Mercurial > hg > machine-learning-hw5
view trainLinearReg.m @ 5:eddd33e57f6a default tip
Justify loop in trainLinearReg
author | Jordi Gutiérrez Hermoso <jordigh@octave.org> |
---|---|
date | Sun, 27 Nov 2011 15:58:14 -0500 |
parents | 0f14514e907f |
children |
line wrap: on
line source
function [theta] = trainLinearReg(X, y, lambda) %TRAINLINEARREG Trains linear regression given a dataset (X, y) and a %regularization parameter lambda % [theta] = TRAINLINEARREG (X, y, lambda) trains linear regression using % the dataset (X, y) and regularization parameter lambda. Returns the % trained parameters theta. % % Initialize Theta initial_theta = zeros(size(X, 2), 1); % Create "short hand" for the cost function to be minimized costFunction = @(t) linearRegCostFunction(X, y, t, lambda); % Now, costFunction is a function that takes in only one argument options = optimset('MaxIter', 200, 'GradObj', 'on'); % Minimize using fmincg theta = fmincg(costFunction, initial_theta, options); end