Mercurial > hg > octave-nkf
view src/DLD-FUNCTIONS/chol.cc @ 7924:4976f66d469b
miscellaneous cleanup
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 11 Jul 2008 17:59:28 -0400 |
parents | 87865ed7405f |
children | 366821c0c01c |
line wrap: on
line source
/* Copyright (C) 1996, 1997, 1999, 2000, 2002, 2005, 2006, 2007 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ // The cholupdate, cholinsert, choldelete and cholshift functions were // written by Jaroslav Hajek <highegg@gmail.com>, Copyright (C) 2008 // VZLU Prague, a.s., Czech Republic. #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "CmplxCHOL.h" #include "dbleCHOL.h" #include "fCmplxCHOL.h" #include "floatCHOL.h" #include "SparseCmplxCHOL.h" #include "SparsedbleCHOL.h" #include "oct-spparms.h" #include "sparse-util.h" #include "ov-re-sparse.h" #include "ov-cx-sparse.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (chol, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{r} =} chol (@var{a})\n\ @deftypefnx {Loadable Function} {[@var{r}, @var{p}] =} chol (@var{a})\n\ @deftypefnx {Loadable Function} {[@var{r}, @var{p}, @var{q}] =} chol (@var{s})\n\ @deftypefnx {Loadable Function} {[@var{r}, @var{p}, @var{q}] =} chol (@var{s}, 'vector')\n\ @deftypefnx {Loadable Function} {[@var{l}, @dots{}] =} chol (@dots{}, 'lower')\n\ @cindex Cholesky factorization\n\ Compute the Cholesky factor, @var{r}, of the symmetric positive definite\n\ matrix @var{a}, where\n\ @iftex\n\ @tex\n\ $ R^T R = A $.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ @var{r}' * @var{r} = @var{a}.\n\ @end example\n\ @end ifinfo\n\ \n\ Called with one output argument @code{chol} fails if @var{a} or @var{s} is\n\ not positive definite. With two or more output arguments @var{p} flags\n\ whether the matrix was positive definite and @code{chol} does not fail. A\n\ zero value indicated that the matrix was positive definite and the @var{r}\n\ gives the factorization, annd @var{p} will have a positive value otherwise.\n\ \n\ If called with 3 outputs then a sparsity preserving row/column permutation\n\ is applied to @var{a} prior to the factorization. That is @var{r}\n\ is the factorization of @code{@var{a}(@var{q},@var{q})} such that\n\ @iftex\n\ @tex\n\ $ R^T R = Q^T A Q$.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ @var{r}' * @var{r} = @var{q}' * @var{a} * @var{q}.\n\ @end example\n\ @end ifinfo\n\ \n\ The sparsity preserving permutation is generally returned as a matrix.\n\ However, given the flag 'vector', @var{q} will be returned as a vector\n\ such that\n\ @iftex\n\ @tex\n\ $ R^T R = A (Q, Q)$.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ @var{r}' * @var{r} = a (@var{q}, @var{q}).\n\ @end example\n\ @end ifinfo\n\ \n\ Called with either a sparse or full matrix and uing the 'lower' flag,\n\ @code{chol} returns the lower triangular factorization such that\n\ @iftex\n\ @tex\n\ $ L L^T = A $.\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ @var{l} * @var{l}' = @var{a}.\n\ @end example\n\ @end ifinfo\n\ \n\ In general the lower trinagular factorization is significantly faster for\n\ sparse matrices.