view visualizeBoundary.m @ 3:ace890ed0ed9 default tip

Use lookup to look for all words at once
author Jordi Gutiérrez Hermoso <jordigh@octave.org>
date Sat, 10 Dec 2011 15:56:02 -0500
parents f602dc601e9e
children
line wrap: on
line source

function visualizeBoundary(X, y, model, varargin)
%VISUALIZEBOUNDARY plots a non-linear decision boundary learned by the SVM
%   VISUALIZEBOUNDARYLINEAR(X, y, model) plots a non-linear decision 
%   boundary learned by the SVM and overlays the data on it

% Plot the training data on top of the boundary
plotData(X, y)

% Make classification predictions over a grid of values
x1plot = linspace(min(X(:,1)), max(X(:,1)), 100)';
x2plot = linspace(min(X(:,2)), max(X(:,2)), 100)';
[X1, X2] = meshgrid(x1plot, x2plot);
vals = zeros(size(X1));
for i = 1:size(X1, 2)
   this_X = [X1(:, i), X2(:, i)];
   vals(:, i) = svmPredict(model, this_X);
end

% Plot the SVM boundary
hold on
contour(X1, X2, vals, [0 0], 'Color', 'b');
hold off;

end