Mercurial > hg > octave-thorsten
view scripts/statistics/base/kendall.m @ 11587:c792872f8942
all script files: untabify and strip trailing whitespace
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 20 Jan 2011 17:35:29 -0500 |
parents | fd0a3ac60b0e |
children | 6b2f14af2360 |
line wrap: on
line source
## Copyright (C) 1995-2011 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} kendall (@var{x}) ## @deftypefnx {Function File} {} kendall (@var{x}, @var{y}) ## @cindex Kendall's Tau ## Compute Kendall's @var{tau}. ## ## For two data vectors @var{x}, @var{y} of common length @var{n}, ## Kendall's @var{tau} is the correlation of the signs of all rank ## differences of @var{x} and @var{y}; i.e., if both @var{x} and ## @var{y} have distinct entries, then ## ## @tex ## $$ \tau = {1 \over n(n-1)} \sum_{i,j} {\rm sign}(q_i-q_j) {\rm sign}(r_i-r_j) $$ ## @end tex ## @ifnottex ## ## @example ## @group ## 1 ## tau = ------- SUM sign (q(i) - q(j)) * sign (r(i) - r(j)) ## n (n-1) i,j ## @end group ## @end example ## ## @end ifnottex ## @noindent ## in which the ## @tex ## $q_i$ and $r_i$ ## @end tex ## @ifnottex ## @var{q}(@var{i}) and @var{r}(@var{i}) ## @end ifnottex ## are the ranks of @var{x} and @var{y}, respectively. ## ## If @var{x} and @var{y} are drawn from independent distributions, ## Kendall's @var{tau} is asymptotically normal with mean 0 and variance ## @tex ## ${2 (2n+5) \over 9n(n-1)}$. ## @end tex ## @ifnottex ## @code{(2 * (2@var{n}+5)) / (9 * @var{n} * (@var{n}-1))}. ## @end ifnottex ## ## @code{kendall (@var{x})} is equivalent to @code{kendall (@var{x}, ## @var{x})}. ## @seealso{ranks, spearman} ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Kendall's rank correlation tau function tau = kendall (x, y = []) if (nargin < 1 || nargin > 2) print_usage (); endif if (! (isnumeric (x) && isnumeric (y))) error ("kendall: X and Y must be numeric matrices or vectors"); endif if (ndims (x) != 2 || ndims (y) != 2) error ("kendall: X and Y must be 2-D matrices or vectors"); endif if (rows (x) == 1) x = x'; endif [n, c] = size (x); if (nargin == 2) if (rows (y) == 1) y = y'; endif if (rows (y) != n) error ("kendall: X and Y must have the same number of observations"); else x = [x, y]; endif endif r = ranks (x); m = sign (kron (r, ones (n, 1)) - kron (ones (n, 1), r)); tau = corrcoef (m); if (nargin == 2) tau = tau (1 : c, (c + 1) : columns (x)); endif endfunction %% Test input validation %!error kendall (); %!error kendall (1, 2, 3); %!error kendall ([true, true]); %!error kendall (ones(1,2), [true, true]); %!error kendall (ones (2,2,2)); %!error kendall (ones (2,2), ones (2,2,2)); %!error kendall (ones (2,2), ones (3,2));