\n\ @seealso{cholinv, chol2inv}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); bool LLt = false; bool vecout = false; if (nargin < 1 || nargin > 3 || nargout > 3 || (! args(0).is_sparse_type () && nargout > 2)) { print_usage (); return retval; } int n = 1; while (n < nargin && ! error_state) { std::string tmp = args(n++).string_value (); if (! error_state ) { if (tmp.compare ("vector") == 0) vecout = true; else if (tmp.compare ("lower") == 0) LLt = true; else if (tmp.compare ("upper") == 0) LLt = false; else error ("chol: unexpected second or third input"); } else error ("chol: expecting trailing string arguments"); } if (! error_state) { octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); bool natural = (nargout != 3); int arg_is_empty = empty_arg ("chol", nr, nc); if (arg_is_empty < 0) return retval; if (arg_is_empty > 0) return octave_value (Matrix ()); if (arg.is_sparse_type ()) { if (arg.is_real_type ()) { SparseMatrix m = arg.sparse_matrix_value (); if (! error_state) { octave_idx_type info; SparseCHOL fact (m, info, natural); if (nargout == 3) { if (vecout) retval(2) = fact.perm (); else retval(2) = fact.Q(); } if (nargout > 1 || info == 0) { retval(1) = fact.P(); if (LLt) retval(0) = fact.L(); else retval(0) = fact.R(); } else error ("chol: matrix not positive definite"); } } else if (arg.is_complex_type ()) { SparseComplexMatrix m = arg.sparse_complex_matrix_value (); if (! error_state) { octave_idx_type info; SparseComplexCHOL fact (m, info, natural); if (nargout == 3) { if (vecout) retval(2) = fact.perm (); else retval(2) = fact.Q(); } if (nargout > 1 || info == 0) { retval(1) = fact.P(); if (LLt) retval(0) = fact.L(); else retval(0) = fact.R(); } else error ("chol: matrix not positive definite"); } } else gripe_wrong_type_arg ("chol", arg); } else if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatMatrix m = arg.float_matrix_value (); if (! error_state) { octave_idx_type info; FloatCHOL fact (m, info); if (nargout == 2 || info == 0) { retval(1) = static_cast<float> (info); if (LLt) retval(0) = fact.chol_matrix ().transpose (); else retval(0) = fact.chol_matrix (); } else error ("chol: matrix not positive definite"); } } else if (arg.is_complex_type ()) { FloatComplexMatrix m = arg.float_complex_matrix_value (); if (! error_state) { octave_idx_type info; FloatComplexCHOL fact (m, info); if (nargout == 2 || info == 0) { retval(1) = static_cast<float> (info); if (LLt) retval(0) = fact.chol_matrix ().hermitian (); else retval(0) = fact.chol_matrix (); } else error ("chol: matrix not positive definite"); } } else gripe_wrong_type_arg ("chol", arg); } else { if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { octave_idx_type info; CHOL fact (m, info); if (nargout == 2 || info == 0) { retval(1) = static_cast<double> (info); if (LLt) retval(0) = fact.chol_matrix ().transpose (); else retval(0) = fact.chol_matrix (); } else error ("chol: matrix not positive definite"); } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { octave_idx_type info; ComplexCHOL fact (m, info); if (nargout == 2 || info == 0) { retval(1) = static_cast<double> (info); if (LLt) retval(0) = fact.chol_matrix ().hermitian (); else retval(0) = fact.chol_matrix (); } else error ("chol: matrix not positive definite"); } } else gripe_wrong_type_arg ("chol", arg); } } return retval; } /* %!assert(chol ([2, 1; 1, 1]), [sqrt(2), 1/sqrt(2); 0, 1/sqrt(2)], sqrt (eps)); %!assert(chol (single([2, 1; 1, 1])), single([sqrt(2), 1/sqrt(2); 0, 1/sqrt(2)]), sqrt (eps('single'))); %!error chol ([1, 2; 3, 4]); %!error chol ([1, 2; 3, 4; 5, 6]); %!error <Invalid call to chol.*> chol (); %!error <unexpected second or third input.*> chol (1, 2); */ DEFUN_DLD (cholinv, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} cholinv (@var{a})\n\ Use the Cholesky factorization to compute the inverse of the\n\ symmetric positive definite matrix @var{a}.\n\ @seealso{chol, chol2inv}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 1) { octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else { if (arg.is_sparse_type ()) { if (arg.is_real_type ()) { SparseMatrix m = arg.sparse_matrix_value (); if (! error_state) { octave_idx_type info; SparseCHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else if (arg.is_complex_type ()) { SparseComplexMatrix m = arg.sparse_complex_matrix_value (); if (! error_state) { octave_idx_type info; SparseComplexCHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else gripe_wrong_type_arg ("cholinv", arg); } else if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatMatrix m = arg.float_matrix_value (); if (! error_state) { octave_idx_type info; FloatCHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else if (arg.is_complex_type ()) { FloatComplexMatrix m = arg.float_complex_matrix_value (); if (! error_state) { octave_idx_type info; FloatComplexCHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else gripe_wrong_type_arg ("chol", arg); } else { if (arg.is_real_type ()) { Matrix m = arg.matrix_value (); if (! error_state) { octave_idx_type info; CHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else if (arg.is_complex_type ()) { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { octave_idx_type info; ComplexCHOL chol (m, info); if (info == 0) retval = chol.inverse (); else error ("cholinv: matrix not positive definite"); } } else gripe_wrong_type_arg ("chol", arg); } } } else print_usage (); return retval; } DEFUN_DLD (chol2inv, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} chol2inv (@var{u})\n\ Invert a symmetric, positive definite square matrix from its Cholesky\n\ decomposition, @var{u}. Note that @var{u} should be an upper-triangular\n\ matrix with positive diagonal elements. @code{chol2inv (@var{u})}\n\ provides @code{inv (@var{u}'*@var{u})} but it is much faster than\n\ using @code{inv}.\n\ @seealso{chol, cholinv}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 1) { octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); if (nr == 0 || nc == 0) retval = Matrix (); else { if (arg.is_sparse_type ()) { if (arg.is_real_type ()) { SparseMatrix r = arg.sparse_matrix_value (); if (! error_state) retval = chol2inv (r); } else if (arg.is_complex_type ()) { SparseComplexMatrix r = arg.sparse_complex_matrix_value (); if (! error_state) retval = chol2inv (r); } else gripe_wrong_type_arg ("chol2inv", arg); } else if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatMatrix r = arg.float_matrix_value (); if (! error_state) retval = chol2inv (r); } else if (arg.is_complex_type ()) { FloatComplexMatrix r = arg.float_complex_matrix_value (); if (! error_state) retval = chol2inv (r); } else gripe_wrong_type_arg ("chol2inv", arg); } else { if (arg.is_real_type ()) { Matrix r = arg.matrix_value (); if (! error_state) retval = chol2inv (r); } else if (arg.is_complex_type ()) { ComplexMatrix r = arg.complex_matrix_value (); if (! error_state) retval = chol2inv (r); } else gripe_wrong_type_arg ("chol2inv", arg); } } } else print_usage (); return retval; } DEFUN_DLD (cholupdate, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{R1}, @var{info}] =} cholupdate (@var{R}, @var{u}, @var{op})\n\ Update or downdate a Cholesky factorization. Given an upper triangular\n\ matrix @var{R} and a column vector @var{u}, attempt to determine another\n\ upper triangular matrix @var{R1} such that\n\ @itemize @bullet\n\ @item\n\ @var{R1}'*@var{R1} = @var{R}'*@var{R} + @var{u}*@var{u}'\n\ if @var{op} is \"+\"\n\ @item\n\ @var{R1}'*@var{R1} = @var{R}'*@var{R} - @var{u}*@var{u}'\n\ if @var{op} is \"-\"\n\ @end itemize\n\ \n\ If @var{op} is \"-\", @var{info} is set to\n\ @itemize\n\ @item 0 if the downdate was successful,\n\ @item 1 if @var{R}'*@var{R} - @var{u}*@var{u}' is not positive definite,\n\ @item 2 if @var{R} is singular.