Mercurial > hg > octave-lojdl > gnulib-hg
comparison regex.c @ 679:b088267ea1c8
Clean up whitespace.
author | Richard Stallman <rms@gnu.org> |
---|---|
date | Sat, 31 Aug 1996 23:41:26 +0000 |
parents | bd677f8ba924 |
children | d794d4ea2333 |
comparison
equal
deleted
inserted
replaced
678:bd677f8ba924 | 679:b088267ea1c8 |
---|---|
1 /* Extended regular expression matching and search library, | 1 /* Extended regular expression matching and search library, version |
2 version 0.12. | 2 0.12. (Implements POSIX draft P10003.2/D11.2, except for |
3 (Implements POSIX draft P10003.2/D11.2, except for | |
4 internationalization features.) | 3 internationalization features.) |
5 | 4 |
6 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. | 5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. |
7 | 6 |
8 This program is free software; you can redistribute it and/or modify | 7 This program is free software; you can redistribute it and/or modify |
10 the Free Software Foundation; either version 2, or (at your option) | 9 the Free Software Foundation; either version 2, or (at your option) |
11 any later version. | 10 any later version. |
12 | 11 |
13 This program is distributed in the hope that it will be useful, | 12 This program is distributed in the hope that it will be useful, |
14 but WITHOUT ANY WARRANTY; without even the implied warranty of | 13 but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 GNU General Public License for more details. | 15 GNU General Public License for more details. |
17 | 16 |
18 You should have received a copy of the GNU General Public License | 17 You should have received a copy of the GNU General Public License |
19 along with this program; if not, write to the Free Software | 18 along with this program; if not, write to the Free Software |
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, | 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, |
21 USA. */ | 20 USA. */ |
22 | 21 |
23 /* AIX requires this to be the first thing in the file. */ | 22 /* AIX requires this to be the first thing in the file. */ |
24 #if defined (_AIX) && !defined (REGEX_MALLOC) | 23 #if defined (_AIX) && !defined (REGEX_MALLOC) |
25 #pragma alloca | 24 #pragma alloca |
26 #endif | 25 #endif |
30 | 29 |
31 #ifdef HAVE_CONFIG_H | 30 #ifdef HAVE_CONFIG_H |
32 #include <config.h> | 31 #include <config.h> |
33 #endif | 32 #endif |
34 | 33 |
35 /* We need this for `regex.h', and perhaps for the Emacs include files. */ | 34 /* We need this for `regex.h', and perhaps for the Emacs include files. */ |
36 #include <sys/types.h> | 35 #include <sys/types.h> |
37 | 36 |
38 /* This is for other GNU distributions with internationalized messages. */ | 37 /* This is for other GNU distributions with internationalized messages. */ |
39 #if HAVE_LIBINTL_H || defined (_LIBC) | 38 #if HAVE_LIBINTL_H || defined (_LIBC) |
40 # include <libintl.h> | 39 # include <libintl.h> |
41 #else | 40 #else |
42 # define gettext(msgid) (msgid) | 41 # define gettext(msgid) (msgid) |
43 #endif | 42 #endif |
69 char *malloc (); | 68 char *malloc (); |
70 char *realloc (); | 69 char *realloc (); |
71 #endif | 70 #endif |
72 | 71 |
73 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. | 72 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. |
74 If nothing else has been done, use the method below. */ | 73 If nothing else has been done, use the method below. */ |
75 #ifdef INHIBIT_STRING_HEADER | 74 #ifdef INHIBIT_STRING_HEADER |
76 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) | 75 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) |
77 #if !defined (bzero) && !defined (bcopy) | 76 #if !defined (bzero) && !defined (bcopy) |
78 #undef INHIBIT_STRING_HEADER | 77 #undef INHIBIT_STRING_HEADER |
79 #endif | 78 #endif |
165 /* Jim Meyering writes: | 164 /* Jim Meyering writes: |
166 | 165 |
167 "... Some ctype macros are valid only for character codes that | 166 "... Some ctype macros are valid only for character codes that |
168 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | 167 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when |
169 using /bin/cc or gcc but without giving an ansi option). So, all | 168 using /bin/cc or gcc but without giving an ansi option). So, all |
170 ctype uses should be through macros like ISPRINT... If | 169 ctype uses should be through macros like ISPRINT... If |
