Mercurial > hg > machine-learning-hw6
view visualizeBoundary.m @ 3:ace890ed0ed9 default tip
Use lookup to look for all words at once
author | Jordi Gutiérrez Hermoso <jordigh@octave.org> |
---|---|
date | Sat, 10 Dec 2011 15:56:02 -0500 |
parents | f602dc601e9e |
children |
line wrap: on
line source
function visualizeBoundary(X, y, model, varargin) %VISUALIZEBOUNDARY plots a non-linear decision boundary learned by the SVM % VISUALIZEBOUNDARYLINEAR(X, y, model) plots a non-linear decision % boundary learned by the SVM and overlays the data on it % Plot the training data on top of the boundary plotData(X, y) % Make classification predictions over a grid of values x1plot = linspace(min(X(:,1)), max(X(:,1)), 100)'; x2plot = linspace(min(X(:,2)), max(X(:,2)), 100)'; [X1, X2] = meshgrid(x1plot, x2plot); vals = zeros(size(X1)); for i = 1:size(X1, 2) this_X = [X1(:, i), X2(:, i)]; vals(:, i) = svmPredict(model, this_X); end % Plot the SVM boundary hold on contour(X1, X2, vals, [0 0], 'Color', 'b'); hold off; end