\n\ @end itemize\n\ \n\ If @var{info} is not present, an error message is printed in cases 1 and 2.\n\ @seealso{chol, qrupdate}\n\ @end deftypefn") { octave_idx_type nargin = args.length (); octave_value_list retval; if (nargin > 3 || nargin < 2) { print_usage (); return retval; } octave_value argr = args(0); octave_value argu = args(1); if (argr.is_matrix_type () && argu.is_matrix_type () && (nargin < 3 || args(2).is_string ())) { octave_idx_type n = argr.rows (); std::string op = (nargin < 3) ? "+" : args(2).string_value (); bool down = op == "-"; if (down || op == "+") if (argr.columns () == n && argu.rows () == n && argu.columns () == 1) { if (argr.is_single_type () || argu.is_single_type ()) { if (argr.is_real_matrix () && argu.is_real_matrix ()) { // real case FloatMatrix R = argr.float_matrix_value (); FloatMatrix u = argu.float_matrix_value (); FloatCHOL fact; fact.set (R); int err = 0; if (down) err = fact.downdate (u); else fact.update (u); if (nargout > 1) retval(1) = err; else if (err) error ("cholupdate: downdate violates positiveness"); retval(0) = fact.chol_matrix (); } else { // complex case FloatComplexMatrix R = argr.float_complex_matrix_value (); FloatComplexMatrix u = argu.float_complex_matrix_value (); FloatComplexCHOL fact; fact.set (R); int err = 0; if (down) err = fact.downdate (u); else fact.update (u); if (nargout > 1) retval(1) = err; else if (err) error ("cholupdate: downdate violates positiveness"); retval(0) = fact.chol_matrix (); } } else { if (argr.is_real_matrix () && argu.is_real_matrix ()) { // real case Matrix R = argr.matrix_value (); Matrix u = argu.matrix_value (); CHOL fact; fact.set (R); int err = 0; if (down) err = fact.downdate (u); else fact.update (u); if (nargout > 1) retval(1) = err; else if (err) error ("cholupdate: downdate violates positiveness"); retval(0) = fact.chol_matrix (); } else { // complex case ComplexMatrix R = argr.complex_matrix_value (); ComplexMatrix u = argu.complex_matrix_value (); ComplexCHOL fact; fact.set (R); int err = 0; if (down) err = fact.downdate (u); else fact.update (u); if (nargout > 1) retval(1) = err; else if (err) error ("cholupdate: downdate violates positiveness"); retval(0) = fact.chol_matrix (); } } } else error ("cholupdate: dimension mismatch"); else error ("cholupdate: op must be \"+\" or \"-\""); } else print_usage (); return retval; } /* %!shared A, u, Ac, uc %! A = [ 0.436997 -0.131721 0.124120 -0.061673 ; %! -0.131721 0.738529 0.019851 -0.140295 ; %! 0.124120 0.019851 0.354879 -0.059472 ; %! -0.061673 -0.140295 -0.059472 0.600939 ]; %! %! u = [ 0.98950 ; %! 0.39844 ; %! 0.63484 ; %! 0.13351 ]; %! Ac = [ 0.5585528 + 0.0000000i -0.1662088 - 0.0315341i 0.0107873 + 0.0236411i -0.0276775 - 0.0186073i ; %! -0.1662088 + 0.0315341i 0.6760061 + 0.0000000i 0.0011452 - 0.0475528i 0.0145967 + 0.0247641i ; %! 0.0107873 - 0.0236411i 0.0011452 + 0.0475528i 0.6263149 - 0.0000000i -0.1585837 - 0.0719763i ; %! -0.0276775 + 0.0186073i 0.0145967 - 0.0247641i -0.1585837 + 0.0719763i 0.6034234 - 0.0000000i ]; %! %! uc = [ 0.54267 + 0.91519i ; %! 0.99647 + 0.43141i ; %! 0.83760 + 0.68977i ; %! 