump'. |
|
4140 We change it to either `pop_failure_jump' or `jump'. */ |
2
|
4141 case maybe_pop_jump: |
|
4142 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
|
4143 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); |
|
4144 { |
|
4145 register unsigned char *p2 = p; |
|
4146 |
|
4147 /* Compare the beginning of the repeat with what in the |
|
4148 pattern follows its end. If we can establish that there |
|
4149 is nothing that they would both match, i.e., that we |
|
4150 would have to backtrack because of (as in, e.g., `a*a') |
|
4151 then we can change to pop_failure_jump, because we'll |
|
4152 never have to backtrack. |
|
4153 |
|
4154 This is not true in the case of alternatives: in |
|
4155 `(a|ab)*' we do need to backtrack to the `ab' alternative |
|
4156 (e.g., if the string was `ab'). But instead of trying to |
|
4157 detect that here, the alternative has put on a dummy |
|
4158 failure point which is what we will end up popping. */ |
|
4159 |
92
|
4160 /* Skip over open/close-group commands. |
|
4161 If what follows this loop is a ...+ construct, |
|
4162 look at what begins its body, since we will have to |
|
4163 match at least one of that. */ |
|
4164 while (1) |
|
4165 { |
|
4166 if (p2 + 2 < pend |
|
4167 && ((re_opcode_t) *p2 == stop_memory |
|
4168 || (re_opcode_t) *p2 == start_memory)) |
|
4169 p2 += 3; |
|
4170 else if (p2 + 6 < pend |
|
4171 && (re_opcode_t) *p2 == dummy_failure_jump) |
|
4172 p2 += 6; |
|
4173 else |
|
4174 break; |
|
4175 } |
|
4176 |
|
4177 p1 = p + mcnt; |
|
4178 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding |
|
4179 to the `maybe_finalize_jump' of this case. Examine what |
|
4180 follows. */ |
2
|
4181 |
|
4182 /* If we're at the end of the pattern, we can change. */ |
|
4183 if (p2 == pend) |
29
|
4184 { |
|
4185 /* Consider what happens when matching ":\(.*\)" |
|
4186 against ":/". I don't really understand this code |
|
4187 yet. */ |
2
|
4188 p[-3] = (unsigned char) pop_failure_jump; |
29
|
4189 DEBUG_PRINT1 |
|
4190 (" End of pattern: change to `pop_failure_jump'.\n"); |
2
|
4191 } |
|
4192 |
|
4193 else if ((re_opcode_t) *p2 == exactn |
|
4194 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) |
|
4195 { |
|
4196 register unsigned char c |
|
4197 = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
92
|
4198 |
2
|
4199 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) |
23
|
4200 { |
|
4201 p[-3] = (unsigned char) pop_failure_jump; |
|
4202 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
|
4203 c, p1[5]); |
|
4204 } |
|
4205 |
2
|
4206 else if ((re_opcode_t) p1[3] == charset |
|
4207 || (re_opcode_t) p1[3] == charset_not) |
|
4208 { |
|
4209 int not = (re_opcode_t) p1[3] == charset_not; |
|
4210 |
|
4211 if (c < (unsigned char) (p1[4] * BYTEWIDTH) |
|
4212 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
|
4213 not = !not; |
|
4214 |
|
4215 /* `not' is equal to 1 if c would match, which means |
|
4216 that we can't change to pop_failure_jump. */ |
|
4217 if (!not) |
|
4218 { |
|
4219 p[-3] = (unsigned char) pop_failure_jump; |
23
|
4220 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
2
|
4221 } |
|
4222 } |
|
4223 } |
92
|
4224 else if ((re_opcode_t) *p2 == charset) |
|
4225 { |
|
4226 register unsigned char c |
|
4227 = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
|
4228 |
|
4229 if ((re_opcode_t) p1[3] == exactn |
|
4230 && ! (p2[1] * BYTEWIDTH > p1[4] |
|
4231 && (p2[1 + p1[4] / BYTEWIDTH] |
|
4232 & (1 << (p1[4] % BYTEWIDTH))))) |
|
4233 { |
|
4234 p[-3] = (unsigned char) pop_failure_jump; |
|
4235 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
|
4236 c, p1[5]); |
|
4237 } |
|
4238 |
|
4239 else if ((re_opcode_t) p1[3] == charset_not) |
|
4240 { |
|
4241 int idx; |
|
4242 /* We win if the charset_not inside the loop |
|
4243 lists every character listed in the charset after. */ |
|
4244 for (idx = 0; idx < p2[1]; idx++) |
|
4245 if (! (p2[2 + idx] == 0 |
|
4246 || (idx < p1[4] |
|
4247 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) |
|
4248 break; |
|
4249 |
|
4250 if (idx == p2[1]) |
|
4251 { |
|
4252 p[-3] = (unsigned char) pop_failure_jump; |
|
4253 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
|
4254 } |
|
4255 } |
|
4256 else if ((re_opcode_t) p1[3] == charset) |
|
