Mercurial > hg > octave-lyh
view src/DLD-FUNCTIONS/conv2.cc @ 14501:60e5cf354d80
Update %!tests in DLD-FUNCTIONS/ directory with Octave coding conventions.
* __contourc__.cc, __delaunayn__.cc, __dispatch__.cc, __dsearchn__.cc,
__fltk_uigetfile__.cc, __glpk__.cc, __lin_interpn__.cc, __magick_read__.cc,
__pchip_deriv__.cc, __qp__.cc, __voronoi__.cc, besselj.cc, betainc.cc,
bsxfun.cc, cellfun.cc, chol.cc, conv2.cc, convhulln.cc, dassl.cc, det.cc,
dlmread.cc, dmperm.cc, dot.cc, eig.cc, eigs.cc, fft.cc, fft2.cc, filter.cc,
find.cc, gammainc.cc, gcd.cc, givens.cc, hess.cc, hex2num.cc, inv.cc, kron.cc,
lookup.cc, lsode.cc, lu.cc, luinc.cc, matrix_type.cc, max.cc, mgorth.cc,
nproc.cc, qr.cc, quad.cc, quadcc.cc, qz.cc, rand.cc, rcond.cc, regexp.cc,
schur.cc, spparms.cc, sqrtm.cc, str2double.cc, strfind.cc, sub2ind.cc, svd.cc,
syl.cc, time.cc, tril.cc, tsearch.cc: Update %!tests in DLD-FUNCTIONS/
directory with Octave coding conventions.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Tue, 27 Mar 2012 22:46:45 -0700 |
parents | 846273dae16b |
children | 34f067bcac12 |
line wrap: on
line source
/* Copyright (C) 1999-2012 Andy Adler Copyright (C) 2010 VZLU Prague This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "oct-convn.h" #include "defun-dld.h" #include "error.h" #include "oct-obj.h" #include "utils.h" enum Shape { SHAPE_FULL, SHAPE_SAME, SHAPE_VALID }; DEFUN_DLD (conv2, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {} conv2 (@var{A}, @var{B})\n\ @deftypefnx {Loadable Function} {} conv2 (@var{v1}, @var{v2}, @var{m})\n\ @deftypefnx {Loadable Function} {} conv2 (@dots{}, @var{shape})\n\ Return the 2-D convolution of @var{A} and @var{B}. The size of the result\n\ is determined by the optional @var{shape} argument which takes the following\n\ values\n\ \n\ @table @asis\n\ @item @var{shape} = \"full\"\n\ Return the full convolution. (default)\n\ \n\ @item @var{shape} = \"same\"\n\ Return the central part of the convolution with the same size as @var{A}.\n\ The central part of the convolution begins at the indices\n\ @code{floor ([size(@var{B})/2] + 1)}.\n\ \n\ @item @var{shape} = \"valid\"\n\ Return only the parts which do not include zero-padded edges.\n\ The size of the result is @code{max (size (A) - size (B) + 1, 0)}.\n\ @end table\n\ \n\ When the third argument is a matrix, return the convolution of the matrix\n\ @var{m} by the vector @var{v1} in the column direction and by the vector\n\ @var{v2} in the row direction.\n\ @seealso{conv, convn}\n\ @end deftypefn") { octave_value retval; octave_value tmp; int nargin = args.length (); std::string shape = "full"; // default bool separable = false; convn_type ct; if (nargin < 2) { print_usage (); return retval; } else if (nargin == 3) { if (args(2).is_string ()) shape = args(2).string_value (); else separable = true; } else if (nargin >= 4) { separable = true; shape = args(3).string_value (); } if (shape == "full") ct = convn_full; else if (shape == "same") ct = convn_same; else if (shape == "valid") ct = convn_valid; else { error ("conv2: SHAPE type not valid"); print_usage (); return retval; } if (separable) { // If user requests separable, check first two params are vectors if (! (1 == args(0).rows () || 1 == args(0).columns ()) || ! (1 == args(1).rows () || 1 == args(1).columns ())) { print_usage (); return retval; } if (args(0).is_single_type () || args(1).is_single_type () || args(2).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type () || args(2).is_complex_type ()) { FloatComplexMatrix a (args(2).float_complex_matrix_value ()); if (args(1).is_real_type () && args(2).is_real_type ()) { FloatColumnVector v1 (args(0).float_vector_value ()); FloatRowVector v2 (args(1).float_vector_value ()); retval = convn (a, v1, v2, ct); } else { FloatComplexColumnVector v1 (args(0).float_complex_vector_value ()); FloatComplexRowVector v2 (args(1).float_complex_vector_value ()); retval = convn (a, v1, v2, ct); } } else { FloatColumnVector v1 (args(0).float_vector_value ()); FloatRowVector v2 (args(1).float_vector_value ()); FloatMatrix a (args(2).float_matrix_value ()); retval = convn (a, v1, v2, ct); } } else { if (args(0).is_complex_type () || args(1).is_complex_type () || args(2).is_complex_type ()) { ComplexMatrix a (args(2).complex_matrix_value ()); if (args(1).is_real_type () && args(2).is_real_type ()) { ColumnVector v1 (args(0).vector_value ()); RowVector v2 (args(1).vector_value ()); retval = convn (a, v1, v2, ct); } else { ComplexColumnVector v1 (args(0).complex_vector_value ()); ComplexRowVector v2 (args(1).complex_vector_value ()); retval = convn (a, v1, v2, ct); } } else { ColumnVector v1 (args(0).vector_value ()); RowVector v2 (args(1).vector_value ()); Matrix a (args(2).matrix_value ()); retval = convn (a, v1, v2, ct); } } } // if (separable) else { if (args(0).is_single_type () || args(1).