0.39160 + 0.90378i ]; %!test %! R = chol(A); %! %! R1 = cholupdate(R,u); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - R'*R - u*u',Inf) < 1e1*eps) %! %! R1 = cholupdate(R1,u,"-"); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1 - R,Inf) < 1e1*eps) %! %!test %! R = chol(Ac); %! %! R1 = cholupdate(R,uc); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - R'*R - uc*uc',Inf) < 1e1*eps) %! %! R1 = cholupdate(R1,uc,"-"); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1 - R,Inf) < 1e1*eps) %!test %! R = chol(single(A)); %! %! R1 = cholupdate(R,single(u)); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - R'*R - single(u*u'),Inf) < 1e1*eps('single')) %! %! R1 = cholupdate(R1,single(u),"-"); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1 - R,Inf) < 1e1*eps('single')) %! %!test %! R = chol(single(Ac)); %! %! R1 = cholupdate(R,single(uc)); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - R'*R - single(uc*uc'),Inf) < 1e1*eps('single')) %! %! R1 = cholupdate(R1,single(uc),"-"); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1 - R,Inf) < 1e1*eps('single')) */ DEFUN_DLD (cholinsert, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {[@var{R1}, @var{info}] =} cholinsert (@var{R}, @var{j}, @var{u})\n\ Given a Cholesky@tie{}factorization of a real symmetric or complex hermitian\n\ positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper triangular,\n\ return the QR@tie{}factorization of\n\ @var{A1}, where @w{A1(p,p) = A}, @w{A1(:,j) = A1(j,:)' = u} and\n\ @w{p = [1:j-1,j+1:n+1]}. @w{u(j)} should be positive.\n\ On return, @var{info} is set to\n\ @itemize\n\ @item 0 if the insertion was successful,\n\ @item 1 if @var{A1} is not positive definite,\n\ @item 2 if @var{R} is singular.\n\ @end itemize\n\ \n\ If @var{info} is not present, an error message is printed in cases 1 and 2.\n\ @seealso{chol, cholupdate, choldelete}\n\ @end deftypefn") { octave_idx_type nargin = args.length (); octave_value_list retval; if (nargin != 3) { print_usage (); return retval; } octave_value argr = args(0); octave_value argj = args(1); octave_value argu = args(2); if (argr.is_matrix_type () && argu.is_matrix_type () && argj.is_real_scalar ()) { octave_idx_type n = argr.rows (); octave_idx_type j = argj.scalar_value (); if (argr.columns () == n && argu.rows () == n+1 && argu.columns () == 1) { if (j > 0 && j <= n+1) { if (argr.is_single_type () || argu.is_single_type ()) { if (argr.is_real_matrix () && argu.is_real_matrix ()) { // real case FloatMatrix R = argr.float_matrix_value (); FloatMatrix u = argu.float_matrix_value (); FloatCHOL fact; fact.set (R); int err = fact.insert_sym (u, j-1); if (nargout > 1) retval(1) = err; else if (err) error ("cholinsert: insertion violates positiveness"); retval(0) = fact.chol_matrix (); } else { // complex case FloatComplexMatrix R = argr.float_complex_matrix_value (); FloatComplexMatrix u = argu.float_complex_matrix_value (); FloatComplexCHOL fact; fact.set (R); int err = fact.insert_sym (u, j-1); if (nargout > 1) retval(1) = err; else if (err) error ("cholinsert: insertion violates positiveness"); retval(0) = fact.chol_matrix (); } } else { if (argr.is_real_matrix () && argu.is_real_matrix ()) { // real case Matrix R = argr.matrix_value (); Matrix u = argu.matrix_value (); CHOL fact; fact.set (R); int err = fact.insert_sym (u, j-1); if (nargout > 1) retval(1) = err; else if (err) error ("cholinsert: insertion violates positiveness"); retval(0) = fact.chol_matrix (); } else { // complex case ComplexMatrix R = argr.complex_matrix_value (); ComplexMatrix u = argu.complex_matrix_value (); ComplexCHOL fact; fact.set (R); int err = fact.insert_sym (u, j-1); if (nargout > 1) retval(1) = err; else if (err) error ("cholinsert: insertion violates positiveness"); retval(0) = fact.chol_matrix (); } } } else error ("cholinsert: index out of range"); } else error ("cholinsert: dimension mismatch"); } else print_usage (); return retval; } /* %!test %! u2 = [ 0.35080 ; %! 