Mercurial > hg > octave-nkf
view scripts/statistics/distributions/nbininv.m @ 11472:1740012184f9
Use uppercase for variable names in error() strings to match Info documentation. Only m-files done.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 09 Jan 2011 21:33:04 -0800 |
parents | 95c3e38098bf |
children | fd0a3ac60b0e |
line wrap: on
line source
## Copyright (C) 1995, 1996, 1997, 2007 Kurt Hornik ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} nbininv (@var{x}, @var{n}, @var{p}) ## For each element of @var{x}, compute the quantile at @var{x} of the ## Pascal (negative binomial) distribution with parameters @var{n} and ## @var{p}. ## ## The number of failures in a Bernoulli experiment with success ## probability @var{p} before the @var{n}-th success follows this ## distribution. ## @end deftypefn ## Author: KH <Kurt.Hornik@wu-wien.ac.at> ## Description: Quantile function of the Pascal distribution function inv = nbininv (x, n, p) if (nargin != 3) print_usage (); endif if (!isscalar(n) || !isscalar(p)) [retval, x, n, p] = common_size (x, n, p); if (retval > 0) error ("nbininv: X, N and P must be of common size or scalar"); endif endif inv = zeros (size (x)); k = find (isnan (x) | (x < 0) | (x > 1) | (n < 1) | (n == Inf) | (n != round (n)) | (p < 0) | (p > 1)); if (any (k)) inv(k) = NaN; endif k = find ((x == 1) & (n > 0) & (n < Inf) & (n == round (n)) & (p >= 0) & (p <= 1)); if (any (k)) inv(k) = Inf; endif k = find ((x >= 0) & (x < 1) & (n > 0) & (n < Inf) & (n == round (n)) & (p > 0) & (p <= 1)); if (any (k)) m = zeros (size (k)); x = x(k); if (isscalar (n) && isscalar (p)) s = p ^ n * ones (size(k)); while (1) l = find (s < x); if (any (l)) m(l) = m(l) + 1; s(l) = s(l) + nbinpdf (m(l), n, p); else break; endif endwhile else n = n(k); p = p(k); s = p .^ n; while (1) l = find (s < x); if (any (l)) m(l) = m(l) + 1; s(l) = s(l) + nbinpdf (m(l), n(l), p(l)); else break; endif endwhile endif inv(k) = m; endif endfunction