Mercurial > hg > octave-lyh
view scripts/control/lqr.m @ 3346:8dd4718801fd
[project @ 1999-11-09 18:18:12 by jwe]
author | jwe |
---|---|
date | Tue, 09 Nov 1999 18:18:37 +0000 |
parents | f7e4a95916f2 |
children | 69b167451491 |
line wrap: on
line source
# Copyright (C) 1993, 1994, 1995 Auburn University. All Rights Reserved # # This file is part of Octave. # # Octave is free software; you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation; either version 2, or (at your option) any # later version. # # Octave is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # You should have received a copy of the GNU General Public License # along with Octave; see the file COPYING. If not, write to the Free # Software Foundation, 59 Temple Place, Suite 330, Boston, MA 02111 USA. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{k}, @var{p}, @var{e}] =} lqr (@var{a}, @var{b}, @var{q}, @var{r}, @var{z}) ## construct the linear quadratic regulator for the continuous time system ## @iftex ## @tex ## $$ ## {dx\over dt} = A x + B u ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## dx ## -- = A x + B u ## dt ## @end example ## ## @end ifinfo ## to minimize the cost functional ## @iftex ## @tex ## $$ ## J = \int_0^\infty x^T Q x + u^T R u ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## infinity ## / ## J = | x' Q x + u' R u ## / ## t=0 ## @end example ## @end ifinfo ## ## @noindent ## @var{z} omitted or ## @iftex ## @tex ## $$ ## J = \int_0^\infty x^T Q x + u^T R u + 2 x^T Z u ## $$ ## @end tex ## @end iftex ## @ifinfo ## ## @example ## infinity ## / ## J = | x' Q x + u' R u + 2 x' Z u ## / ## t=0 ## @end example ## ## @end ifinfo ## @var{z} included. ## ## The following values are returned: ## ## @table @var ## @item k ## The state feedback gain, ## @iftex ## @tex ## $(A - B K)$ ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{b}@var{k}) ## @end ifinfo ## is stable and minimizes the cost functional ## ## @item p ## The stabilizing solution of appropriate algebraic Riccati equation. ## ## @item e ## The vector of the closed loop poles of ## @iftex ## @tex ## $(A - B K)$. ## @end tex ## @end iftex ## @ifinfo ## (@var{a} - @var{b}@var{k}). ## @end ifinfo ## @end table ## ## @strong{Reference} ## Anderson and Moore, OPTIMAL CONTROL: LINEAR QUADRATIC METHODS, ## Prentice-Hall, 1990, pp. 56-58 ## @end deftypefn function [k, p, e] = lqr (a, b, q, r, s) # Written by A. S. Hodel (scotte@eng.auburn.edu) August 1993. # disp("lqr: entry"); if ((nargin != 4) && (nargin != 5)) error ("lqr: invalid number of arguments"); endif # Check a. if ((n = is_square (a)) == 0) error ("lqr: requires 1st parameter(a) to be square"); endif # Check b. [n1, m] = size (b); if (n1 != n) error ("lqr: a,b not conformal"); endif # Check q. if ( ((n1 = is_square (q)) == 0) || (n1 != n)) error ("lqr: q must be square and conformal with a"); endif # Check r. if ( ((m1 = is_square(r)) == 0) || (m1 != m)) error ("lqr: r must be square and conformal with column dimension of b"); endif # Check if n is there. if (nargin == 5) [n1, m1] = size (s); if ( (n1 != n) || (m1 != m)) error ("lqr: z must be identically dimensioned with b"); endif # Incorporate cross term into a and q. ao = a - (b/r)*s'; qo = q - (s/r)*s'; else s = zeros (n, m); ao = a; qo = q; endif # Check that q, (r) are symmetric, positive (semi)definite if (is_symmetric (q) && is_symmetric (r) ... && all (eig (q) >= 0) && all (eig (r) > 0)) p = are (ao, (b/r)*b', qo); k = r\(b'*p + s'); e = eig (a - b*k); else error ("lqr: q (r) must be symmetric positive (semi) definite"); endif # disp("lqr: exit"); endfunction