4257 { |
|
4258 int idx; |
|
4259 /* We win if the charset inside the loop |
|
4260 has no overlap with the one after the loop. */ |
|
4261 for (idx = 0; idx < p2[1] && idx < p1[4]; idx++) |
|
4262 if ((p2[2 + idx] & p1[5 + idx]) != 0) |
|
4263 break; |
|
4264 |
|
4265 if (idx == p2[1] || idx == p1[4]) |
|
4266 { |
|
4267 p[-3] = (unsigned char) pop_failure_jump; |
|
4268 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
|
4269 } |
|
4270 } |
|
4271 } |
2
|
4272 } |
|
4273 p -= 2; /* Point at relative address again. */ |
|
4274 if ((re_opcode_t) p[-1] != pop_failure_jump) |
|
4275 { |
|
4276 p[-1] = (unsigned char) jump; |
23
|
4277 DEBUG_PRINT1 (" Match => jump.\n"); |
2
|
4278 goto unconditional_jump; |
|
4279 } |
|
4280 /* Note fall through. */ |
|
4281 |
|
4282 |
|
4283 /* The end of a simple repeat has a pop_failure_jump back to |
|
4284 its matching on_failure_jump, where the latter will push a |
|
4285 failure point. The pop_failure_jump takes off failure |
|
4286 points put on by this pop_failure_jump's matching |
|
4287 on_failure_jump; we got through the pattern to here from the |
|
4288 matching on_failure_jump, so didn't fail. */ |
|
4289 case pop_failure_jump: |
|
4290 { |
|
4291 /* We need to pass separate storage for the lowest and |
|
4292 highest registers, even though we don't care about the |
|
4293 actual values. Otherwise, we will restore only one |
|
4294 register from the stack, since lowest will == highest in |
|
4295 `pop_failure_point'. */ |
|
4296 unsigned dummy_low_reg, dummy_high_reg; |
|
4297 unsigned char *pdummy; |
|
4298 const char *sdummy; |
|
4299 |
|
4300 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); |
|
4301 POP_FAILURE_POINT (sdummy, pdummy, |
|
4302 dummy_low_reg, dummy_high_reg, |
|
4303 reg_dummy, reg_dummy, reg_info_dummy); |
|
4304 } |
|
4305 /* Note fall through. */ |
|
4306 |
|
4307 |
|
4308 /* Unconditionally jump (without popping any failure points). */ |
|
4309 case jump: |
|
4310 unconditional_jump: |
|
4311 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ |
|
4312 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); |
|
4313 p += mcnt; /* Do the jump. */ |
|
4314 DEBUG_PRINT2 ("(to 0x%x).\n", p); |
|
4315 break; |
|
4316 |
|
4317 |
|
4318 /* We need this opcode so we can detect where alternatives end |
|
4319 in `group_match_null_string_p' et al. */ |
|
4320 case jump_past_alt: |
|
4321 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); |
|
4322 goto unconditional_jump; |
|
4323 |
|
4324 |
|
4325 /* Normally, the on_failure_jump pushes a failure point, which |
|
4326 then gets popped at pop_failure_jump. We will end up at |
|
4327 pop_failure_jump, also, and with a pattern of, say, `a+', we |
|
4328 are skipping over the on_failure_jump, so we have to push |
|
4329 something meaningless for pop_failure_jump to pop. */ |
|
4330 case dummy_failure_jump: |
|
4331 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); |
|
4332 /* It doesn't matter what we push for the string here. What |
|
4333 the code at `fail' tests is the value for the pattern. */ |
|
4334 PUSH_FAILURE_POINT (0, 0, -2); |
|
4335 goto unconditional_jump; |
|
4336 |
|
4337 |
|
4338 /* At the end of an alternative, we need to push a dummy failure |
23
|
4339 point in case we are followed by a `pop_failure_jump', because |
2
|
4340 we don't want the failure point for the alternative to be |
|
4341 popped. For example, matching `(a|ab)*' against `aab' |
|
4342 requires that we match the `ab' alternative. */ |
|
4343 case push_dummy_failure: |
|
4344 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); |
|
4345 /* See comments just above at `dummy_failure_jump' about the |
|
4346 two zeroes. */ |
|
4347 PUSH_FAILURE_POINT (0, 0, -2); |
|
4348 break; |
|
4349 |
|
4350 /* Have to succeed matching what follows at least n times. |
|
4351 After that, handle like `on_failure_jump'. */ |
|
4352 case succeed_n: |
|
4353 EXTRACT_NUMBER (mcnt, p + 2); |
|
4354 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); |
|
4355 |
|
4356 assert (mcnt >= 0); |
|
4357 /* Originally, this is how many times we HAVE to succeed. */ |
|
4358 if (mcnt > 0) |
|
4359 { |
|
4360 mcnt--; |
|
4361 p += 2; |
|
4362 STORE_NUMBER_AND_INCR (p, mcnt); |
|
4363 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); |
