2928
|
1 /* |
|
2 |
|
3 Copyright (C) 1996, 1997 John W. Eaton |
|
4 |
|
5 This file is part of Octave. |
|
6 |
|
7 Octave is free software; you can redistribute it and/or modify it |
|
8 under the terms of the GNU General Public License as published by the |
|
9 Free Software Foundation; either version 2, or (at your option) any |
|
10 later version. |
|
11 |
|
12 Octave is distributed in the hope that it will be useful, but WITHOUT |
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
15 for more details. |
|
16 |
|
17 You should have received a copy of the GNU General Public License |
|
18 along with Octave; see the file COPYING. If not, write to the Free |
5307
|
19 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
|
20 02110-1301, USA. |
2928
|
21 |
|
22 */ |
|
23 |
|
24 #ifdef HAVE_CONFIG_H |
|
25 #include <config.h> |
|
26 #endif |
|
27 |
|
28 #include <string> |
|
29 |
|
30 #include "CmplxSCHUR.h" |
|
31 #include "dbleSCHUR.h" |
|
32 |
|
33 #include "defun-dld.h" |
|
34 #include "error.h" |
|
35 #include "gripes.h" |
|
36 #include "oct-obj.h" |
|
37 #include "utils.h" |
|
38 |
|
39 DEFUN_DLD (schur, args, nargout, |
3548
|
40 "-*- texinfo -*-\n\ |
3372
|
41 @deftypefn {Loadable Function} {@var{s} =} schur (@var{a})\n\ |
|
42 @deftypefnx {Loadable Function} {[@var{u}, @var{s}] =} schur (@var{a}, @var{opt})\n\ |
|
43 @cindex Schur decomposition\n\ |
|
44 The Schur decomposition is used to compute eigenvalues of a\n\ |
|
45 square matrix, and has applications in the solution of algebraic\n\ |
|
46 Riccati equations in control (see @code{are} and @code{dare}).\n\ |
|
47 @code{schur} always returns\n\ |
|
48 @iftex\n\ |
|
49 @tex\n\ |
|
50 $S = U^T A U$\n\ |
|
51 @end tex\n\ |
|
52 @end iftex\n\ |
|
53 @ifinfo\n\ |
|
54 @code{s = u' * a * u}\n\ |
|
55 @end ifinfo\n\ |
|
56 where\n\ |
|
57 @iftex\n\ |
|
58 @tex\n\ |
|
59 $U$\n\ |
|
60 @end tex\n\ |
|
61 @end iftex\n\ |
|
62 @ifinfo\n\ |
|
63 @code{u}\n\ |
|
64 @end ifinfo\n\ |
|
65 is a unitary matrix\n\ |
|
66 @iftex\n\ |
|
67 @tex\n\ |
|
68 ($U^T U$ is identity)\n\ |
|
69 @end tex\n\ |
|
70 @end iftex\n\ |
|
71 @ifinfo\n\ |
|
72 (@code{u'* u} is identity)\n\ |
|
73 @end ifinfo\n\ |
|
74 and\n\ |
|
75 @iftex\n\ |
|
76 @tex\n\ |
|
77 $S$\n\ |
|
78 @end tex\n\ |
|
79 @end iftex\n\ |
|
80 @ifinfo\n\ |
|
81 @code{s}\n\ |
|
82 @end ifinfo\n\ |
|
83 is upper triangular. The eigenvalues of\n\ |
|
84 @iftex\n\ |
|
85 @tex\n\ |
|
86 $A$ (and $S$)\n\ |
|
87 @end tex\n\ |
|
88 @end iftex\n\ |
|
89 @ifinfo\n\ |
|
90 @code{a} (and @code{s})\n\ |
|
91 @end ifinfo\n\ |
|
92 are the diagonal elements of\n\ |
|
93 @iftex\n\ |
|
94 @tex\n\ |
5555
|
95 $S$.\n\ |
3372
|
96 @end tex\n\ |
|
97 @end iftex\n\ |
|
98 @ifinfo\n\ |
5555
|
99 @code{s}.\n\ |
3372
|
100 @end ifinfo\n\ |
|
101 If the matrix\n\ |
|
102 @iftex\n\ |
|
103 @tex\n\ |
|
104 $A$\n\ |
|
105 @end tex\n\ |
|
106 @end iftex\n\ |
|
107 @ifinfo\n\ |
|
108 @code{a}\n\ |
|
109 @end ifinfo\n\ |
