Mercurial > hg > machine-learning-hw6
view dataset3Params.m @ 3:ace890ed0ed9 default tip
Use lookup to look for all words at once
author | Jordi Gutiérrez Hermoso <jordigh@octave.org> |
---|---|
date | Sat, 10 Dec 2011 15:56:02 -0500 |
parents | e0f1290d2b43 |
children |
line wrap: on
line source
function [C, sigma] = dataset3Params(X, y, Xval, yval) ##EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise ##where you select the optimal (C, sigma) learning parameters to use for SVM ##with RBF kernel ## [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and ## sigma. You should complete this function to return the optimal C and ## sigma based on a cross-validation set. ## t = [10.^[-2:1], 3*10.^[-2:1]]; n = length (t); best = zeros (n); for i=1:n for j=1:n C = t(i); sigma = t(j); model = svmTrain (X, y, C, @(x1, x2) gaussianKernel (x1, x2, sigma), 1e-3, 20); pred = svmPredict (model, Xval); best(i,j) = mean (yval != pred); endfor endfor [~, Idx] = min (best(:)); [i, j] = ind2sub ([n,n], idx); C = t(i); sigma = t(j); endfunction