|
4364 } |
|
4365 else if (mcnt == 0) |
|
4366 { |
|
4367 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); |
|
4368 p[2] = (unsigned char) no_op; |
|
4369 p[3] = (unsigned char) no_op; |
|
4370 goto on_failure; |
|
4371 } |
|
4372 break; |
|
4373 |
|
4374 case jump_n: |
|
4375 EXTRACT_NUMBER (mcnt, p + 2); |
|
4376 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); |
|
4377 |
|
4378 /* Originally, this is how many times we CAN jump. */ |
|
4379 if (mcnt) |
|
4380 { |
|
4381 mcnt--; |
|
4382 STORE_NUMBER (p + 2, mcnt); |
|
4383 goto unconditional_jump; |
|
4384 } |
|
4385 /* If don't have to jump any more, skip over the rest of command. */ |
|
4386 else |
|
4387 p += 4; |
|
4388 break; |
|
4389 |
|
4390 case set_number_at: |
|
4391 { |
|
4392 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); |
|
4393 |
|
4394 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
|
4395 p1 = p + mcnt; |
|
4396 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
|
4397 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); |
|
4398 STORE_NUMBER (p1, mcnt); |
|
4399 break; |
|
4400 } |
|
4401 |
|
4402 case wordbound: |
|
4403 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); |
|
4404 if (AT_WORD_BOUNDARY (d)) |
|
4405 break; |
|
4406 goto fail; |
|
4407 |
|
4408 case notwordbound: |
|
4409 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); |
|
4410 if (AT_WORD_BOUNDARY (d)) |
|
4411 goto fail; |
|
4412 break; |
|
4413 |
|
4414 case wordbeg: |
|
4415 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); |
23
|
4416 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) |
2
|
4417 break; |
|
4418 goto fail; |
|
4419 |
|
4420 case wordend: |
|
4421 DEBUG_PRINT1 ("EXECUTING wordend.\n"); |
23
|
4422 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) |
|
4423 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) |
2
|
4424 break; |
|
4425 goto fail; |
|
4426 |
|
4427 #ifdef emacs |
|
4428 #ifdef emacs19 |
|
4429 case before_dot: |
|
4430 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); |
|
4431 if (PTR_CHAR_POS ((unsigned char *) d) >= point) |
|
4432 goto fail; |
|
4433 break; |
|
4434 |
|
4435 case at_dot: |
|
4436 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
|
4437 if (PTR_CHAR_POS ((unsigned char *) d) != point) |
|
4438 goto fail; |
|
4439 break; |
|
4440 |
|
4441 case after_dot: |
|
4442 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); |
|
4443 if (PTR_CHAR_POS ((unsigned char *) d) <= point) |
|
4444 goto fail; |
|
4445 break; |
|
4446 #else /* not emacs19 */ |
|
4447 case at_dot: |
|
4448 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
|
4449 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point) |
|
4450 goto fail; |
|
4451 break; |
|
4452 #endif /* not emacs19 */ |
|
4453 |
|
4454 case syntaxspec: |
|
4455 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); |
|
4456 mcnt = *p++; |
|
4457 goto matchsyntax; |
|
4458 |
|
4459 case wordchar: |
23
|
4460 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
2
|
4461 mcnt = (int) Sword; |
|
4462 matchsyntax: |
|
4463 PREFETCH (); |
23
|
4464 if (SYNTAX (*d++) != (enum syntaxcode) mcnt) |
|
4465 goto fail; |
2
|
4466 SET_REGS_MATCHED (); |
|
4467 break; |
|
4468 |
|
4469 case notsyntaxspec: |
|
4470 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); |
|
4471 mcnt = *p++; |
|
4472 goto matchnotsyntax; |
|
4473 |
|
4474 case notwordchar: |
23
|
4475 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); |
2
|
4476 mcnt = (int) Sword; |
23
|
4477 matchnotsyntax: |
2
|
4478 PREFETCH (); |
23
|
4479 if (SYNTAX (*d++) == (enum syntaxcode) mcnt) |
|
4480 goto fail; |
2
|
4481 SET_REGS_MATCHED (); |
|
4482 break; |
|
4483 |
|
4484 #else /* not emacs */ |
|
4485 case wordchar: |
|
4486 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); |
|
4487 PREFETCH (); |
23
|
4488 if (!WORDCHAR_P (d)) |
2
|
4489 goto fail; |
|
4490 SET_REGS_MATCHED (); |
23
|
4491 d++; |
2
|
4492 break; |
|
4493 |
|
4494 case notwordchar: |
|
4495 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); |
|
4496 PREFETCH (); |
23
|
4497 if (WORDCHAR_P (d)) |
2
|
4498 goto fail; |
|
4499 SET_REGS_MATCHED (); |
23
|
4500 d++; |
2
|
4501 break; |
|
4502 #endif /* not emacs */ |
|
4503 |
|
4504 default: |
|
4505 abort (); |