171 STDC_HEADERS is defined, then autoconf has verified that the ctype | 170 STDC_HEADERS is defined, then autoconf has verified that the ctype |
172 macros don't need to be guarded with references to isascii. ... | 171 macros don't need to be guarded with references to isascii. ... |
173 Defining isascii to 1 should let any compiler worth its salt | 172 Defining isascii to 1 should let any compiler worth its salt |
174 eliminate the && through constant folding." */ | 173 eliminate the && through constant folding." */ |
175 | 174 |
176 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) | 175 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) |
177 #define ISASCII(c) 1 | 176 #define ISASCII(c) 1 |
178 #else | 177 #else |
179 #define ISASCII(c) isascii(c) | 178 #define ISASCII(c) isascii(c) |
206 #endif | 205 #endif |
207 | 206 |
208 /* We remove any previous definition of `SIGN_EXTEND_CHAR', | 207 /* We remove any previous definition of `SIGN_EXTEND_CHAR', |
209 since ours (we hope) works properly with all combinations of | 208 since ours (we hope) works properly with all combinations of |
210 machines, compilers, `char' and `unsigned char' argument types. | 209 machines, compilers, `char' and `unsigned char' argument types. |
211 (Per Bothner suggested the basic approach.) */ | 210 (Per Bothner suggested the basic approach.) */ |
212 #undef SIGN_EXTEND_CHAR | 211 #undef SIGN_EXTEND_CHAR |
213 #if __STDC__ | 212 #if __STDC__ |
214 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | 213 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) |
215 #else /* not __STDC__ */ | 214 #else /* not __STDC__ */ |
216 /* As in Harbison and Steele. */ | 215 /* As in Harbison and Steele. */ |
244 #else /* not __GNUC__ */ | 243 #else /* not __GNUC__ */ |
245 #if HAVE_ALLOCA_H | 244 #if HAVE_ALLOCA_H |
246 #include <alloca.h> | 245 #include <alloca.h> |
247 #else /* not __GNUC__ or HAVE_ALLOCA_H */ | 246 #else /* not __GNUC__ or HAVE_ALLOCA_H */ |
248 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */ | 247 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */ |
249 #ifndef _AIX /* Already did AIX, up at the top. */ | 248 #ifndef _AIX /* Already did AIX, up at the top. */ |
250 char *alloca (); | 249 char *alloca (); |
251 #endif /* not _AIX */ | 250 #endif /* not _AIX */ |
252 #endif | 251 #endif |
253 #endif /* not HAVE_ALLOCA_H */ | 252 #endif /* not HAVE_ALLOCA_H */ |
254 #endif /* not __GNUC__ */ | 253 #endif /* not __GNUC__ */ |
291 | 290 |
292 #define REGEX_ALLOCATE_STACK alloca | 291 #define REGEX_ALLOCATE_STACK alloca |
293 | 292 |
294 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | 293 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
295 REGEX_REALLOCATE (source, osize, nsize) | 294 REGEX_REALLOCATE (source, osize, nsize) |
296 /* No need to explicitly free anything. */ | 295 /* No need to explicitly free anything. */ |
297 #define REGEX_FREE_STACK(arg) | 296 #define REGEX_FREE_STACK(arg) |
298 | 297 |
299 #endif /* not REGEX_MALLOC */ | 298 #endif /* not REGEX_MALLOC */ |
300 #endif /* not using relocating allocator */ | 299 #endif /* not using relocating allocator */ |
301 | 300 |
302 | 301 |
303 /* True if `size1' is non-NULL and PTR is pointing anywhere inside | 302 /* True if `size1' is non-NULL and PTR is pointing anywhere inside |
304 `string1' or just past its end. This works if PTR is NULL, which is | 303 `string1' or just past its end. This works if PTR is NULL, which is |
305 a good thing. */ | 304 a good thing. */ |
306 #define FIRST_STRING_P(ptr) \ | 305 #define FIRST_STRING_P(ptr) \ |
307 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | 306 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) |
308 | 307 |
309 /* (Re)Allocate N items of type T using malloc, or fail. */ | 308 /* (Re)Allocate N items of type T using malloc, or fail. */ |
310 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) | 309 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) |
311 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | 310 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) |
312 #define RETALLOC_IF(addr, n, t) \ | 311 #define RETALLOC_IF(addr, n, t) \ |
313 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) | 312 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) |
314 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) | 313 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