|
110 is real, then the real Schur decomposition is computed, in which the\n\ |
|
111 matrix\n\ |
|
112 @iftex\n\ |
|
113 @tex\n\ |
|
114 $U$\n\ |
|
115 @end tex\n\ |
|
116 @end iftex\n\ |
|
117 @ifinfo\n\ |
|
118 @code{u}\n\ |
|
119 @end ifinfo\n\ |
|
120 is orthogonal and\n\ |
|
121 @iftex\n\ |
|
122 @tex\n\ |
|
123 $S$\n\ |
|
124 @end tex\n\ |
|
125 @end iftex\n\ |
|
126 @ifinfo\n\ |
|
127 @code{s}\n\ |
|
128 @end ifinfo\n\ |
|
129 is block upper triangular\n\ |
|
130 with blocks of size at most\n\ |
|
131 @iftex\n\ |
|
132 @tex\n\ |
|
133 $2\\times 2$\n\ |
|
134 @end tex\n\ |
|
135 @end iftex\n\ |
|
136 @ifinfo\n\ |
|
137 @code{2 x 2}\n\ |
|
138 @end ifinfo\n\ |
3600
|
139 along the diagonal. The diagonal elements of\n\ |
3372
|
140 @iftex\n\ |
|
141 @tex\n\ |
|
142 $S$\n\ |
|
143 @end tex\n\ |
|
144 @end iftex\n\ |
|
145 @ifinfo\n\ |
|
146 @code{s}\n\ |
|
147 @end ifinfo\n\ |
|
148 (or the eigenvalues of the\n\ |
|
149 @iftex\n\ |
|
150 @tex\n\ |
|
151 $2\\times 2$\n\ |
|
152 @end tex\n\ |
|
153 @end iftex\n\ |
|
154 @ifinfo\n\ |
|
155 @code{2 x 2}\n\ |
|
156 @end ifinfo\n\ |
|
157 blocks, when\n\ |
|
158 appropriate) are the eigenvalues of\n\ |
|
159 @iftex\n\ |
|
160 @tex\n\ |
|
161 $A$\n\ |
|
162 @end tex\n\ |
|
163 @end iftex\n\ |
|
164 @ifinfo\n\ |
|
165 @code{a}\n\ |
|
166 @end ifinfo\n\ |
|
167 and\n\ |
|
168 @iftex\n\ |
|
169 @tex\n\ |
|
170 $S$.\n\ |
|
171 @end tex\n\ |
|
172 @end iftex\n\ |
|
173 @ifinfo\n\ |
|
174 @code{s}.\n\ |
|
175 @end ifinfo\n\ |
2928
|
176 \n\ |
3372
|
177 The eigenvalues are optionally ordered along the diagonal according to\n\ |
|
178 the value of @code{opt}. @code{opt = \"a\"} indicates that all\n\ |
|
179 eigenvalues with negative real parts should be moved to the leading\n\ |
|
180 block of\n\ |
|
181 @iftex\n\ |
|
182 @tex\n\ |
|
183 $S$\n\ |
|
184 @end tex\n\ |
|
185 @end iftex\n\ |
|
186 @ifinfo\n\ |
|
187 @code{s}\n\ |
|
188 @end ifinfo\n\ |
|
189 (used in @code{are}), @code{opt = \"d\"} indicates that all eigenvalues\n\ |
|
190 with magnitude less than one should be moved to the leading block of\n\ |
|
191 @iftex\n\ |
|
192 @tex\n\ |
|
193 $S$\n\ |
|
194 @end tex\n\ |
|
195 @end iftex\n\ |
|
196 @ifinfo\n\ |
|
197 @code{s}\n\ |
|
198 @end ifinfo\n\ |
|
199 (used in @code{dare}), and @code{opt = \"u\"}, the default, indicates that\n\ |
|
200 no ordering of eigenvalues should occur. The leading\n\ |
|
201 @iftex\n\ |
|
202 @tex\n\ |
|
203 $k$\n\ |
|
204 @end tex\n\ |
|
205 @end iftex\n\ |
|
206 @ifinfo\n\ |
|
207 @code{k}\n\ |
|
208 @end ifinfo\n\ |
|
209 columns of\n\ |
|
210 @iftex\n\ |
|
211 @tex\n\ |
|
212 $U$\n\ |
|
213 @end tex\n\ |
|
214 @end iftex\n\ |
|
215 @ifinfo\n\ |
|
216 @code{u}\n\ |
|
217 @end ifinfo\n\ |
|
218 always span the\n\ |
|
219 @iftex\n\ |
|
220 @tex\n\ |
|
221 $A$-invariant\n\ |
|
222 @end tex\n\ |
|
223 @end iftex\n\ |
|
224 @ifinfo\n\ |
|
225 @code{a}-invariant\n\ |
|
226 @end ifinfo\n\ |
|
227 subspace corresponding to the\n\ |
|
228 @iftex\n\ |
|
229 @tex\n\ |
|
230 $k$\n\ |
|
231 @end tex\n\ |
|
232 @end iftex\n\ |
|
233 @ifinfo\n\ |
|
234 @code{k}\n\ |
|
235 @end ifinfo\n\ |
|
236 leading eigenvalues of\n\ |
|
237 @iftex\n\ |
|
238 @tex\n\ |
|
239 $S$.\n\ |
|
240 @end tex\n\ |
|
241 @end iftex\n\ |
|
242 @ifinfo\n\ |
|
243 @code{s}.\n\ |
|
244 @end ifinfo\n\ |
|
245 @end deftypefn") |
2928
|
246 { |
|
247 octave_value_list retval; |
|
248 |
|
249 int nargin = args.length (); |
|
250 |
|
251 if (nargin < 1 || nargin > 2 || nargout > 2) |
|
252 { |
|
253 print_usage ("schur"); |
|
254 return retval; |
|
255 } |
|
256 |
|
257 octave_value arg = args(0); |
|
258 |
3523
|
259 std::string ord; |
2928
|
260 |
|
261 if (nargin == 2) |
|
262 { |
|
263 ord = args(1).string_value (); |
|
264 |
|
265 if (error_state) |
|
266 { |
|
267 error ("schur: expecting string as second argument"); |
|
268 return retval; |
|
269 } |
|
270 } |
|
271 |
|
272 char ord_char = ord.empty () ? 'U' : ord[0]; |
|
273 |
|
274 if (ord_char != 'U' && ord_char != 'A' && ord_char != 'D' |
|
275 && ord_char != 'u' && ord_char != 'a' && ord_char != 'd') |
|
276 { |
|
277 warning ("schur: incorrect ordered schur argument `%c'", |
|
278 ord.c_str ()); |
|
279 return retval; |
|
280 } |
|
281 |
5275
|
282 octave_idx_type nr = arg.rows (); |
|
283 octave_idx_type nc = arg.columns (); |
2928
|
284 |
|
285 int arg_is_empty = empty_arg ("schur", nr, nc); |
|
286 |
|
287 if (arg_is_empty < 0) |
|
288 return retval; |
|
289 else if (arg_is_empty > 0) |
|
290 return octave_value_list (2, Matrix ()); |
|
291 |
|
292 if (nr != nc) |
|
293 { |
|
294 gripe_square_matrix_required ("schur"); |
|
295 return retval; |
|
296 } |
|
297 |
|
298 if (arg.is_real_type ()) |
|
299 { |
|
300 Matrix tmp = arg.matrix_value (); |
|
301 |
|
302 if (! error_state) |
|
303 { |
|
304 if (nargout == 0 || nargout == 1) |
|
305 { |
5008
|
306 SCHUR result (tmp, ord, false); |
2928
|
307 retval(0) = result.schur_matrix (); |
|
308 } |
|
309 else |
|
310 { |
5008
|
311 SCHUR result (tmp, ord, true); |
2928
|
312 retval(1) = result.schur_matrix (); |
|
313 retval(0) = result.unitary_matrix (); |
|
314 } |
|
315 } |
|
316 } |
|
317 else if (arg.is_complex_type ()) |
|
318 { |
|
319 ComplexMatrix ctmp = arg.complex_matrix_value (); |
|
320 |
|
321 if (! error_state) |
|
322 { |
|
323 |
|
324 if (nargout == 0 || nargout == 1) |
|
325 { |
5008
|
326 ComplexSCHUR result (ctmp, ord, false); |
2928
|
327 retval(0) = result.schur_matrix (); |
|
328 } |
|
329 else |
|
330 { |
5008
|
331 ComplexSCHUR result (ctmp, ord, true); |
2928
|
332 retval(1) = result.schur_matrix (); |
|
333 retval(0) = result.unitary_matrix (); |
|
334 } |
|
335 } |
|
336 } |
|
337 else |
|
338 { |
|
339 gripe_wrong_type_arg ("schur", arg); |
|
340 } |
|
341 |
|
342 return retval; |
|
343 } |
|
344 |
|
345 /* |
|
346 ;;; Local Variables: *** |
|
347 ;;; mode: C++ *** |
|
348 ;;; End: *** |
|
349 */ |