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type ()) { FloatComplexMatrix a (args(0).float_complex_matrix_value ()); if (args(1).is_real_type ()) { FloatMatrix b (args(1).float_matrix_value ()); retval = convn (a, b, ct); } else { FloatComplexMatrix b (args(1).float_complex_matrix_value ()); retval = convn (a, b, ct); } } else { FloatMatrix a (args(0).float_matrix_value ()); FloatMatrix b (args(1).float_matrix_value ()); retval = convn (a, b, ct); } } else { if (args(0).is_complex_type () || args(1).is_complex_type ()) { ComplexMatrix a (args(0).complex_matrix_value ()); if (args(1).is_real_type ()) { Matrix b (args(1).matrix_value ()); retval = convn (a, b, ct); } else { ComplexMatrix b (args(1).complex_matrix_value ()); retval = convn (a, b, ct); } } else { Matrix a (args(0).matrix_value ()); Matrix b (args(1).matrix_value ()); retval = convn (a, b, ct); } } } // if (separable) return retval; } /* %!test %! c = [0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18]; %! assert (conv2 ([0,1;1,2], [1,2,3;4,5,6;7,8,9]), c); %!test %! c = single ([0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18]); %! assert (conv2 (single ([0,1;1,2]), single ([1,2,3;4,5,6;7,8,9])), c); %!test %! c = [1,4,4;5,18,16;14,48,40;19,62,48;15,48,36]; %! assert (conv2 (1:3, 1:2, [1,2;3,4;5,6]), c); %!assert (conv2 (1:3, 1:2, [1,2;3,4;5,6], "full"), %! conv2 (1:3, 1:2, [1,2;3,4;5,6])); %% Test shapes %!shared A, B, C %! A = rand (3, 4); %! B = rand (4); %! C = conv2 (A, B); %!assert (conv2 (A,B, "full"), C) %!assert (conv2 (A,B, "same"), C(3:5,3:6)) %!assert (conv2 (A,B, "valid"), zeros (0, 1)) %!assert (size (conv2 (B,A, "valid")), [2 1]) %!test %! B = rand (5); %! C = conv2 (A, B); %!assert (conv2 (A,B, "full"), C) %!assert (conv2 (A,B, "same"), C(3:5,3:6)) %!assert (conv2 (A,B, "valid"), zeros (0, 0)) %!assert (size (conv2 (B,A, "valid")), [3 2]) %% Clear shared variables so they are not reported for tests below %!shared %% Test cases from Bug #34893 %!assert (conv2 ([1:5;1:5], [1:2], "same"), [4 7 10 13 10; 4 7 10 13 10]) %!assert (conv2 ([1:5;1:5]', [1:2]', "same"), [4 7 10 13 10; 4 7 10 13 10]') %!#assert (conv2 ([1:5;1:5], [1:2], "valid"), [4 7 10 13; 4 7 10 13]) %!assert (conv2 ([1:5;1:5]', [1:2]', "valid"), [4 7 10 13; 4 7 10 13]') %% Test input validation %!error conv2 () %!error conv2 (1) %!error <SHAPE type not valid> conv2 (1,2, "NOT_A_SHAPE") %% Test alternate calling form which should be 2 vectors and a matrix %!error conv2 (ones (2), 1, 1) %!error conv2 (1, ones (2), 1) */ DEFUN_DLD (convn, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{C} =} convn (@var{A}, @var{B})\n\ @deftypefnx {Loadable Function} {@var{C} =} convn (@var{A}, @var{B}, @var{shape})\n\ Return the n-D convolution of @var{A} and @var{B}. The size of the result\n\ is determined by the optional @var{shape} argument which takes the following\n\ values\n\ \n\ @table @asis\n\ @item @var{shape} = \"full\"\n\ Return the full convolution. (default)\n\ \n\ @item @var{shape} = \"same\"\n\ Return central part of the convolution with the same size as @var{A}.\n\ The central part of the convolution begins at the indices\n\ @code{floor ([size(@var{B})/2] + 1)}.\n\ \n\ @item @var{shape} = \"valid\"\n\ Return only the parts which do not include zero-padded edges.\n\ The size of the result is @code{max (size (A) - size (B) + 1, 0)}.\n\ @end table\n\ \n\ @seealso{conv2, conv}\n\ @end deftypefn") { octave_value retval; octave_value tmp; int nargin = args.length (); std::string shape = "full"; // default convn_type ct; if (nargin < 2 || nargin > 3) { print_usage (); return retval; } else if (nargin == 3) { if (args(2).is_string ()) shape = args(2).string_value (); } if (shape == "full") ct = convn_full; else if (shape == "same") ct = convn_same; else if (shape == "valid") ct = convn_valid; else { error ("convn: SHAPE type not valid"); print_usage (); return retval; } if (args(0).is_single_type () || args(1).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type ()) { FloatComplexNDArray a (args(0).float_complex_array_value ()); if (args(1).is_real_type ()) { FloatNDArray b (args(1).float_array_value ()); retval = convn (a, b, ct); } else { FloatComplexNDArray b (args(1).float_complex_array_value ()); retval = convn (a, b, ct); } } else { FloatNDArray a (args(0).float_array_value ()); FloatNDArray b (args(1).float_array_value ()); retval = convn (a, b, ct); } } else { if (args(0).is_complex_type () || args(1).is_complex_type ()) { ComplexNDArray a (args(0).complex_array_value ()); if (args(1).is_real_type ()) { NDArray b (args(1).array_value ()); retval = convn (a, b, ct); } else { ComplexNDArray b (args(1).complex_array_value ()); retval = convn (a, b, ct); } } else { NDArray a (args(0).array_value ()); NDArray b (args(1).array_value ()); retval = convn (a, b, ct); } } return retval; } /* FIXME: Need tests for convn in addition to conv2. */