315 | 314 |
316 #define BYTEWIDTH 8 /* In bits. */ | 315 #define BYTEWIDTH 8 /* In bits. */ |
317 | 316 |
318 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) | 317 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) |
319 | 318 |
320 #undef MAX | 319 #undef MAX |
321 #undef MIN | 320 #undef MIN |
327 #define true 1 | 326 #define true 1 |
328 | 327 |
329 static int re_match_2_internal (); | 328 static int re_match_2_internal (); |
330 | 329 |
331 /* These are the command codes that appear in compiled regular | 330 /* These are the command codes that appear in compiled regular |
332 expressions. Some opcodes are followed by argument bytes. A | 331 expressions. Some opcodes are followed by argument bytes. A |
333 command code can specify any interpretation whatsoever for its | 332 command code can specify any interpretation whatsoever for its |
334 arguments. Zero bytes may appear in the compiled regular expression. */ | 333 arguments. Zero bytes may appear in the compiled regular expression. */ |
335 | 334 |
336 typedef enum | 335 typedef enum |
337 { | 336 { |
338 no_op = 0, | 337 no_op = 0, |
339 | 338 |
340 /* Succeed right away--no more backtracking. */ | 339 /* Succeed right away--no more backtracking. */ |
341 succeed, | 340 succeed, |
342 | 341 |
343 /* Followed by one byte giving n, then by n literal bytes. */ | 342 /* Followed by one byte giving n, then by n literal bytes. */ |
344 exactn, | 343 exactn, |
345 | 344 |
346 /* Matches any (more or less) character. */ | 345 /* Matches any (more or less) character. */ |
347 anychar, | 346 anychar, |
348 | 347 |
349 /* Matches any one char belonging to specified set. First | 348 /* Matches any one char belonging to specified set. First |
350 following byte is number of bitmap bytes. Then come bytes | 349 following byte is number of bitmap bytes. Then come bytes |
351 for a bitmap saying which chars are in. Bits in each byte | 350 for a bitmap saying which chars are in. Bits in each byte |
352 are ordered low-bit-first. A character is in the set if its | 351 are ordered low-bit-first. A character is in the set if its |
353 bit is 1. A character too large to have a bit in the map is | 352 bit is 1. A character too large to have a bit in the map is |
354 automatically not in the set. */ | 353 automatically not in the set. */ |
355 charset, | 354 charset, |
356 | 355 |
357 /* Same parameters as charset, but match any character that is | 356 /* Same parameters as charset, but match any character that is |
358 not one of those specified. */ | 357 not one of those specified. */ |
359 charset_not, | 358 charset_not, |
360 | 359 |
361 /* Start remembering the text that is matched, for storing in a | 360 /* Start remembering the text that is matched, for storing in a |
362 register. Followed by one byte with the register number, in | 361 register. Followed by one byte with the register number, in |
363 the range 0 to one less than the pattern buffer's re_nsub | 362 the range 0 to one less than the pattern buffer's re_nsub |
364 field. Then followed by one byte with the number of groups | 363 field. Then followed by one byte with the number of groups |
365 inner to this one. (This last has to be part of the | 364 inner to this one. (This last has to be part of the |
366 start_memory only because we need it in the on_failure_jump | 365 start_memory only because we need it in the on_failure_jump |
367 of re_match_2.) */ | 366 of re_match_2.) */ |
368 start_memory, | 367 start_memory, |
369 | 368 |
370 /* Stop remembering the text that is matched and store it in a | 369 /* Stop remembering the text that is matched and store it in a |
371 memory register. Followed by one byte with the register | 370 memory register. Followed by one byte with the register |
372 number, in the range 0 to one less than `re_nsub' in the | 371 number, in the range 0 to one less than `re_nsub' in the |
373 pattern buffer, and one byte with the number of inner groups, | 372 pattern buffer, and one byte with the number of inner groups, |
374 just like `start_memory'. (We need the number of inner | 373 just like `start_memory'. (We need the number of inner |
375 groups here because we don't have any easy way of finding the | 374 groups here because we don't have any easy way of finding the |
376 corresponding start_memory when we're at a stop_memory.) */ | 375 corresponding start_memory when we're at a stop_memory.) */ |
