Mercurial > hg > octave-nkf
view scripts/general/cplxpair.m @ 9141:c1fff751b5a8
Update section 17.1 (Utility Functions) of arith.txi
Split section into "Exponents and Logarithms" and "Utility Functions"
Use Tex in many more of the doc strings for pretty printing in pdf format.
author | Rik <rdrider0-list@yahoo.com> |
---|---|
date | Mon, 20 Apr 2009 17:16:09 -0700 |
parents | 1bf0ce0930be |
children | 5247e89688e1 |
line wrap: on
line source
## Copyright (C) 2000, 2006, 2007, 2008, 2009 Paul Kienzle ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} cplxpair (@var{z}) ## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}) ## @deftypefnx {Function File} {} cplxpair (@var{z}, @var{tol}, @var{dim}) ## Sort the numbers @var{z} into complex conjugate pairs ordered by ## increasing real part. Place the negative imaginary complex number ## first within each pair. Place all the real numbers (those with ## @code{abs (imag (@var{z}) / @var{z}) < @var{tol})}) after the ## complex pairs. ## ## If @var{tol} is unspecified the default value is 100*@var{eps}. ## ## By default the complex pairs are sorted along the first non-singleton ## dimension of @var{z}. If @var{dim} is specified, then the complex ## pairs are sorted along this dimension. ## ## Signal an error if some complex numbers could not be paired. Requires ## all complex numbers to be exact conjugates within @var{tol}, or signals an ## error. Note that there are no guarantees on the order of the returned ## pairs with identical real parts but differing imaginary parts. ## ## @c Using 'smallexample' to make text fit in page when using 'smallbook' ## @smallexample ## cplxpair (exp(2i*pi*[0:4]'/5)) == exp(2i*pi*[3; 2; 4; 1; 0]/5) ## @end smallexample ## @end deftypefn ## FIXME: subsort returned pairs by imaginary magnitude ## FIXME: Why doesn't exp(2i*pi*[0:4]'/5) produce exact conjugates. Does ## FIXME: it in Matlab? The reason is that complex pairs are supposed ## FIXME: to be exact conjugates, and not rely on a tolerance test. ## 2006-05-12 David Bateman - Modified for NDArrays function y = cplxpair (z, tol, dim) if nargin < 1 || nargin > 3 print_usage (); endif if (length (z) == 0) y = zeros (size (z)); return; endif if (nargin < 2 || isempty (tol)) if (isa (z, "single")) tol = 100 * eps("single"); else tol = 100*eps; endif endif nd = ndims (z); orig_dims = size (z); if (nargin < 3) ## Find the first singleton dimension. dim = 0; while (dim < nd && orig_dims(dim+1) == 1) dim++; endwhile dim++; if (dim > nd) dim = 1; endif else dim = floor(dim); if (dim < 1 || dim > nd) error ("cplxpair: invalid dimension along which to sort"); endif endif ## Move dimension to treat first, and convert to a 2-D matrix. perm = [dim:nd, 1:dim-1]; z = permute (z, perm); sz = size (z); n = sz (1); m = prod (sz) / n; z = reshape (z, n, m); ## Sort the sequence in terms of increasing real values. [q, idx] = sort (real (z), 1); z = z(idx + n * ones (n, 1) * [0:m-1]); ## Put the purely real values at the end of the returned list. cls = "double"; if (isa (z, "single")) cls = "single"; endif [idxi, idxj] = find (abs (imag (z)) ./ (abs (z) + realmin(cls)) < tol); q = sparse (idxi, idxj, 1, n, m); nr = sum (q, 1); [q, idx] = sort (q, 1); z = z(idx); y = z; ## For each remaining z, place the value and its conjugate at the ## start of the returned list, and remove them from further ## consideration. for j = 1:m p = n - nr(j); for i = 1:2:p if (i+1 > p) error ("cplxpair could not pair all complex numbers"); endif [v, idx] = min (abs (z(i+1:p) - conj (z(i)))); if (v > tol) error ("cplxpair could not pair all complex numbers"); endif if (imag (z(i)) < 0) y([i, i+1]) = z([i, idx+i]); else y([i, i+1]) = z([idx+i, i]); endif z(idx+i) = z(i+1); endfor endfor ## Reshape the output matrix. y = ipermute (reshape (y, sz), perm); endfunction %!demo %! [ cplxpair(exp(2i*pi*[0:4]'/5)), exp(2i*pi*[3; 2; 4; 1; 0]/5) ] %!assert (isempty(cplxpair([]))); %!assert (cplxpair(1), 1) %!assert (cplxpair([1+1i, 1-1i]), [1-1i, 1+1i]) %!assert (cplxpair([1+1i, 1+1i, 1, 1-1i, 1-1i, 2]), \ %! [1-1i, 1+1i, 1-1i, 1+1i, 1, 2]) %!assert (cplxpair([1+1i; 1+1i; 1; 1-1i; 1-1i; 2]), \ %! [1-1i; 1+1i; 1-1i; 1+1i; 1; 2]) %!assert (cplxpair([0, 1, 2]), [0, 1, 2]); %!shared z %! z=exp(2i*pi*[4; 3; 5; 2; 6; 1; 0]/7); %!assert (cplxpair(z(randperm(7))), z); %!assert (cplxpair(z(randperm(7))), z); %!assert (cplxpair(z(randperm(7))), z); %!assert (cplxpair([z(randperm(7)),z(randperm(7))]),[z,z]) %!assert (cplxpair([z(randperm(7)),z(randperm(7))],[],1),[z,z]) %!assert (cplxpair([z(randperm(7)).';z(randperm(7)).'],[],2),[z.';z.']) %!## tolerance test %!assert (cplxpair([1i, -1i, 1+(1i*eps)],2*eps), [-1i, 1i, 1+(1i*eps)]);