0.63930 ; %! 3.31057 ; %! -0.13825 ; %! 0.45266 ]; %! %! R = chol(A); %! %! j = 3; p = [1:j-1, j+1:5]; %! R1 = cholinsert(R,j,u2); A1 = R1'*R1; %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(A1(p,p) - A,Inf) < 1e1*eps) %! %!test %! u2 = [ 0.35080 + 0.04298i; %! 0.63930 + 0.23778i; %! 3.31057 + 0.00000i; %! -0.13825 + 0.19879i; %! 0.45266 + 0.50020i]; %! %! R = chol(Ac); %! %! j = 3; p = [1:j-1, j+1:5]; %! R1 = cholinsert(R,j,u2); A1 = R1'*R1; %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(A1(p,p) - Ac,Inf) < 1e1*eps) %! %!test %! u2 = single ([ 0.35080 ; %! 0.63930 ; %! 3.31057 ; %! -0.13825 ; %! 0.45266 ]); %! %! R = chol(single(A)); %! %! j = 3; p = [1:j-1, j+1:5]; %! R1 = cholinsert(R,j,u2); A1 = R1'*R1; %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(A1(p,p) - A,Inf) < 1e1*eps('single')) %! %!test %! u2 = single ([ 0.35080 + 0.04298i; %! 0.63930 + 0.23778i; %! 3.31057 + 0.00000i; %! -0.13825 + 0.19879i; %! 0.45266 + 0.50020i]); %! %! R = chol(single(Ac)); %! %! j = 3; p = [1:j-1, j+1:5]; %! R1 = cholinsert(R,j,u2); A1 = R1'*R1; %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(A1(p,p) - single(Ac),Inf) < 1e1*eps('single')) %! */ DEFUN_DLD (choldelete, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{R1} =} choldelete (@var{R}, @var{j})\n\ Given a Cholesky@tie{}factorization of a real symmetric or complex hermitian\n\ positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper triangular,\n\ return the QR@tie{}factorization of @w{A(p,p)}, where @w{p = [1:j-1,j+1:n+1]}.\n\ @seealso{chol, cholupdate, cholinsert}\n\ @end deftypefn") { octave_idx_type nargin = args.length (); octave_value_list retval; if (nargin != 2) { print_usage (); return retval; } octave_value argr = args(0); octave_value argj = args(1); if (argr.is_matrix_type () && argj.is_real_scalar ()) { octave_idx_type n = argr.rows (); octave_idx_type j = argj.scalar_value (); if (argr.columns () == n) { if (j > 0 && j <= n) { if (argr.is_single_type ()) { if (argr.is_real_matrix ()) { // real case FloatMatrix R = argr.float_matrix_value (); FloatCHOL fact; fact.set (R); fact.delete_sym (j-1); retval(0) = fact.chol_matrix (); } else { // complex case FloatComplexMatrix R = argr.float_complex_matrix_value (); FloatComplexCHOL fact; fact.set (R); fact.delete_sym (j-1); retval(0) = fact.chol_matrix (); } } else { if (argr.is_real_matrix ()) { // real case Matrix R = argr.matrix_value (); CHOL fact; fact.set (R); fact.delete_sym (j-1); retval(0) = fact.chol_matrix (); } else { // complex case ComplexMatrix R = argr.complex_matrix_value (); ComplexCHOL fact; fact.set (R); fact.delete_sym (j-1); retval(0) = fact.chol_matrix (); } } } else error ("choldelete: index out of range"); } else error ("choldelete: dimension mismatch"); } else print_usage (); return retval; } /* %!test %! R = chol(A); %! %! j = 3; p = [1:j-1,j+1:4]; %! R1 = choldelete(R,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - A(p,p),Inf) < 1e1*eps) %! %!test %! R = chol(Ac); %! %! j = 3; p = [1:j-1,j+1:4]; %! R1 = choldelete(R,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - Ac(p,p),Inf) < 1e1*eps) %!test %! R = chol(single(A)); %! %! j = 3; p = [1:j-1,j+1:4]; %! R1 = choldelete(R,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - single(A(p,p)),Inf) < 