|
4506 } |
|
4507 continue; /* Successfully executed one pattern command; keep going. */ |
|
4508 |
|
4509 |
|
4510 /* We goto here if a matching operation fails. */ |
|
4511 fail: |
|
4512 if (!FAIL_STACK_EMPTY ()) |
|
4513 { /* A restart point is known. Restore to that state. */ |
|
4514 DEBUG_PRINT1 ("\nFAIL:\n"); |
|
4515 POP_FAILURE_POINT (d, p, |
|
4516 lowest_active_reg, highest_active_reg, |
|
4517 regstart, regend, reg_info); |
|
4518 |
|
4519 /* If this failure point is a dummy, try the next one. */ |
|
4520 if (!p) |
|
4521 goto fail; |
|
4522 |
|
4523 /* If we failed to the end of the pattern, don't examine *p. */ |
|
4524 assert (p <= pend); |
|
4525 if (p < pend) |
|
4526 { |
|
4527 boolean is_a_jump_n = false; |
|
4528 |
|
4529 /* If failed to a backwards jump that's part of a repetition |
|
4530 loop, need to pop this failure point and use the next one. */ |
|
4531 switch ((re_opcode_t) *p) |
|
4532 { |
|
4533 case jump_n: |
|
4534 is_a_jump_n = true; |
|
4535 case maybe_pop_jump: |
|
4536 case pop_failure_jump: |
|
4537 case jump: |
|
4538 p1 = p + 1; |
|
4539 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
4540 p1 += mcnt; |
|
4541 |
|
4542 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) |
|
4543 || (!is_a_jump_n |
|
4544 && (re_opcode_t) *p1 == on_failure_jump)) |
|
4545 goto fail; |
|
4546 break; |
|
4547 default: |
|
4548 /* do nothing */ ; |
|
4549 } |
|
4550 } |
|
4551 |
|
4552 if (d >= string1 && d <= end1) |
|
4553 dend = end_match_1; |
|
4554 } |
|
4555 else |
|
4556 break; /* Matching at this starting point really fails. */ |
|
4557 } /* for (;;) */ |
|
4558 |
|
4559 if (best_regs_set) |
|
4560 goto restore_best_regs; |
|
4561 |
|
4562 FREE_VARIABLES (); |
|
4563 |
|
4564 return -1; /* Failure to match. */ |
|
4565 } /* re_match_2 */ |
|
4566 |
|
4567 /* Subroutine definitions for re_match_2. */ |
|
4568 |
|
4569 |
|
4570 /* We are passed P pointing to a register number after a start_memory. |
|
4571 |
|
4572 Return true if the pattern up to the corresponding stop_memory can |
|
4573 match the empty string, and false otherwise. |
|
4574 |
|
4575 If we find the matching stop_memory, sets P to point to one past its number. |
|
4576 Otherwise, sets P to an undefined byte less than or equal to END. |
|
4577 |
|
4578 We don't handle duplicates properly (yet). */ |
|
4579 |
|
4580 static boolean |
|
4581 group_match_null_string_p (p, end, reg_info) |
|
4582 unsigned char **p, *end; |
|
4583 register_info_type *reg_info; |
|
4584 { |
|
4585 int mcnt; |
|
4586 /* Point to after the args to the start_memory. */ |
|
4587 unsigned char *p1 = *p + 2; |
|
4588 |
|
4589 while (p1 < end) |
|
4590 { |
|
4591 /* Skip over opcodes that can match nothing, and return true or |
|
4592 false, as appropriate, when we get to one that can't, or to the |
|
4593 matching stop_memory. */ |
|
4594 |
|
4595 switch ((re_opcode_t) *p1) |
|
4596 { |
|
4597 /* Could be either a loop or a series of alternatives. */ |
|
4598 case on_failure_jump: |
|
4599 p1++; |
|
4600 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
4601 |
|
4602 /* If the next operation is not a jump backwards in the |
|
4603 pattern. */ |
|
4604 |
|
4605 if (mcnt >= 0) |
|
4606 { |
|
4607 /* Go through the on_failure_jumps of the alternatives, |
|
4608 seeing if any of the alternatives cannot match nothing. |
|
4609 The last alternative starts with only a jump, |
|
4610 whereas the rest start with on_failure_jump and end |
|
4611 with a jump, e.g., here is the pattern for `a|b|c': |
|
4612 |
|
4613 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 |
|
4614 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 |
|
4615 /exactn/1/c |
|
4616 |
|
4617 So, we have to first go through the first (n-1) |
|
4618 alternatives and then deal with the last one separately. */ |
|
4619 |
|
4620 |
|
4621 /* Deal with the first (n-1) alternatives, which start |
|
4622 with an on_failure_jump (see above) that jumps to right |
|
4623 past a jump_past_alt. */ |
|
4624 |
|
4625 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) |
|
4626 { |
|
4627 /* `mcnt' holds how many bytes long the alternative |
|
4628 is, including the ending `jump_past_alt' and |
|
4629 its number. */ |
|
4630 |
|
4631 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, |
