Mercurial > hg > octave-nkf > gnulib-hg
view lib/fstrcmp.c @ 7434:2ee32ecdec9d
Make the heuristic dependent on USE_HEURISTIC and the variable 'heuristic'.
author | Bruno Haible <bruno@clisp.org> |
---|---|
date | Sat, 07 Oct 2006 16:40:41 +0000 |
parents | 4266f326be34 |
children | 483a70ceec47 |
line wrap: on
line source
/* Functions to make fuzzy comparisons between strings Copyright (C) 1988-1989, 1992-1993, 1995, 2001-2003, 2006 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Derived from GNU diff 2.7, analyze.c et al. The basic idea is to consider two sequences as similar if, when transforming the first sequence into the second sequence through a sequence of edits (inserts and deletes of one character each), this sequence is short - or equivalently, if the ordered list of elements that are untouched by these edits is long. For a good introduction to the subject, read about the "Levenshtein distance" in Wikipedia. The basic algorithm is described in: "An O(ND) Difference Algorithm and its Variations", Eugene Myers, Algorithmica Vol. 1 No. 2, 1986, pp. 251-266; see especially section 4.2, which describes the variation used below. The basic algorithm was independently discovered as described in: "Algorithms for Approximate String Matching", E. Ukkonen, Information and Control Vol. 64, 1985, pp. 100-118. Unless the 'find_minimal' flag is set, this code uses the TOO_EXPENSIVE heuristic, by Paul Eggert, to limit the cost to O(N**1.5 log N) at the price of producing suboptimal output for large inputs with many differences. */ #include <config.h> /* Specification. */ #include "fstrcmp.h" #include <string.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <limits.h> #include "lock.h" #include "tls.h" #include "xalloc.h" #ifndef uintptr_t # define uintptr_t unsigned long #endif #define ELEMENT char #define EQUAL(x,y) ((x) == (y)) #define OFFSET int /* Before including this file, you need to define: ELEMENT The element type of the sequences being compared. EQUAL A two-argument macro that tests two elements for equality. OFFSET A signed integer type sufficient to hold the difference between two indices. Usually something like ssize_t. */ /* Maximum value of type OFFSET. */ #define OFFSET_MAX \ ((((OFFSET)1 << (sizeof (OFFSET_MAX) * CHAR_BIT - 2)) - 1) * 2 + 1) /* * Context of comparison operation. */ struct context { /* * Data on one input string being compared. */ struct string_data { /* The string to be compared. */ const ELEMENT *data; /* The length of the string to be compared. */ int data_length; /* The number of elements inserted or deleted. */ int edit_count; } string[2]; /* Vector, indexed by diagonal, containing 1 + the X coordinate of the point furthest along the given diagonal in the forward search of the edit matrix. */ OFFSET *fdiag; /* Vector, indexed by diagonal, containing the X coordinate of the point furthest along the given diagonal in the backward search of the edit matrix. */ OFFSET *bdiag; #ifdef USE_HEURISTIC /* This corresponds to the diff -H flag. With this heuristic, for vectors with a constant small density of changes, the algorithm is linear in the vectors size. This is unlikely in typical uses of fstrcmp, and so is usually compiled out. Besides, there is no interface to set it true. */ int heuristic; #endif /* Edit scripts longer than this are too expensive to compute. */ OFFSET too_expensive; /* Snakes bigger than this are considered `big'. */ #define SNAKE_LIMIT 20 }; struct partition { /* Midpoints of this partition. */ int xmid, ymid; /* True if low half will be analyzed minimally. */ bool lo_minimal; /* Likewise for high half. */ bool hi_minimal; }; /* NAME diag - find diagonal path SYNOPSIS int diag(int xoff, int xlim, int yoff, int ylim, bool find_minimal, struct partition *part, struct context *ctxt); DESCRIPTION Find the midpoint of the shortest edit script for a specified portion of the two vectors. Scan from the beginnings of the vectors, and