view scripts/control/hinfdemo.m @ 3236:98e15955107e

[project @ 1999-03-05 07:17:10 by jwe]
author jwe
date Fri, 05 Mar 1999 07:19:35 +0000
parents 28aba52a2368
children f7e4a95916f2
line wrap: on
line source

# Copyright (C) 1996,1998 Kai Mueller
#
# This file is part of Octave.
#
# Octave is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version.
#
# Octave is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License
# along with Octave; see the file COPYING.  If not, write to the Free
# Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.

# hinfdemo  H_infinity design demos for continuous SISO and MIMO
#           systems and a discrete system.
#           The SISO system is difficult to control because
#           it is non minimum phase and unstable. The second
#           design example controls the "jet707" plant, the
#           linearized state space model of a Boeing 707-321
#           aircraft at v=80m/s (M = 0.26, Ga0 = -3 deg,
#           alpha0 = 4 deg, kappa = 50 deg).
#           inputs:  (1) thrust   and (2) elevator angle
#           outputs: (1) airspeed and (2) pitch angle.
#           The discrete system is a stable and second order.
#
# This is a script file for Octave.
#
# SISO plant:
#
#	           s - 2
#	G(s) = --------------
#	       (s + 2)(s - 1)
#
#	                         +----+
#	    -------------------->| W1 |---> v1
#	z   |                    +----+
#	----|-------------+                   || T   ||     => min.
#	    |             |                       vz   infty
#	    |    +---+    v   y  +----+
#	  u *--->| G |--->O--*-->| W2 |---> v2
#	    |    +---+       |   +----+
#	    |                |
#	    |    +---+       |
#	    -----| K |<-------
#	         +---+
#
#	W1 und W2 are the robustness and performance weighting
#       functions
#
# MIMO plant:
# The optimal controller minimizes the H_infinity norm of the
# augmented plant P (mixed-sensitivity problem):
#
#      w
#       1 -----------+
#                    |                   +----+
#                +---------------------->| W1 |----> z1
#      w         |   |                   +----+
#       2 ------------------------+
#                |   |            |
#                |   v   +----+   v      +----+
#             +--*-->o-->| G  |-->o--*-->| W2 |---> z2
#             |          +----+      |   +----+
#             |                      |
#             ^                      v
#              u (from                 y (to K)
#                controller
#                K)
#
#
#                   +    +           +    +
#                   | z  |           | w  |
#                   |  1 |           |  1 |
#                   | z  | = [ P ] * | w  |
#                   |  2 |           |  2 |
#                   | y  |           | u  |
#                   +    +           +    +
#
# DISCRETE SYSTEM:
#   This is not a true discrete design. The design is carried out
#   in continuous time while the effect of sampling is described by
#   a bilinear transformation of the sampled system.
#   This method works quite well if the sampling period is "small"
#   compared to the plant time constants.
#
# The continuous plant:
#	              1
#	G (s) = --------------
#	 k      (s + 2)(s + 1)
#
# is discretised with a ZOH (Sampling period = Ts = 1 second):
#
#	          0.199788z + 0.073498
#	G(s) = --------------------------
#	       (z - 0.36788)(z - 0.13534)
#
#	                         +----+
#	    -------------------->| W1 |---> v1
#	z   |                    +----+
#	----|-------------+                   || T   ||     => min.
#	    |             |                       vz   infty
#	    |    +---+    v      +----+
#	    *--->| G |--->O--*-->| W2 |---> v2
#	    |    +---+       |   +----+
#	    |                |
#	    |    +---+       |
#	    -----| K |<-------
#	         +---+
#
#	W1 and W2 are the robustness and performancs weighting
#       functions


# Kai P. Mueller 30-APR-1998 <mueller@ifr.ing.tu-bs.de

yn = [];
while (length(yn) < 1)
  yn = input(" * [s]iso, [m]imo, or [d]iscrete design? [no default]: ","S");
endwhile
if ((yn(1) == "s") | (yn(1) == 'S'))
  sys_type = 1;
elseif ((yn(1) == "m") | (yn(1) == 'M'))
  sys_type = 2;
elseif ((yn(1) == "d") | (yn(1) == 'D'))
  sys_type = 3;
else
  disp(" *** no system type specified, hinfdemo terminated.");
  return;
endif

echo off
switch (sys_type)

  case (1)
    # siso
    disp(" ");
    disp("    ----------------------------------------------");
    disp("    H_infinity optimal control for the SISO plant:");
    disp(" ");
    disp("		            s - 2");
    disp("		G(s) = --------------");
    disp("		       (s + 2)(s - 1)");
    disp(" ");
    disp("    ----------------------------------------------");
    disp(" ");

    # weighting on actuator u
    W1 = wgt1o(0.05, 100.0, 425.0);
    # weighting on controlled variable y
    W2 = wgt1o(10.0, 0.05, 0.001);
    # plant
    G = tf2sys([1 -2],[1 1 -2]);

    # need One as the pseudo transfer function One = 1
    One = ugain(1);
    disp(" o forming P...");
    psys = buildssic([1 4;2 4;3 1],[3],[2 3 5],[3 4],G,W1,W2,One);
    disp(" ");
    disp(" o controller design...");
    [K, gfin, GW]=hinfsyn(psys, 1, 1, 0.1, 10.0, 0.02);
    disp(" ");
    disp("-- OK ----------------------------------------------");

    disp("  Closed loop poles:");
    damp(GW);
    # disp(" o Testing H_infinity norm: (hinfnorm does not work)");
    # hinfnorm(GW);

    disp(" ");
    yn = input(" * Plot closed loop step response? [n]: ","S");
    if (length(yn) >= 1)
      if ((yn(1) == "y") || (yn(1) == 'Y'))
      	disp(" o step responses of T and KS...");
      	GW = buildssic([1 2; 2 1], [], [1 2], [-2], G, K);
      	figure(1);
      	step(GW, 1, 10);
      endif
    endif

  case (2)
    # mimo
    disp(" ");
    disp("    -----------------------------------------------");
    disp("      H_inf optimal control for the jet707 plant");
    disp("    -----------------------------------------------");
    disp(" ");