|
4632 reg_info)) |
|
4633 return false; |
|
4634 |
|
4635 /* Move to right after this alternative, including the |
|
4636 jump_past_alt. */ |
|
4637 p1 += mcnt; |
|
4638 |
|
4639 /* Break if it's the beginning of an n-th alternative |
|
4640 that doesn't begin with an on_failure_jump. */ |
|
4641 if ((re_opcode_t) *p1 != on_failure_jump) |
|
4642 break; |
|
4643 |
|
4644 /* Still have to check that it's not an n-th |
|
4645 alternative that starts with an on_failure_jump. */ |
|
4646 p1++; |
|
4647 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
4648 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) |
|
4649 { |
|
4650 /* Get to the beginning of the n-th alternative. */ |
|
4651 p1 -= 3; |
|
4652 break; |
|
4653 } |
|
4654 } |
|
4655 |
|
4656 /* Deal with the last alternative: go back and get number |
|
4657 of the `jump_past_alt' just before it. `mcnt' contains |
|
4658 the length of the alternative. */ |
|
4659 EXTRACT_NUMBER (mcnt, p1 - 2); |
|
4660 |
|
4661 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) |
|
4662 return false; |
|
4663 |
|
4664 p1 += mcnt; /* Get past the n-th alternative. */ |
|
4665 } /* if mcnt > 0 */ |
|
4666 break; |
|
4667 |
|
4668 |
|
4669 case stop_memory: |
|
4670 assert (p1[1] == **p); |
|
4671 *p = p1 + 2; |
|
4672 return true; |
|
4673 |
|
4674 |
|
4675 default: |
|
4676 if (!common_op_match_null_string_p (&p1, end, reg_info)) |
|
4677 return false; |
|
4678 } |
|
4679 } /* while p1 < end */ |
|
4680 |
|
4681 return false; |
|
4682 } /* group_match_null_string_p */ |
|
4683 |
|
4684 |
|
4685 /* Similar to group_match_null_string_p, but doesn't deal with alternatives: |
|
4686 It expects P to be the first byte of a single alternative and END one |
|
4687 byte past the last. The alternative can contain groups. */ |
|
4688 |
|
4689 static boolean |
|
4690 alt_match_null_string_p (p, end, reg_info) |
|
4691 unsigned char *p, *end; |
|
4692 register_info_type *reg_info; |
|
4693 { |
|
4694 int mcnt; |
|
4695 unsigned char *p1 = p; |
|
4696 |
|
4697 while (p1 < end) |
|
4698 { |
|
4699 /* Skip over opcodes that can match nothing, and break when we get |
|
4700 to one that can't. */ |
|
4701 |
|
4702 switch ((re_opcode_t) *p1) |
|
4703 { |
|
4704 /* It's a loop. */ |
|
4705 case on_failure_jump: |
|
4706 p1++; |
|
4707 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
4708 p1 += mcnt; |
|
4709 break; |
|
4710 |
|
4711 default: |
|
4712 if (!common_op_match_null_string_p (&p1, end, reg_info)) |
|
4713 return false; |
|
4714 } |
|
4715 } /* while p1 < end */ |
|
4716 |
|
4717 return true; |
|
4718 } /* alt_match_null_string_p */ |
|
4719 |
|
4720 |
|
4721 /* Deals with the ops common to group_match_null_string_p and |
|
4722 alt_match_null_string_p. |
|
4723 |
|
4724 Sets P to one after the op and its arguments, if any. */ |
|
4725 |
|
4726 static boolean |
|
4727 common_op_match_null_string_p (p, end, reg_info) |
|
4728 unsigned char **p, *end; |
|
4729 register_info_type *reg_info; |
|
4730 { |
|
4731 int mcnt; |
|
4732 boolean ret; |
|
4733 int reg_no; |
|
4734 unsigned char *p1 = *p; |
|
4735 |
|
4736 switch ((re_opcode_t) *p1++) |
|
4737 { |
|
4738 case no_op: |
|
4739 case begline: |
|
4740 case endline: |
|
4741 case begbuf: |
|
4742 case endbuf: |
|
4743 case wordbeg: |
|
4744 case wordend: |
|
4745 case wordbound: |
|
4746 case notwordbound: |
|
4747 #ifdef emacs |
|
4748 case before_dot: |
|
4749 case at_dot: |
|
4750 case after_dot: |
|
4751 #endif |
|
4752 break; |
|
4753 |
|
4754 case start_memory: |
|
4755 reg_no = *p1; |
|
4756 assert (reg_no > 0 && reg_no <= MAX_REGNUM); |
|
4757 ret = group_match_null_string_p (&p1, end, reg_info); |
|
4758 |
|
4759 /* Have to set this here in case we're checking a group which |
|
4760 contains a group and a back reference to it. */ |
|
4761 |
|
4762 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) |
|
4763 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; |
|
4764 |
|
4765 if (!ret) |
|
4766 return false; |
|
4767 break; |
|
4768 |
|
4769 /* If this is an optimized succeed_n for zero times, make the jump. */ |
|
4770 case jump: |
|
4771 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
4772 if (mcnt >= 0) |
|
4773 p1 += mcnt; |
|
4774 else |
|
4775 return false; |
|
4776 break; |
|
4777 |
|
4778 case succeed_n: |
|
4779 /* Get to the number of times to succeed. */ |
|
4780 p1 += 2; |
|
4781 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
4782 |
|
4783 if (mcnt == 0) |
|
4784 { |
|
4785 p1 -= 4; |
|
4786 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
|
4787 p1 += mcnt; |
|
4788 } |
|
4789 else |
|
4790 return false; |
|
4791 break; |
|
4792 |
|
4793 case duplicate: |
|
4794 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) |
|
4795 return false; |
|
4796 break; |
|
4797 |
|
4798 case set_number_at: |
|
4799 p1 += 4; |
|
4800 |
|
4801 default: |
|
4802 /* All other opcodes mean we cannot match the empty string. */ |
|
4803 return false; |
|
4804 } |
|
4805 |
|
4806 *p = p1; |
|
4807 return true; |
|
4808 } /* common_op_match_null_string_p */ |
|
4809 |
|
4810 |
|
4811 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN |
|
4812 bytes; nonzero otherwise. */ |
|
4813 |
|
4814 static int |
|
4815 bcmp_translate (s1, s2, len, translate) |
|
4816 unsigned char *s1, *s2; |
|
4817 register int len; |
|
4818 char *translate; |
|
4819 { |
|
4820 register unsigned char *p1 = s1, *p2 = s2; |
|
4821 while (len) |
|
4822 { |
|
4823 if (translate[*p1++] != translate[*p2++]) return 1; |
|
4824 len--; |
|
4825 } |
|
4826 return 0; |
|
4827 } |
|
4828 |
|
4829 /* Entry points for GNU code. */ |
|
4830 |
|
4831 /* re_compile_pattern is the GNU regular expression compiler: it |
|
4832 compiles PATTERN (of length SIZE) and puts the result in BUFP. |
|
4833 Returns 0 if the pattern was valid, otherwise an error string. |
|
4834 |
|
4835 Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
|
4836 are set in BUFP on entry. |
|
4837 |
|
4838 We call regex_compile to do the actual compilation. */ |
|
4839 |
|
4840 const char * |
|
4841 re_compile_pattern (pattern, length, bufp) |
|
4842 const char *pattern; |
|
4843 int length; |
|
4844 struct re_pattern_buffer *bufp; |
|
4845 { |
|
4846 reg_errcode_t ret; |
|
4847 |
|
4848 /* GNU code is written to assume at least RE_NREGS registers will be set |
|
4849 (and at least one extra will be -1). */ |
|
4850 bufp->regs_allocated = REGS_UNALLOCATED; |
|
4851 |
|
4852 /* And GNU code determines whether or not to get register information |
|
4853 by passing null for the REGS argument to re_match, etc., not by |
|
4854 setting no_sub. */ |
|
4855 bufp->no_sub = 0; |
|
4856 |
|
4857 /* Match anchors at newline. */ |
|
4858 bufp->newline_anchor = 1; |
|
4859 |
|
4860 ret = regex_compile (pattern, length, re_syntax_options, bufp); |
|
4861 |
|
4862 return re_error_msg[(int) ret]; |
|
4863 } |
|
4864 |
|
4865 /* Entry points compatible with 4.2 BSD regex library. We don't define |
|
4866 them if this is an Emacs or POSIX compilation. */ |
|
4867 |
|
4868 #if !defined (emacs) && !defined (_POSIX_SOURCE) |
|
4869 |
|
4870 /* BSD has one and only one pattern buffer. */ |
|
4871 static struct re_pattern_buffer re_comp_buf; |
|
4872 |
|
4873 char * |
|
4874 re_comp (s) |
|
4875 const char *s; |
|
4876 { |
|
4877 reg_errcode_t ret; |
|
4878 |
|
4879 if (!s) |
|
4880 { |
|
4881 if (!re_comp_buf.buffer) |
|
4882 return "No previous regular expression"; |
|
4883 return 0; |
|
4884 } |
|
4885 |
|
4886 if (!re_comp_buf.buffer) |
|
4887 { |
|
4888 re_comp_buf.buffer = (unsigned char *) malloc (200); |
|
4889 if (re_comp_buf.buffer == NULL) |
|
4890 return "Memory exhausted"; |
|
4891 re_comp_buf.allocated = 200; |
|
4892 |
|
4893 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); |
|
4894 if (re_comp_buf.fastmap == NULL) |
|
4895 return "Memory exhausted"; |
|
4896 } |
|
4897 |
|
4898 /* Since `re_exec' always passes NULL for the `regs' argument, we |
|
4899 don't need to initialize the pattern buffer fields which affect it. */ |
|
4900 |
|
4901 /* Match anchors at newlines. */ |
|
4902 re_comp_buf.newline_anchor = 1; |
|
4903 |
|
4904 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); |
|
4905 |
|
4906 /* Yes, we're discarding `const' here. */ |
|
4907 return (char *) re_error_msg[(int) ret]; |
|
4908 } |
|
4909 |
|
4910 |
|
4911 int |
|
4912 re_exec (s) |
|
4913 const char *s; |
|
4914 { |
|
4915 const int len = strlen (s); |
|
4916 return |
|
4917 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); |
|
4918 } |
|
4919 #endif /* not emacs and not _POSIX_SOURCE */ |