simultaneously from the ends, doing a breadth-first search through the space of edit-sequence. When the two searches meet, we have found the midpoint of the shortest edit sequence. If FIND_MINIMAL is true, find the minimal edit script regardless of expense. Otherwise, if the search is too expensive, use heuristics to stop the search and report a suboptimal answer. RETURNS Set PART->(XMID,YMID) to the midpoint (XMID,YMID). The diagonal number XMID - YMID equals the number of inserted elements minus the number of deleted elements (counting only elements before the midpoint). Return the approximate edit cost; this is the total number of elements inserted or deleted (counting only elements before the midpoint), unless a heuristic is used to terminate the search prematurely. Set PART->lo_minimal to nonzero iff the minimal edit script for the left half of the partition is known; similarly for PART->hi_minimal. CAVEAT This function assumes that the first elements of the specified portions of the two vectors do not match, and likewise that the last elements do not match. The caller must trim matching elements from the beginning and end of the portions it is going to specify. If we return the "wrong" partitions, the worst this can do is cause suboptimal diff output. It cannot cause incorrect diff output. */ static OFFSET diag (OFFSET xoff, OFFSET xlim, OFFSET yoff, OFFSET ylim, bool find_minimal, struct partition *part, struct context *ctxt) { OFFSET *const fd = ctxt->fdiag; /* Give the compiler a chance. */ OFFSET *const bd = ctxt->bdiag; /* Additional help for the compiler. */ const ELEMENT *const xv = ctxt->string[0].data; /* Still more help for the compiler. */ const ELEMENT *const yv = ctxt->string[1].data; /* And more and more . . . */ const OFFSET dmin = xoff - ylim; /* Minimum valid diagonal. */ const OFFSET dmax = xlim - yoff; /* Maximum valid diagonal. */ const OFFSET fmid = xoff - yoff; /* Center diagonal of top-down search. */ const OFFSET bmid = xlim - ylim; /* Center diagonal of bottom-up search. */ OFFSET fmin = fmid; OFFSET fmax = fmid; /* Limits of top-down search. */ OFFSET bmin = bmid; OFFSET bmax = bmid; /* Limits of bottom-up search. */ OFFSET c; /* Cost. */ bool odd = (fmid - bmid) & 1; /* * True if southeast corner is on an odd diagonal with respect * to the northwest. */ fd[fmid] = xoff; bd[bmid] = xlim; for (c = 1;; ++c) { OFFSET d; /* Active diagonal. */ bool big_snake; big_snake = false; /* Extend the top-down search by an edit step in each diagonal. */ if (fmin > dmin) fd[--fmin - 1] = -1; else ++fmin; if (fmax < dmax) fd[++fmax + 1] = -1; else --fmax; for (d = fmax; d >= fmin; d -= 2) { OFFSET x; OFFSET y; OFFSET oldx; OFFSET tlo; OFFSET thi; tlo = fd[d - 1]; thi = fd[d + 1]; if (tlo >= thi) x = tlo + 1; else x = thi; oldx = x; y = x - d; while (x < xlim && y < ylim && xv[x] == yv[y]) { ++x; ++y; } if (x - oldx > SNAKE_LIMIT) big_snake = true; fd[d] = x; if (odd && bmin <= d && d <= bmax && bd[d] <= x) { part->xmid = x; part->ymid = y; part->lo_minimal = part->hi_minimal = true; return 2 * c - 1; } } /* Similarly extend the bottom-up search. */ if (bmin > dmin) bd[--bmin - 1] = OFFSET_MAX; else ++bmin; if (bmax < dmax) bd[++bmax + 1] = OFFSET_MAX; else --bmax; for (d = bmax; d >= bmin; d -= 2) { OFFSET x; OFFSET y; OFFSET oldx; OFFSET tlo; OFFSET thi; tlo = bd[d - 1]; thi = bd[d + 1]; if (tlo < thi) x = tlo; else x = thi - 1; oldx = x; y = x - d; while (x > xoff && y > yoff && xv[x - 1] == yv[y - 1]) { --x; --y; } if (oldx - x > SNAKE_LIMIT) big_snake = true; bd[d] = x; if (!odd && fmin <= d && d <= fmax && x <= fd[d]) { part->xmid = x; part->ymid = y; part->lo_minimal = part->hi_minimal = true; return 2 * c; } } if (find_minimal) continue; #ifdef USE_HEURISTIC /* Heuristic: check occasionally for a diagonal that has made lots of progress compared with the edit distance. If we have any such, find the one that has made the most progress and return it as if it had succeeded. With