393
|
1 ## Copyright (C) 2010 Soren Hauberg |
|
2 ## |
|
3 ## This program is free software; you can redistribute it and/or modify |
|
4 ## it under the terms of the GNU General Public License as published by |
|
5 ## the Free Software Foundation; either version 3 of the License, or |
|
6 ## (at your option) any later version. |
|
7 ## |
|
8 ## This program is distributed in the hope that it will be useful, |
|
9 ## but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
10 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
11 ## GNU General Public License for more details. |
|
12 ## |
|
13 ## You should have received a copy of the GNU General Public License |
|
14 ## along with this program; If not, see <http://www.gnu.org/licenses/>. |
|
15 |
|
16 ## -*- texinfo -*- |
|
17 ## @deftypefn {Function File} {@var{props} = } regionprops (@var{BW}) |
|
18 ## @deftypefnx {Function File} {@var{props} = } regionprops (@var{BW}, @var{properties}, @dots{}) |
|
19 ## Compute object properties in a binary image. |
|
20 ## |
|
21 ## @code{regionprops} computes various properties of the individual objects (as |
|
22 ## identified by @code{bwlabel}) in the binary image @var{BW}. The result is a |
|
23 ## structure array containing an entry per property per object. |
|
24 ## |
|
25 ## The following properties can be computed. |
|
26 ## |
|
27 ## @table @t |
|
28 ## @item "Area" |
|
29 ## The number of pixels in the object. |
|
30 ## @item "EulerNumber" |
|
31 ## @itemx "euler_number" |
|
32 ## The Euler number of the object (see @code{bweuler} for details). |
|
33 ## @item "BoundingBox" |
|
34 ## @itemx "bounding_box" |
|
35 ## The bounding box of the object. This is represented as a 4-vector where the |
|
36 ## first two entries are the @math{x} and @math{y} coordinates of the upper left |
|
37 ## corner of the bounding box, and the two last entries are the width and the |
|
38 ## height of the box. |
|
39 ## @item "Extent" |
|
40 ## The area of the object divided by the area of the bounding box. |
|
41 ## @item "Perimeter" |
|
42 ## The length of the boundary of the object. |
|
43 ## @item "Centroid" |
|
44 ## The center coordinate of the object. |
|
45 ## @item "PixelIdxList" |
|
46 ## @itemx "pixel_idx_list" |
|
47 ## The indices of the pixels in the object. |
|
48 ## @item "FilledArea" |
|
49 ## @itemx "filled_area" |
|
50 ## The area of the object including possible holes. |
|
51 ## @item "PixelList" |
|
52 ## @itemx "pixel_list" |
|
53 ## The actual pixel values inside the object. This is only useful for grey scale |
|
54 ## images. |
|
55 ## @item "FilledImage" |
|
56 ## @itemx "filled_image" |
|
57 ## A binary image with the same size as the object's bounding box that contains |
|
58 ## the object with all holes removed. |
|
59 ## @item "Image" |
|
60 ## An image with the same size as the bounding box that contains the original pixels. |
|
61 ## @item "MaxIntensity" |
|
62 ## @itemx "max_intensity" |
|
63 ## The maximum intensity inside the object. |
|
64 ## @item "MinIntensity" |
|
65 ## @itemx "min_intensity" |
|
66 ## The minimum intensity inside the object. |
|
67 ## @item "WeightedCentroid" |
|
68 ## @itemx "weighted_centroid" |
|
69 ## The centroid of the object where pixel values are used as weights. |
|
70 ## @item "MeanIntensity" |
|
71 ## @itemx "mean_intensity" |
|
72 ## The mean intensity inside the object. |
|
73 ## @item "PixelValues" |
|
74 ## @itemx "pixel_values" |
|
75 ## The pixel values inside the object represented as a vector. |
|
76 ## @end table |
|
77 ## |
|
78 ## The requested properties can either be specified as several input arguments |
|
79 ## or as a cell array of strings. As a short-hand it is also possible to give |
|
80 ## the following strings as arguments. |
|
81 ## |
|
82 ## @table @t |
|
83 ## @item "basic" |
|
84 ## The following properties are computed: @t{"Area"}, @t{"Centroid"} and @t{"BoundingBox"}. |
|
85 ## @item "all" |
|
86 ## All properties are computed. |
|
87 ## @end table |
|
88 ## |
|
89 ## If no properties are given, @t{basic} is assumed. |
|
90 ## @seealso{bwlabel, bwperim, bweuler} |
|
91 ## @end deftypefn |
|
92 |
|
93 function retval = regionprops (bw, varargin) |
|
94 ## Check input |
|
95 if (nargin < 1) |
|
96 error ("regionprops: not enough input arguments"); |
|
97 endif |
|
98 |
|
99 if (!ismatrix (bw) || ndims (bw) != 2) |
|
100 error ("regionprops: first input argument must be a NxM matrix"); |
|
101 endif |
|
102 |
|
103 if (numel (varargin) == 0) |
|
104 properties = "basic"; |
|
105 elseif (numel (varargin) == 1 && iscellstr (varargin {1})) |
|
106 properties = varargin {1}; |
|
107 elseif (iscellstr (varargin)) |
|
108 properties = varargin; |
|
109 else |
|
110 error ("regionprops: properties must be a cell array of strings"); |
|
111 endif |
|
112 |
|
113 if (ischar (properties) && strcmpi (properties, "basic")) |
|
114 properties = {"Area", "Centroid", "BoundingBox"}; |
|
115 elseif (ischar (properties) && strcmpi (properties, "all")) |
|
116 properties = {"area", "eulernumber", "boundingbox", "extent", "perimeter", ... |
|
117 "centroid", "pixelidxlist", "filledarea", "pixellist", ... |
|
118 "filledimage", "image", "maxintensity", "minintensity", ... |
|
119 "weightedcentroid", "meanintensity", "pixelvalues"}; |
|
120 elseif (!iscellstr (properties)) |
|
121 error ("%s %s", "regionprops: properties must be specified as a list of", |
|
122 "strings or a cell array of strings"); |
|
123 endif |
|
124 |
|
125 ## Get a labelled image |
|
126 if (!islogical (bw) && all (bw >= 0) && all (bw == round (bw))) |
|
127 L = bw; # the image was already labelled |
|
128 num_labels = max (L (:)); |
|
129 else |
396
|
130 [L, num_labels] = bwlabel (bw); |
393
|
131 endif |
|
132 |
|
133 ## Compute the properties |
|
134 retval = struct (); |
|
135 for k = 1:numel (properties) |
|
136 switch (lower (properties {k})) |
|
137 case "area" |
|
138 for k = 1:num_labels |
|
139 retval (k).Area = local_area (L == k); |
|
140 endfor |
|
141 |
|
142 case {"eulernumber", "euler_number"} |
|
143 for k = 1:num_labels |
|
144 retval (k).EulerNumber = bweuler (L == k); |
|
145 endfor |
|
146 |
|
147 case {"boundingbox", "bounding_box"} |
|
148 for k = 1:num_labels |
|
149 retval (k).BoundingBox = local_boundingbox (L == k); |
|
150 endfor |
|
151 |
|
152 case "extent" |
|
153 for k = 1:num_labels |
|
154 bb = local_boundingbox (L == k); |
|
155 area = local_area (L == k); |
|
156 retval (k).Extent = area / (bb (3) * bb (4)); |
|
157 endfor |
|
158 |
|
159 case "perimeter" |
|
160 for k = 1:num_labels |
|
161 retval (k).Perimeter = sum (bwperim (L == k) (:)); |
|
162 endfor |
|
163 |
|
164 case "centroid" |
|
165 for k = 1:num_labels |
|
166 [Y, X] = find (L == k); |
|
167 retval (k).Centroid = [mean(X), mean(Y)]; |
|
168 endfor |
|
169 |
|
170 case {"pixelidxlist", "pixel_idx_list"} |
|
171 for k = 1:num_labels |
|
172 retval (k).PixelIdxList = find (L == k); |
|
173 endfor |
|
174 |
|
175 case {"filledarea", "filled_area"} |
|
176 for k = 1:num_labels |
|
177 retval (k).FilledArea = sum (bwfill (L == k, "holes") (:)); |
|
178 endfor |
|
179 |
|
180 case {"pixellist", "pixel_list"} |
|
181 for k = 1:num_labels |
|
182 [Y, X] = find (L == k); |
|
183 retval (k).PixelList = [X, Y]; |
|
184 endfor |
|
185 |
|
186 case {"filledimage", "filled_image"} |
|
187 for k = 1:num_labels |
|
188 retval (k).FilledImage = bwfill (L == k, "holes"); |
|
189 endfor |
|
190 |
|
191 case "image" |
|
192 for k = 1:num_labels |
|
193 tmp = (L == k); |
|
194 [R, C] = find (tmp); |
|
195 retval (k).Image = tmp (min (R):max (R), min (C):max (C)); |
|
196 endfor |
|
197 |
|
198 case {"maxintensity", "max_intensity"} |
|
199 for k = 1:num_labels |
|
200 retval (k).MaxIntensity = max (bw (L == k) (:)); |
|
201 endfor |
|
202 |
|
203 case {"minintensity", "min_intensity"} |
|
204 for k = 1:num_labels |
|
205 retval (k).MaxIntensity = min (bw (L == k) (:)); |
|
206 endfor |
|
207 |
|
208 case {"weightedcentroid", "weighted_centroid"} |
|
209 for k = 1:num_labels |
|
210 [Y, X] = find (L == k); |
|
211 vals = bw (L == k) (:); |
|
212 vals /= sum (vals); |
|
213 retval (k).WeightedCentroid = [dot(X, vals), dot(Y, vals)]; |
|
214 endfor |
|
215 |
|
216 case {"meanintensity", "mean_intensity"} |
|
217 for k = 1:num_labels |
|
218 retval (k).MaxIntensity = mean (bw (L == k) (:)); |
|
219 endfor |
|
220 |
|
221 case {"pixelvalues", "pixel_values"} |
|
222 for k = 1:num_labels |
|
223 retval (k).PixelValues = bw (L == k)(:); |
|
224 endfor |
|
225 |
396
|
226 case "orientation" |
|
227 for k = 1:num_labels |
|
228 [Y, X] = find (L == k); |
|
229 if (numel (Y) > 1) |
|
230 C = cov ([X(:), Y(:)]); |
|
231 [V, lambda] = eig (C); |
|
232 [max_val, max_idx] = max (diag (lambda)); |
|
233 v = V (:, max_idx); |
|
234 retval (k).Orientation = 180 - 180 * atan2 (v (2), v (1)) / pi; |
|
235 else |
|
236 retval (k).Orientation = 0; # XXX: What does the other brand do? |
|
237 endif |
|
238 endfor |
|
239 |
|
240 %{ |
|
241 case "majoraxislength" |
|
242 for k = 1:num_labels |
|
243 [Y, X] = find (L == k); |
|
244 if (numel (Y) > 1) |
|
245 C = cov ([X(:), Y(:)]); |
|
246 lambda = eig (C); |
|
247 retval (k).MajorAxisLength = (max (lambda)); |
|
248 else |
|
249 retval (k).MajorAxisLength = 1; |
|
250 endif |
|
251 endfor |
|
252 |
|
253 case "minoraxislength" |
|
254 for k = 1:num_labels |
|
255 [Y, X] = find (L == k); |
|
256 if (numel (Y) > 1) |
|
257 C = cov ([X(:), Y(:)]); |
|
258 lambda = eig (C); |
|
259 retval (k).MinorAxisLength = (min (lambda)); |
|
260 else |
|
261 retval (k).MinorAxisLength = 1; |
|
262 endif |
|
263 endfor |
|
264 %} |
|
265 |
393
|
266 #case "extrema" |
|
267 #case "convexarea" |
|
268 #case "convexhull" |
|
269 #case "solidity" |
|
270 #case "conveximage" |
|
271 #case "subarrayidx" |
|
272 #case "eccentricity" |
|
273 #case "equivdiameter" |
|
274 |
|
275 otherwise |
|
276 error ("regionprops: unsupported property '%s'", properties {k}); |
|
277 endswitch |
|
278 endfor |
|
279 endfunction |
|
280 |
|
281 function retval = local_area (bw) |
|
282 retval = sum (bw (:)); |
|
283 endfunction |
|
284 |
|
285 function retval = local_boundingbox (bw) |
|
286 [Y, X] = find (bw); |
|
287 retval = [min(X)-0.5, min(Y)-0.5, max(X)-min(X)+1, max(Y)-min(Y)+1]; |
|
288 endfunction |
|
289 |