|
4920 |
|
4921 /* POSIX.2 functions. Don't define these for Emacs. */ |
|
4922 |
|
4923 #ifndef emacs |
|
4924 |
|
4925 /* regcomp takes a regular expression as a string and compiles it. |
|
4926 |
|
4927 PREG is a regex_t *. We do not expect any fields to be initialized, |
|
4928 since POSIX says we shouldn't. Thus, we set |
|
4929 |
|
4930 `buffer' to the compiled pattern; |
|
4931 `used' to the length of the compiled pattern; |
|
4932 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
|
4933 REG_EXTENDED bit in CFLAGS is set; otherwise, to |
|
4934 RE_SYNTAX_POSIX_BASIC; |
|
4935 `newline_anchor' to REG_NEWLINE being set in CFLAGS; |
|
4936 `fastmap' and `fastmap_accurate' to zero; |
|
4937 `re_nsub' to the number of subexpressions in PATTERN. |
|
4938 |
|
4939 PATTERN is the address of the pattern string. |
|
4940 |
|
4941 CFLAGS is a series of bits which affect compilation. |
|
4942 |
|
4943 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we |
|
4944 use POSIX basic syntax. |
|
4945 |
|
4946 If REG_NEWLINE is set, then . and [^...] don't match newline. |
|
4947 Also, regexec will try a match beginning after every newline. |
|
4948 |
|
4949 If REG_ICASE is set, then we considers upper- and lowercase |
|
4950 versions of letters to be equivalent when matching. |
|
4951 |
|
4952 If REG_NOSUB is set, then when PREG is passed to regexec, that |
|
4953 routine will report only success or failure, and nothing about the |
|
4954 registers. |
|
4955 |
|
4956 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
|
4957 the return codes and their meanings.) */ |
|
4958 |
|
4959 int |
|
4960 regcomp (preg, pattern, cflags) |
|
4961 regex_t *preg; |
|
4962 const char *pattern; |
|
4963 int cflags; |
|
4964 { |
|
4965 reg_errcode_t ret; |
|
4966 unsigned syntax |
25
|
4967 = (cflags & REG_EXTENDED) ? |
|
4968 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; |
2
|
4969 |
|
4970 /* regex_compile will allocate the space for the compiled pattern. */ |
|
4971 preg->buffer = 0; |
25
|
4972 preg->allocated = 0; |
84
|
4973 preg->used = 0; |
2
|
4974 |
|
4975 /* Don't bother to use a fastmap when searching. This simplifies the |
|
4976 REG_NEWLINE case: if we used a fastmap, we'd have to put all the |
|
4977 characters after newlines into the fastmap. This way, we just try |
|
4978 every character. */ |
|
4979 preg->fastmap = 0; |
|
4980 |
|
4981 if (cflags & REG_ICASE) |
|
4982 { |
|
4983 unsigned i; |
|
4984 |
|
4985 preg->translate = (char *) malloc (CHAR_SET_SIZE); |
|
4986 if (preg->translate == NULL) |
|
4987 return (int) REG_ESPACE; |
|
4988 |
|
4989 /* Map uppercase characters to corresponding lowercase ones. */ |
|
4990 for (i = 0; i < CHAR_SET_SIZE; i++) |
28
|
4991 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; |
2
|
4992 } |
|
4993 else |
|
4994 preg->translate = NULL; |
|
4995 |
|
4996 /* If REG_NEWLINE is set, newlines are treated differently. */ |
|
4997 if (cflags & REG_NEWLINE) |
|
4998 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
|
4999 syntax &= ~RE_DOT_NEWLINE; |
|
5000 syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
|
5001 /* It also changes the matching behavior. */ |
|
5002 preg->newline_anchor = 1; |
|
5003 } |
|
5004 else |
|
5005 preg->newline_anchor = 0; |
|
5006 |
|
5007 preg->no_sub = !!(cflags & REG_NOSUB); |
|
5008 |
|
5009 /* POSIX says a null character in the pattern terminates it, so we |
|
5010 can use strlen here in compiling the pattern. */ |
|
5011 ret = regex_compile (pattern, strlen (pattern), syntax, preg); |
|
5012 |
|
5013 /* POSIX doesn't distinguish between an unmatched open-group and an |
|
5014 unmatched close-group: both are REG_EPAREN. */ |
|
5015 if (ret == REG_ERPAREN) ret = REG_EPAREN; |
|
5016 |
|
5017 return (int) ret; |
|
5018 } |
|
5019 |
|
5020 |
|
5021 /* regexec searches for a given pattern, specified by PREG, in the |
|
5022 string STRING. |
|
5023 |
|
5024 If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
|
5025 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
|
5026 least NMATCH elements, and we set them to the offsets of the |
|
5027 corresponding matched substrings. |
|
5028 |
|
5029 EFLAGS specifies `execution flags' which affect matching: if |
|
5030 REG_NOTBOL is set, then ^ does not match at the beginning of the |