this heuristic, for vectors with a constant small density of changes, the algorithm is linear in the vector size. */ if (c > 200 && big_snake && ctxt->heuristic) { OFFSET best; best = 0; for (d = fmax; d >= fmin; d -= 2) { OFFSET dd; OFFSET x; OFFSET y; OFFSET v; dd = d - fmid; x = fd[d]; y = x - d; v = (x - xoff) * 2 - dd; if (v > 12 * (c + (dd < 0 ? -dd : dd))) { if (v > best && xoff + SNAKE_LIMIT <= x && x < xlim && yoff + SNAKE_LIMIT <= y && y < ylim ) { /* We have a good enough best diagonal; now insist that it end with a significant snake. */ int k; for (k = 1; xv[x - k] == yv[y - k]; k++) { if (k == SNAKE_LIMIT) { best = v; part->xmid = x; part->ymid = y; break; } } } } } if (best > 0) { part->lo_minimal = true; part->hi_minimal = false; return 2 * c - 1; } best = 0; for (d = bmax; d >= bmin; d -= 2) { OFFSET dd; OFFSET x; OFFSET y; OFFSET v; dd = d - bmid; x = bd[d]; y = x - d; v = (xlim - x) * 2 + dd; if (v > 12 * (c + (dd < 0 ? -dd : dd))) { if (v > best && xoff < x && x <= xlim - SNAKE_LIMIT && yoff < y && y <= ylim - SNAKE_LIMIT) { /* We have a good enough best diagonal; now insist that it end with a significant snake. */ int k; for (k = 0; xv[x + k] == yv[y + k]; k++) { if (k == SNAKE_LIMIT - 1) { best = v; part->xmid = x; part->ymid = y; break; } } } } } if (best > 0) { part->lo_minimal = false; part->hi_minimal = true; return 2 * c - 1; } } #endif /* USE_HEURISTIC */ /* Heuristic: if we've gone well beyond the call of duty, give up and report halfway between our best results so far. */ if (c >= ctxt->too_expensive) { OFFSET fxybest; OFFSET fxbest; OFFSET bxybest; OFFSET bxbest; /* Pacify `gcc -Wall'. */ fxbest = 0; bxbest = 0; /* Find forward diagonal that maximizes X + Y. */ fxybest = -1; for (d = fmax; d >= fmin; d -= 2) { OFFSET x; OFFSET y; x = fd[d] < xlim ? fd[d] : xlim; y = x - d; if (ylim < y) { x = ylim + d; y = ylim; } if (fxybest < x + y) { fxybest = x + y; fxbest = x; } } /* Find backward diagonal that minimizes X + Y. */ bxybest = OFFSET_MAX; for (d = bmax; d >= bmin; d -= 2) { OFFSET x; OFFSET y; x = xoff > bd[d] ? xoff : bd[d]; y = x - d; if (y < yoff) { x = yoff + d; y = yoff; } if (x + y < bxybest) { bxybest = x + y; bxbest = x; } } /* Use the better of the two diagonals. */ if ((xlim + ylim) - bxybest < fxybest - (xoff + yoff)) { part->xmid = fxbest; part->ymid = fxybest - fxbest; part->lo_minimal = true; part->hi_minimal = false; } else { part->xmid = bxbest; part->ymid = bxybest - bxbest; part->lo_minimal = false; part->hi_minimal = true; } return 2 * c - 1; } } } /* NAME compareseq - find edit sequence SYNOPSIS void compareseq(int xoff, int xlim, int yoff, int ylim, bool find_minimal, struct context *ctxt); DESCRIPTION Compare in detail contiguous subsequences of the two vectors which are known, as a whole, to match each other. The subsequence of vector 0 is [XOFF, XLIM) and likewise for vector 1. Note that XLIM, YLIM are exclusive bounds. All character numbers are origin-0. If FIND_MINIMAL is nonzero, find a minimal difference no matter how expensive it is. */ static void compareseq (OFFSET xoff, OFFSET xlim, OFFSET yoff, OFFSET ylim, bool find_minimal, struct context *ctxt) { const ELEMENT *const xv = ctxt->string[0].data; /* Help the compiler. */ const ELEMENT *const yv = ctxt->string[1].data; /* Slide down the bottom initial diagonal. */ while (xoff < xlim && yoff < ylim && xv[xoff] == yv[yoff]) { ++xoff; ++yoff; } /* Slide up the top initial diagonal. */ while (xlim > xoff && ylim > yoff && xv[xlim - 1] == yv[ylim - 1]) { --xlim; --ylim; } /* Handle simple cases. */ if (xoff == xlim) { while (yoff < ylim) { ctxt->string[1].edit_count++; ++yoff; } } else if (yoff == ylim) { while (xoff < xlim) { ctxt->string[0].edit_count++; ++xoff; } } else { OFFSET c; struct partition part; /* Find a point of correspondence in the middle of the vectors. */ c = diag (xoff, xlim, yoff, ylim, find_minimal, &part, ctxt); if (c == 1) { #if 0 /* This should be impossible, because it implies that one of the two subsequences is empty, and that case was handled above without calling `diag'. Let's verify that this is true. */ abort (); #else /* The two subsequences differ by a single insert or delete; record it and we are done. */ if (part.xmid - part.ymid < xoff - yoff) ctxt->string[1].edit_count++; else ctxt->string[0].edit_count++; #endif } else { /* Use the partitions to split this problem into subproblems. */ compareseq (xoff, part.xmid, yoff, part.ymid, part.lo_minimal, ctxt); compareseq (part.xmid, xlim, part.ymid, ylim, part.hi_minimal, ctxt); } } } /* Because fstrcmp is typically called multiple times, attempt to minimize the number of memory allocations performed. Thus, let a call reuse the memory already allocated by the previous call, if it is sufficient. To make it multithread-safe, without need for a lock that protects the already allocated memory, store the allocated memory per thread. Free it only when the thread exits. */ static gl_tls_key_t buffer_key; /* TLS key for a 'int *' */ static gl_tls_key_t bufmax_key; /* TLS key for a 'size_t' */ static void keys_init (void) { gl_tls_key_init (buffer_key, free); gl_tls_key_init (bufmax_key, NULL); /* The per-thread initial values are NULL and 0, respectively. */ } /* Ensure that keys_init is called once only. */ gl_once_define(static, keys_init_once); /* NAME fstrcmp - fuzzy string compare SYNOPSIS double fstrcmp(const char *, const char *); DESCRIPTION The fstrcmp function may be used to compare two string for similarity. It is very useful in reducing "cascade" or "secondary" errors in compilers or other situations where symbol tables occur. RETURNS double; 0 if the strings are entirly dissimilar, 1 if the strings are identical, and a number in between if they are similar. */ double fstrcmp (const char *string1, const char *string2) { struct context ctxt; int i; size_t fdiag_len; int *buffer; size_t bufmax; /* set the info for each string. */ ctxt.string[0].data = string1; ctxt.string[0].data_length = strlen (string1); ctxt.string[1].data = string2; ctxt.string[1].data_length = strlen (string2); /* short-circuit obvious comparisons */ if (ctxt.string[0].data_length == 0 && ctxt.string[1].data_length == 0) return 1.0; if (ctxt.string[0].data_length == 0 || ctxt.string[1].data_length == 0) return 0.0; /* Set TOO_EXPENSIVE to be approximate square root of input size, bounded below by 256. */ ctxt.too_expensive = 1; for (i = ctxt.string[0].data_length + ctxt.string[1].data_length; i != 0; i >>= 2) ctxt.too_expensive <<= 1; if (ctxt.too_expensive < 256) ctxt.too_expensive = 256; /* Allocate memory for fdiag and bdiag from a thread-local pool. */ fdiag_len = ctxt.string[0].data_length + ctxt.string[1].data_length + 3; gl_once (keys_init_once, keys_init); buffer = (int *) gl_tls_get (buffer_key); bufmax = (size_t) (uintptr_t) gl_tls_get (bufmax_key); if (fdiag_len > bufmax) { /* Need more memory. */ bufmax = 2 * bufmax; if (fdiag_len > bufmax) bufmax = fdiag_len; /* Calling xrealloc would be a waste: buffer's contents does not need to be preserved. */ if (buffer != NULL) free (buffer); buffer = (int *) xmalloc (bufmax * (2 * sizeof (int))); gl_tls_set (buffer_key, buffer); gl_tls_set (bufmax_key, (void *) (uintptr_t) bufmax); } ctxt.fdiag = buffer + ctxt.string[1].data_length + 1; ctxt.bdiag = ctxt.fdiag + fdiag_len; /* Now do the main comparison algorithm */ ctxt.string[0].edit_count = 0; ctxt.string[1].edit_count = 0; compareseq (0, ctxt.string[0].data_length, 0, ctxt.string[1].data_length, 0, &ctxt); /* The result is ((number of chars in common) / (average length of the strings)). This is admittedly biased towards finding that the strings are similar, however it does produce meaningful results. */ return ((double) (ctxt.string[0].data_length + ctxt.string[1].data_length - ctxt.string[1].edit_count - ctxt.string[0].edit_count) / (ctxt.string[0].data_length + ctxt.string[1].data_length)); }