Mercurial > hg > octave-lojdl
view scripts/statistics/distributions/normcdf.m @ 17475:0b6f44d31edc default tip Latex-interpreter
Merge with main after adding Windows name fot GS.
author | Andrej Lojdl <andrej.lojdl@gmail.com> |
---|---|
date | Thu, 19 Sep 2013 22:53:49 +0200 |
parents | 58188d5a2587 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} normcdf (@var{x}) ## @deftypefnx {Function File} {} normcdf (@var{x}, @var{mu}, @var{sigma}) ## For each element of @var{x}, compute the cumulative distribution ## function (CDF) at @var{x} of the normal distribution with mean ## @var{mu} and standard deviation @var{sigma}. ## ## Default values are @var{mu} = 0, @var{sigma} = 1. ## @end deftypefn ## Author: TT <Teresa.Twaroch@ci.tuwien.ac.at> ## Description: CDF of the normal distribution function cdf = normcdf (x, mu = 0, sigma = 1) if (nargin != 1 && nargin != 3) print_usage (); endif if (!isscalar (mu) || !isscalar (sigma)) [retval, x, mu, sigma] = common_size (x, mu, sigma); if (retval > 0) error ("normcdf: X, MU, and SIGMA must be of common size or scalars"); endif endif if (iscomplex (x) || iscomplex (mu) || iscomplex (sigma)) error ("normcdf: X, MU, and SIGMA must not be complex"); endif if (isa (x, "single") || isa (mu, "single") || isa (sigma, "single")); cdf = zeros (size (x), "single"); else cdf = zeros (size (x)); endif if (isscalar (mu) && isscalar (sigma)) if (isfinite (mu) && (sigma > 0) && (sigma < Inf)) cdf = stdnormal_cdf ((x - mu) / sigma); else cdf = NaN (size (x), class (cdf)); endif else k = ! isfinite (mu) | !(sigma > 0) | !(sigma < Inf); cdf(k) = NaN; k = ! k; cdf(k) = stdnormal_cdf ((x(k) - mu(k)) ./ sigma(k)); endif endfunction %!shared x,y %! x = [-Inf 1 2 Inf]; %! y = [0, 0.5, 1/2*(1+erf(1/sqrt(2))), 1]; %!assert (normcdf (x, ones (1,4), ones (1,4)), y) %!assert (normcdf (x, 1, ones (1,4)), y) %!assert (normcdf (x, ones (1,4), 1), y) %!assert (normcdf (x, [0 -Inf NaN Inf], 1), [y(1) NaN NaN NaN]) %!assert (normcdf (x, 1, [Inf NaN -1 0]), [NaN NaN NaN NaN]) %!assert (normcdf ([x(1:2) NaN x(4)], 1, 1), [y(1:2) NaN y(4)]) %% Test class of input preserved %!assert (normcdf ([x, NaN], 1, 1), [y, NaN]) %!assert (normcdf (single ([x, NaN]), 1, 1), single ([y, NaN]), eps ("single")) %!assert (normcdf ([x, NaN], single (1), 1), single ([y, NaN]), eps ("single")) %!assert (normcdf ([x, NaN], 1, single (1)), single ([y, NaN]), eps ("single")) %% Test input validation %!error normcdf () %!error normcdf (1,2) %!error normcdf (1,2,3,4) %!error normcdf (ones (3), ones (2), ones (2)) %!error normcdf (ones (2), ones (3), ones (2)) %!error normcdf (ones (2), ones (2), ones (3)) %!error normcdf (i, 2, 2) %!error normcdf (2, i, 2) %!error normcdf (2, 2, i)