|
5031 string; if REG_NOTEOL is set, then $ does not match at the end. |
|
5032 |
|
5033 We return 0 if we find a match and REG_NOMATCH if not. */ |
|
5034 |
|
5035 int |
|
5036 regexec (preg, string, nmatch, pmatch, eflags) |
|
5037 const regex_t *preg; |
|
5038 const char *string; |
|
5039 size_t nmatch; |
|
5040 regmatch_t pmatch[]; |
|
5041 int eflags; |
|
5042 { |
|
5043 int ret; |
|
5044 struct re_registers regs; |
|
5045 regex_t private_preg; |
|
5046 int len = strlen (string); |
|
5047 boolean want_reg_info = !preg->no_sub && nmatch > 0; |
|
5048 |
|
5049 private_preg = *preg; |
|
5050 |
|
5051 private_preg.not_bol = !!(eflags & REG_NOTBOL); |
|
5052 private_preg.not_eol = !!(eflags & REG_NOTEOL); |
|
5053 |
|
5054 /* The user has told us exactly how many registers to return |
|
5055 information about, via `nmatch'. We have to pass that on to the |
|
5056 matching routines. */ |
|
5057 private_preg.regs_allocated = REGS_FIXED; |
|
5058 |
|
5059 if (want_reg_info) |
|
5060 { |
|
5061 regs.num_regs = nmatch; |
|
5062 regs.start = TALLOC (nmatch, regoff_t); |
|
5063 regs.end = TALLOC (nmatch, regoff_t); |
|
5064 if (regs.start == NULL || regs.end == NULL) |
|
5065 return (int) REG_NOMATCH; |
|
5066 } |
|
5067 |
|
5068 /* Perform the searching operation. */ |
|
5069 ret = re_search (&private_preg, string, len, |
|
5070 /* start: */ 0, /* range: */ len, |
|
5071 want_reg_info ? ®s : (struct re_registers *) 0); |
|
5072 |
|
5073 /* Copy the register information to the POSIX structure. */ |
|
5074 if (want_reg_info) |
|
5075 { |
|
5076 if (ret >= 0) |
|
5077 { |
|
5078 unsigned r; |
|
5079 |
|
5080 for (r = 0; r < nmatch; r++) |
|
5081 { |
|
5082 pmatch[r].rm_so = regs.start[r]; |
|
5083 pmatch[r].rm_eo = regs.end[r]; |
|
5084 } |
|
5085 } |
|
5086 |
|
5087 /* If we needed the temporary register info, free the space now. */ |
|
5088 free (regs.start); |
|
5089 free (regs.end); |
|
5090 } |
|
5091 |
|
5092 /* We want zero return to mean success, unlike `re_search'. */ |
|
5093 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; |
|
5094 } |
|
5095 |
|
5096 |
|
5097 /* Returns a message corresponding to an error code, ERRCODE, returned |
23
|
5098 from either regcomp or regexec. We don't use PREG here. */ |
2
|
5099 |
|
5100 size_t |
|
5101 regerror (errcode, preg, errbuf, errbuf_size) |
|
5102 int errcode; |
|
5103 const regex_t *preg; |
|
5104 char *errbuf; |
|
5105 size_t errbuf_size; |
|
5106 { |
34
|
5107 const char *msg; |
|
5108 size_t msg_size; |
|
5109 |
|
5110 if (errcode < 0 |
|
5111 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0]))) |
|
5112 /* Only error codes returned by the rest of the code should be passed |
|
5113 to this routine. If we are given anything else, or if other regex |
|
5114 code generates an invalid error code, then the program has a bug. |
|
5115 Dump core so we can fix it. */ |
|
5116 abort (); |
|
5117 |
45
|
5118 msg = re_error_msg[errcode]; |
|
5119 |
|
5120 /* POSIX doesn't require that we do anything in this case, but why |
|
5121 not be nice. */ |
|
5122 if (! msg) |
|
5123 msg = "Success"; |
|
5124 |
34
|
5125 msg_size = strlen (msg) + 1; /* Includes the null. */ |
2
|
5126 |
|
5127 if (errbuf_size != 0) |
|
5128 { |
|
5129 if (msg_size > errbuf_size) |
|
5130 { |
|
5131 strncpy (errbuf, msg, errbuf_size - 1); |
|
5132 errbuf[errbuf_size - 1] = 0; |
|
5133 } |
|
5134 else |
|
5135 strcpy (errbuf, msg); |
|
5136 } |
|
5137 |
|
5138 return msg_size; |
|
5139 } |
|
5140 |
|
5141 |
|
5142 /* Free dynamically allocated space used by PREG. */ |
|
5143 |
|
5144 void |
|
5145 regfree (preg) |
|
5146 regex_t *preg; |
|
5147 { |
|
5148 if (preg->buffer != NULL) |
|
5149 free (preg->buffer); |
|
5150 preg->buffer = NULL; |
|
5151 |
|
5152 preg->allocated = 0; |
|
5153 preg->used = 0; |
|
5154 |
|
5155 if (preg->fastmap != NULL) |
|
5156 free (preg->fastmap); |
|
5157 preg->fastmap = NULL; |
|
5158 preg->fastmap_accurate = 0; |
|
5159 |
|
5160 if (preg->translate != NULL) |
|
5161 free (preg->translate); |
|
5162 preg->translate = NULL; |
|
5163 } |
|
5164 |
|
5165 #endif /* not emacs */ |
|
5166 |
|
5167 /* |
|
5168 Local variables: |
|
5169 make-backup-files: t |
|
5170 version-control: t |
|
5171 trim-versions-without-asking: nil |
|
5172 End: |
|
5173 */ |