Mercurial > hg > octave-thorsten
view src/DLD-FUNCTIONS/inv.cc @ 8371:c3f7e2549abb
make det & inv aware of diagonal & permutation matrices
author | Jaroslav Hajek <highegg@gmail.com> |
---|---|
date | Thu, 04 Dec 2008 12:03:45 +0100 |
parents | 8b1a2555c4e2 |
children | a2878ba31a9e |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1999, 2000, 2001, 2002, 2004, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "ops.h" #include "ov-re-diag.h" #include "ov-cx-diag.h" #include "ov-flt-re-diag.h" #include "ov-flt-cx-diag.h" #include "ov-perm.h" #include "ov-flt-perm.h" #include "utils.h" DEFUN_DLD (inv, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{x}, @var{rcond}] =} inv (@var{a})\n\ @deftypefnx {Loadable Function} {[@var{x}, @var{rcond}] =} inverse (@var{a})\n\ Compute the inverse of the square matrix @var{a}. Return an estimate\n\ of the reciprocal condition number if requested, otherwise warn of an\n\ ill-conditioned matrix if the reciprocal condition number is small.\n\ \n\ If called with a sparse matrix, then in general @var{x} will be a full\n\ matrix, and so if possible forming the inverse of a sparse matrix should\n\ be avoided. It is significantly more accurate and faster to do\n\ @code{@var{y} = @var{a} \\ @var{b}}, rather than\n\ @code{@var{y} = inv (@var{a}) * @var{b}}.\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); int arg_is_empty = empty_arg ("inverse", nr, nc); if (arg_is_empty < 0) return retval; else if (arg_is_empty > 0) return octave_value (Matrix ()); if (nr != nc) { gripe_square_matrix_required ("inverse"); return retval; } octave_value result; octave_idx_type info; double rcond = 0.0; float frcond = 0.0; bool isfloat = arg.is_single_type (); if (arg.is_diag_matrix ()) { rcond = 1.0; frcond = 1.0f; const octave_base_value& a = arg.get_rep (); if (arg.is_complex_type ()) { if (isfloat) { CAST_CONV_ARG (const octave_float_complex_diag_matrix&); result = v.float_complex_diag_matrix_value ().inverse (info); if (nargout > 1) frcond = v.float_complex_diag_matrix_value ().rcond (); } else { CAST_CONV_ARG (const octave_complex_diag_matrix&); result = v.complex_diag_matrix_value ().inverse (info); if (nargout > 1) rcond = v.complex_diag_matrix_value ().rcond (); } } else { if (isfloat) { CAST_CONV_ARG (const octave_float_diag_matrix&); result = v.float_diag_matrix_value ().inverse (info); if (nargout > 1) frcond = v.float_diag_matrix_value ().rcond (); } else { CAST_CONV_ARG (const octave_diag_matrix&); result = v.diag_matrix_value ().inverse (info); if (nargout > 1) rcond = v.diag_matrix_value ().rcond (); } } } else if (arg.is_perm_matrix ()) { rcond = 1.0; frcond = 1.0f; info = 0; const octave_base_value& a = arg.get_rep (); if (isfloat) { CAST_CONV_ARG (const octave_float_perm_matrix&); result = v.perm_matrix_value ().inverse (); } else { CAST_CONV_ARG (const octave_perm_matrix&); result = v.perm_matrix_value ().inverse (); } } else if (isfloat) { if (arg.is_real_type ()) { FloatMatrix m = arg.float_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, frcond, 1); args(0).matrix_type (mattyp); } } else if (arg.is_complex_type ()) { FloatComplexMatrix m = arg.float_complex_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, frcond, 1); args(0).matrix_type (mattyp); } } } else { if (arg.is_real_type ()) { if (arg.is_sparse_type ()) { SparseMatrix m = arg.sparse_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } else { Matrix m = arg.matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } } else if (arg.is_complex_type ()) { if (arg.is_sparse_type ()) { SparseComplexMatrix m = arg.sparse_complex_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } else { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { MatrixType mattyp = args(0).matrix_type (); result = m.inverse (mattyp, info, rcond, 1); args(0).matrix_type (mattyp); } } } else gripe_wrong_type_arg ("inv", arg); } if (! error_state) { if (nargout > 1) retval(1) = isfloat ? octave_value (frcond) : octave_value (rcond); retval(0) = result; volatile double xrcond = rcond; xrcond += 1.0; if (nargout < 2 && (info == -1 || xrcond == 1.0)) warning ("inverse: matrix singular to machine precision, rcond = %g", rcond); } return retval; } /* %!assert(inv ([1, 2; 3, 4]), [-2, 1; 1.5, -0.5], sqrt (eps)) %!assert(inv (single([1, 2; 3, 4])), single([-2, 1; 1.5, -0.5]), sqrt (eps ('single'))) %!error <Invalid call to inv.*> inv (); %!error <Invalid call to inv.*> inv ([1, 2; 3, 4], 2); %!error inv ([1, 2; 3, 4; 5, 6]); */ // FIXME -- this should really be done with an alias, but // alias_builtin() won't do the right thing if we are actually using // dynamic linking. DEFUN_DLD (inverse, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} inverse (@var{a})\n\ See inv.\n\ @end deftypefn") { return Finv (args, nargout); } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */