Mercurial > hg > octave-thorsten
view scripts/statistics/distributions/kolmogorov_smirnov_cdf.m @ 14817:8d3ab19f8599
Fix logncdf tests to use more accurate expected result.
* scripts/statistics/distributions/logncdf.m: use erf(1/sqrt(2)*1/sqrt(2))
instead of erf(1/2) to avoid floating point errors that are below eps
(alternate solution would be to add tolerance to the tests).
author | Michael Goffioul <michael.goffioul@gmail.com> |
---|---|
date | Tue, 12 Jun 2012 19:50:13 +0100 |
parents | f3d52523cde1 |
children |
line wrap: on
line source
## Copyright (C) 2012 Rik Wehbring ## Copyright (C) 1995-2012 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} kolmogorov_smirnov_cdf (@var{x}, @var{tol}) ## Return the cumulative distribution function (CDF) at @var{x} of the ## Kolmogorov-Smirnov distribution, ## @tex ## $$ Q(x) = \sum_{k=-\infty}^\infty (-1)^k \exp (-2 k^2 x^2) $$ ## @end tex ## @ifnottex ## ## @example ## @group ## Inf ## Q(x) = SUM (-1)^k exp (-2 k^2 x^2) ## k = -Inf ## @end group ## @end example ## ## @end ifnottex ## @noindent ## for @var{x} > 0. ## ## The optional parameter @var{tol} specifies the precision up to which ## the series should be evaluated; the default is @var{tol} = @code{eps}. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: CDF of the Kolmogorov-Smirnov distribution function cdf = kolmogorov_smirnov_cdf (x, tol) if (nargin < 1 || nargin > 2) print_usage (); endif if (nargin == 1) if (isa (x, "single")) tol = eps ("single"); else tol = eps; endif else if (! (isscalar (tol) && (tol > 0))) error ("kolmogorov_smirnov_cdf: TOL must be a positive scalar"); endif endif if (numel (x) == 0) error ("kolmogorov_smirnov_cdf: X must not be empty"); endif cdf = zeros (size (x)); ind = find (x > 0); if (length (ind) > 0) if (columns (ind) < rows (ind)) y = x(ind.'); else y = x(ind); endif K = ceil (sqrt (- log (tol) / 2) / min (y)); k = (1:K)'; A = exp (- 2 * k.^2 * y.^2); odd = find (rem (k, 2) == 1); A(odd,:) = -A(odd,:); cdf(ind) = 1 + 2 * sum (A); endif endfunction %% Test input validation %!error kolmogorov_smirnov_cdf () %!error kolmogorov_smirnov_cdf (1,2,3) %!error kolmogorov_smirnov_cdf (1, ones (2)) %!error kolmogorov_smirnov_cdf ([], 1)