comparison scripts/specfun/ellipke.m @ 20530:8c4317b8f7c5 stable

ellipke.m: Use correct definition of elliptic integral in documentation (bug #45522). * ellipke.m: Replace 'm^2' with just 'm' in definitions of elliptic integrals.
author Rik <rik@octave.org>
date Fri, 10 Jul 2015 11:55:14 -0700
parents 507ccf8f10ed
children
comparison
equal deleted inserted replaced
20529:227d582fa300 20530:8c4317b8f7c5
38 ## 38 ##
39 ## Elliptic integrals of the first kind are defined as 39 ## Elliptic integrals of the first kind are defined as
40 ## 40 ##
41 ## @tex 41 ## @tex
42 ## $$ 42 ## $$
43 ## {\rm K} (m) = \int_0^1 {dt \over \sqrt{(1 - t^2) (1 - m^2 t^2)}} 43 ## {\rm K} (m) = \int_0^1 {dt \over \sqrt{(1 - t^2) (1 - m t^2)}}
44 ## $$ 44 ## $$
45 ## @end tex 45 ## @end tex
46 ## @ifnottex 46 ## @ifnottex
47 ## 47 ##
48 ## @example 48 ## @example
49 ## @group 49 ## @group
50 ## 1 50 ## 1
51 ## / dt 51 ## / dt
52 ## K (m) = | ------------------------------ 52 ## K (m) = | ------------------------------
53 ## / sqrt ((1 - t^2)*(1 - m^2*t^2)) 53 ## / sqrt ((1 - t^2)*(1 - m*t^2))
54 ## 0 54 ## 0
55 ## @end group 55 ## @end group
56 ## @end example 56 ## @end example
57 ## 57 ##
58 ## @end ifnottex 58 ## @end ifnottex
59 ## 59 ##
60 ## Elliptic integrals of the second kind are defined as 60 ## Elliptic integrals of the second kind are defined as
61 ## 61 ##
62 ## @tex 62 ## @tex
63 ## $$ 63 ## $$
64 ## {\rm E} (m) = \int_0^1 {\sqrt{1 - m^2 t^2} \over \sqrt{1 - t^2}} dt 64 ## {\rm E} (m) = \int_0^1 {\sqrt{1 - m t^2} \over \sqrt{1 - t^2}} dt
65 ## $$ 65 ## $$
66 ## @end tex 66 ## @end tex
67 ## @ifnottex 67 ## @ifnottex
68 ## 68 ##
69 ## @example 69 ## @example
70 ## @group 70 ## @group
71 ## 1 71 ## 1
72 ## / sqrt (1 - m^2*t^2) 72 ## / sqrt (1 - m*t^2)
73 ## E (m) = | ------------------ dt 73 ## E (m) = | ------------------ dt
74 ## / sqrt (1 - t^2) 74 ## / sqrt (1 - t^2)
75 ## 0 75 ## 0
76 ## @end group 76 ## @end group
77 ## @end example 77 ## @end example