    # Weighting function on u (robustness weight)
    ww1 = wgt1o(0.01,5,0.9);
    ww2 = wgt1o(0.01,5,2.2);
    W1 = buildssic([1 0;2 0],[],[1 2],[1 2],ww1,ww2);
    # Weighting function on y (performance weight)
    ww1 = wgt1o(250,0.1,0.0001);
    ww2 = wgt1o(250,0.1,0.0002);
    W2 = buildssic([1 0;2 0],[],[1 2],[1 2],ww1,ww2);
    # plant (2 x 2 system)
    G = jet707;

    disp(" o forming P...");
    One = ugain(2);
    Clst = [1 7; 2 8; 3 7; 4 8; 5 1; 6 2];
    P = buildssic(Clst,[5 6],[3:6 9 10],[1 2 5:8],G,W1,W2,One);

    disp(" ");
    disp(" o controller design...");
    K = hinfsyn(P, 2, 2, 0.25, 10.0, 0.005);

    disp(" ");
    yn = input(" * Plot closed loop step responses? [n]: ","S");
    if (length(yn) >= 1)
      if ((yn(1) == "y") || (yn(1) == 'Y'))
      	disp(" o step responses of T and KS...");
      	GW = buildssic([1 3;2 4;3 1;4 2],[],[1 2 3 4],[-3 -4],G,K);

      	disp(" ");
      	disp("  FIGURE 1: speed refence => 1, pitch angle ref. => 0");
      	disp("  ===================================================");
      	disp("      y1:  speed                      (should be 1)");
      	disp("      y2:  pitch            angle (should remain 0)");
      	disp("      y3:  thrust      (should be a slow transient)");
      	disp("      y6:  elevator  (should be a faster transient)");
      	disp(" ");
      	disp("  FIGURE 2: speed refence => 0, pitch angle ref. => 1");
      	disp("  ===================================================");
      	disp("      y1:  speed                  (should remain 0)");
      	disp("      y2:  pitch                angle (should be 1)");
      	disp("      y3:  thrust      (should be a slow transient)");
      	disp("      y6:  elevator  (should be a faster transient)");
      	disp(" ");
      	figure(1)
      	step(GW);
      	figure(2)
      	step(GW,2);
      endif
    endif

  case (3)
    # discrete
    disp(" ");
    disp("    --------------------------------------------------");
    disp("    Discrete H_infinity optimal control for the plant:");
    disp(" ");
    disp("	                   0.199788z + 0.073498");
    disp("	        G(s) = --------------------------");
    disp("	               (z - 0.36788)(z - 0.13533)");
    disp("    --------------------------------------------------");
    disp(" ");

    # sampling time
    Ts = 1.0;
    # weighting on actuator value u
    W1 = wgt1o(0.1, 200.0, 50.0);
    # weighting on controlled variable y
    W2 = wgt1o(350.0, 0.05, 0.0002);
    # omega axis
    ww = logspace(-4.99, 3.99, 100);
    if (columns(ww) > 1);  ww = ww';  endif

    # continuous plant
    G = tf2sys(2,[1 3 2]);
    # discrete plant with zoh
    Gd = c2d(G, Ts);
    # w-plane (continuous representation of the sampled system)
    Gw = d2c(Gd, "bi");

    disp(" ");
    disp(" o building P...");
    # need One as the pseudo transfer function One = 1
    One = ugain(1);
    psys = buildssic([1 4;2 4;3 1],[3],[2 3 5],[3 4],Gw,W1,W2,One);
    disp(" o controller design...");
    [K, gfin, GWC] = hinfsyn(psys, 1, 1, 0.1, 10.0, 0.02);

    disp(" ");
    fig_n = 1;
    yn = input(" * Plot magnitudes of W1KS and W2S? [n]: ","S");
    if (length(yn) >= 1)
      if ((yn(1) == "y") || (yn(1) == 'Y'))
    	disp(" o magnitudes of W1KS and W2S...");
    	gwx = sysprune(GWC, 1, 1);
    	mag1 = bode(gwx, ww);
    	if (columns(mag1) > 1);  mag1 = mag1';  endif
    	gwx = sysprune(GWC, 2, 1);
    	mag2 = bode(gwx, ww);
    	if (columns(mag2) > 1);  mag2 = mag2';  endif
    	figure(fig_n)
    	fig_n = fig_n + 1;
    	gset grid
    	loglog(ww, [mag1 mag2]);
      endif
    endif

    Kd = c2d(K, "bi", Ts);
    GG = buildssic([1 2; 2 1], [], [1 2], [-2], Gd, Kd);
    disp(" o closed loop poles...");
    damp(GG);

    disp(" ");
    yn = input(" * Plot closed loop step responses? [n]: ","S");
    if (length(yn) >= 1)
      if ((yn(1) == "y") || (yn(1) == 'Y'))
    	disp(" o step responses of T and KS...");
    	figure(fig_n)
    	step(GG, 1, 10);
      endif
    endif

endswitch

disp(" o hinfdemo terminated successfully.");

# KPM-hinfdemo/End