Mercurial > hg > octave-jordi
changeset 8936:42e24f4ebc8c
add tests for diag & perm matrices.
author | Jason Riedy <jason@acm.org> |
---|---|
date | Sun, 08 Mar 2009 16:40:10 -0400 |
parents | cae073411b03 |
children | f27b2c95817f |
files | test/test_diag_perm.m |
diffstat | 1 files changed, 142 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/test/test_diag_perm.m @@ -0,0 +1,142 @@ +## Copyright (C) 2009 E. Jason Riedy +## +## This file is part of Octave. +## +## Octave is free software; you can redistribute it and/or modify it +## under the terms of the GNU General Public License as published by +## the Free Software Foundation; either version 3 of the License, or (at +## your option) any later version. +## +## Octave is distributed in the hope that it will be useful, but +## WITHOUT ANY WARRANTY; without even the implied warranty of +## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +## General Public License for more details. +## +## You should have received a copy of the GNU General Public License +## along with Octave; see the file COPYING. If not, see +## <http://www.gnu.org/licenses/>. + +######################################## +## Permutation matrices + +## row permutation +%!test +%! n = 5; +%! A = rand (n); +%! perm = randperm (n); +%! Prow = eye (n) (perm, :); +%! assert (A(perm, :), Prow * A); +%! invperm(perm) = 1:n; +%! assert (Prow \ A, A(invperm, :)); +%! assert (Prow' * A, A(invperm, :)); + +## column permutation +%!test +%! n = 7; +%! A = rand (n); +%! perm = randperm (n); +%! Pcol = eye (n) (:, perm); +%! assert (A(:, perm), A * Pcol); +%! invperm(perm) = 1:n; +%! assert (A / Pcol, A(:, invperm)); +%! assert (A * Pcol.', A(:, invperm)); + +## fall back to a matrix in addition +%!test +%! n = 4; +%! P1 = eye (n) (:, randperm (n)); +%! A = zeros (n) + P1; +%! assert (sum (A), ones (1, n)); +%! assert (sum (A, 2), ones (n, 1)); + +## preserve dense matrix structure +%!test +%! n = 7; +%! Pc = eye (n) (:, randperm (n)); +%! Pr = eye (n) (randperm (n), :); +%! assert (typeinfo (rand (n) * Pc), "matrix"); +%! assert (typeinfo (Pr * rand (n)), "matrix"); + +## permuting a matrix with exceptional values does not introduce new ones. +%!test +%! n = 5; +%! pc = randperm (n); +%! Pc = eye (n) (:, pc); +%! pr = randperm (n); +%! Pr = eye (n) (pr, :); +%! A = rand (n); +%! A(n, n-2) = NaN; +%! A(3, 1) = Inf; +%! assert (Pr * A * Pc, A(pr, pc)); + +######################################## +## Diagonal matrices + +## square row scaling +%!test +%! m = 7; +%! n = 11; +%! A = rand (m, n); +%! scalefact = rand (m, 1); +%! Dr = diag (scalefact); +%! assert (Dr * A, repmat (scalefact, 1, n) .* A); +%! assert (Dr \ A, A ./ repmat (scalefact, 1, n)); +%! scalefact(m-1) = Inf; +%! Dr(m-1, m-1) = 0; +%! assert (Dr \ A, A ./ repmat (scalefact, 1, n)); + +## square column scaling +%!test +%! m = 13; +%! n = 11; +%! A = rand (m, n); +%! scalefact = rand (1, n); +%! Dc = diag (scalefact); +%! assert (A * Dc, repmat (scalefact, m, 1) .* A); +%! assert (A / Dc, A ./ repmat (scalefact, m, 1)); +%! scalefact(n-1) = Inf; +%! Dc(n-1, n-1) = 0; +%! assert (A / Dc, A ./ repmat (scalefact, m, 1)); + +## arithmetic +%!test +%! m = 9; +%! n = 7; +%! mn = min (m, n); +%! d1 = rand (mn, 1) + I () * rand (mn, 1); +%! D1 = diag (d1, m, n); +%! d2 = rand (mn, 1); +%! D2 = diag (d2, m, n); +%! D1D2 = D1 + D2; +%! assert (typeinfo (D1D2), "complex diagonal matrix"); +%! assert (diag (D1D2), d1 + d2); +%! D1D2 = D2.' * D1; +%! assert (typeinfo (D1D2), "complex diagonal matrix"); +%! assert (diag (D1D2), d1 .* d2); + +## slicing +%!test +%! m = 13; +%! n = 6; +%! mn = min (m, n); +%! d = rand (mn, 1); +%! D = diag (d, m, n); +%! Dslice = D (1:(m-3), 1:(n-2)); +%! assert (typeinfo (Dslice), "diagonal matrix"); + +## preserve dense matrix structure +%!assert (typeinfo (rand (8) * (3 * eye (8))), "matrix"); +%!assert (typeinfo ((3 * eye (8)) * rand (8)), "matrix"); + +## scaling a matrix with exceptional values does not introduce new ones. +%!test +%! n = 6; +%! dr = rand (n, 1); +%! Dr = diag (dr); +%! dc = rand (1, n); +%! Dc = diag (dc); +%! A = rand (n); +%! A(n, n-2) = NaN; +%! A(4, 1) = Inf; +%! assert (Dr * A * Dc, A .* kron (dr, dc), eps); +