1e1*eps('single')) %! %!test %! R = chol(single(Ac)); %! %! j = 3; p = [1:j-1,j+1:4]; %! R1 = choldelete(R,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - single(Ac(p,p)),Inf) < 1e1*eps('single')) */ DEFUN_DLD (cholshift, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{R1} =} cholshift (@var{R}, @var{i}, @var{j})\n\ Given a Cholesky@tie{}factorization of a real symmetric or complex hermitian\n\ positive definite matrix @w{@var{A} = @var{R}'*@var{R}}, @var{R}@tie{}upper triangular,\n\ return the QR@tie{}factorization of\n\ @w{@var{A}(p,p)}, where @w{p} is the permutation @*\n\ @code{p = [1:i-1, shift(i:j, 1), j+1:n]} if @w{@var{i} < @var{j}} @*\n\ or @*\n\ @code{p = [1:j-1, shift(j:i,-1), i+1:n]} if @w{@var{j} < @var{i}}. @*\n\ \n\ @seealso{chol, cholinsert, choldelete}\n\ @end deftypefn") { octave_idx_type nargin = args.length (); octave_value_list retval; if (nargin != 3) { print_usage (); return retval; } octave_value argr = args(0); octave_value argi = args(1); octave_value argj = args(2); if (argr.is_matrix_type () && argi.is_real_scalar () && argj.is_real_scalar ()) { octave_idx_type n = argr.rows (); octave_idx_type i = argi.scalar_value (); octave_idx_type j = argj.scalar_value (); if (argr.columns () == n) { if (j > 0 && j <= n+1 && i > 0 && i <= n+1) { if (argr.is_single_type () && argi.is_single_type () && argj.is_single_type ()) { if (argr.is_real_matrix ()) { // real case FloatMatrix R = argr.float_matrix_value (); FloatCHOL fact; fact.set (R); fact.shift_sym (i-1, j-1); retval(0) = fact.chol_matrix (); } else { // complex case FloatComplexMatrix R = argr.float_complex_matrix_value (); FloatComplexCHOL fact; fact.set (R); fact.shift_sym (i-1, j-1); retval(0) = fact.chol_matrix (); } } else { if (argr.is_real_matrix ()) { // real case Matrix R = argr.matrix_value (); CHOL fact; fact.set (R); fact.shift_sym (i-1, j-1); retval(0) = fact.chol_matrix (); } else { // complex case ComplexMatrix R = argr.complex_matrix_value (); ComplexCHOL fact; fact.set (R); fact.shift_sym (i-1, j-1); retval(0) = fact.chol_matrix (); } } } else error ("cholshift: index out of range"); } else error ("cholshift: dimension mismatch"); } else print_usage (); return retval; } /* %!test %! R = chol(A); %! %! i = 1; j = 3; p = [1:i-1, shift(i:j,-1), j+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - A(p,p),Inf) < 1e1*eps) %! %! j = 1; i = 3; p = [1:j-1, shift(j:i,+1), i+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - A(p,p),Inf) < 1e1*eps) %! %!test %! R = chol(Ac); %! %! i = 1; j = 3; p = [1:i-1, shift(i:j,-1), j+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - Ac(p,p),Inf) < 1e1*eps) %! %! j = 1; i = 3; p = [1:j-1, shift(j:i,+1), i+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - Ac(p,p),Inf) < 1e1*eps) %!test %! R = chol(single(A)); %! %! i = 1; j = 3; p = [1:i-1, shift(i:j,-1), j+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - single(A(p,p)),Inf) < 1e1*eps('single')) %! %! j = 1; i = 3; p = [1:j-1, shift(j:i,+1), i+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - single(A(p,p)),Inf) < 1e1*eps('single')) %! %!test %! R = chol(single(Ac)); %! %! i = 1; j = 3; p = [1:i-1, shift(i:j,-1), j+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - single(Ac(p,p)),Inf) < 1e1*eps('single')) %! %! j = 1; i = 3; p = [1:j-1, shift(j:i,+1), i+1:4]; %! R1 = cholshift(R,i,j); %! %! assert(norm(triu(R1)-R1,Inf) == 0) %! assert(norm(R1'*R1 - single(Ac(p,p)),Inf) < 1e1*eps('single')) */ /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */