787
|
1 function r = roots (v) |
904
|
2 |
|
3 # For a vector v with n components, return the roots of the |
|
4 # polynomial v(1) * z^(n-1) + ... + v(n-1) * z + v(n). |
787
|
5 |
904
|
6 # Written by KH (Kurt.Hornik@neuro.tuwien.ac.at) on Dec 24, 1993 |
|
7 # Copyright Dept of Probability Theory and Statistics TU Wien |
787
|
8 |
|
9 [nr, nc] = size(v); |
|
10 if !((nr == 1 && nc > 1) || (nc == 1 && nr > 1)) |
904
|
11 usage ("roots (v), where v is a nonzero vector"); |
787
|
12 endif |
|
13 |
|
14 n = nr + nc - 1; |
|
15 v = reshape (v, 1, n); |
|
16 |
904
|
17 # If v = [ 0 ... 0 v(k+1) ... v(k+l) 0 ... 0 ], we can remove the |
|
18 # leading k zeros and n - k - l roots of the polynomial are zero. |
|
19 |
787
|
20 f = find (v); |
|
21 m = max (size (f)); |
|
22 if (m > 0) |
|
23 v = v(f(1):f(m)); |
|
24 l = max (size (v)); |
|
25 if (l > 1) |
|
26 A = diag (ones (1, l-2), -1); |
|
27 A(1,:) = -v(2:l) ./ v(1); |
|
28 r = eig (A); |
|
29 if (f(m) < n) |
|
30 r = [r; zeros (n - f(m), 1)]; |
|
31 endif |
|
32 else |
|
33 r = zeros (n - f(m), 1); |
|
34 endif |
|
35 else |
904
|
36 usage ("roots (v), where v is a nonzero vector"); |
787
|
37 endif |
|
38 |
|
39 endfunction |