377 stop_memory, | 376 stop_memory, |
378 | 377 |
379 /* Match a duplicate of something remembered. Followed by one | 378 /* Match a duplicate of something remembered. Followed by one |
380 byte containing the register number. */ | 379 byte containing the register number. */ |
381 duplicate, | 380 duplicate, |
382 | 381 |
383 /* Fail unless at beginning of line. */ | 382 /* Fail unless at beginning of line. */ |
384 begline, | 383 begline, |
385 | 384 |
386 /* Fail unless at end of line. */ | 385 /* Fail unless at end of line. */ |
387 endline, | 386 endline, |
388 | 387 |
389 /* Succeeds if at beginning of buffer (if emacs) or at beginning | 388 /* Succeeds if at beginning of buffer (if emacs) or at beginning |
390 of string to be matched (if not). */ | 389 of string to be matched (if not). */ |
391 begbuf, | 390 begbuf, |
392 | 391 |
393 /* Analogously, for end of buffer/string. */ | 392 /* Analogously, for end of buffer/string. */ |
394 endbuf, | 393 endbuf, |
395 | 394 |
396 /* Followed by two byte relative address to which to jump. */ | 395 /* Followed by two byte relative address to which to jump. */ |
397 jump, | 396 jump, |
398 | 397 |
399 /* Same as jump, but marks the end of an alternative. */ | 398 /* Same as jump, but marks the end of an alternative. */ |
400 jump_past_alt, | 399 jump_past_alt, |
401 | 400 |
402 /* Followed by two-byte relative address of place to resume at | 401 /* Followed by two-byte relative address of place to resume at |
403 in case of failure. */ | 402 in case of failure. */ |
404 on_failure_jump, | 403 on_failure_jump, |
405 | 404 |
406 /* Like on_failure_jump, but pushes a placeholder instead of the | 405 /* Like on_failure_jump, but pushes a placeholder instead of the |
407 current string position when executed. */ | 406 current string position when executed. */ |
408 on_failure_keep_string_jump, | 407 on_failure_keep_string_jump, |
409 | 408 |
410 /* Throw away latest failure point and then jump to following | 409 /* Throw away latest failure point and then jump to following |
411 two-byte relative address. */ | 410 two-byte relative address. */ |
412 pop_failure_jump, | 411 pop_failure_jump, |
413 | 412 |
414 /* Change to pop_failure_jump if know won't have to backtrack to | 413 /* Change to pop_failure_jump if know won't have to backtrack to |
415 match; otherwise change to jump. This is used to jump | 414 match; otherwise change to jump. This is used to jump |
416 back to the beginning of a repeat. If what follows this jump | 415 back to the beginning of a repeat. If what follows this jump |
417 clearly won't match what the repeat does, such that we can be | 416 clearly won't match what the repeat does, such that we can be |
418 sure that there is no use backtracking out of repetitions | 417 sure that there is no use backtracking out of repetitions |
419 already matched, then we change it to a pop_failure_jump. | 418 already matched, then we change it to a pop_failure_jump. |
420 Followed by two-byte address. */ | 419 Followed by two-byte address. */ |
421 maybe_pop_jump, | 420 maybe_pop_jump, |
422 | 421 |
423 /* Jump to following two-byte address, and push a dummy failure | 422 /* Jump to following two-byte address, and push a dummy failure |
424 point. This failure point will be thrown away if an attempt | 423 point. This failure point will be thrown away if an attempt |
425 is made to use it for a failure. A `+' construct makes this | 424 is made to use it for a failure. A `+' construct makes this |
426 before the first repeat. Also used as an intermediary kind | 425 before the first repeat. Also used as an intermediary kind |
427 of jump when compiling an alternative. */ | 426 of jump when compiling an alternative. */ |
428 dummy_failure_jump, | 427 dummy_failure_jump, |
429 | 428 |
430 /* Push a dummy failure point and continue. Used at the end of | 429 /* Push a dummy failure point and continue. Used at the end of |
431 alternatives. */ | 430 alternatives. */ |
432 push_dummy_failure, | 431 push_dummy_failure, |
433 | 432 |
434 /* Followed by two-byte relative address and two-byte number n. | 433 /* Followed by two-byte relative address and two-byte number n. |
435 After matching N times, jump to the address upon failure. */ | 434 After matching N times, jump to the address upon failure. */ |
436 succeed_n, | 435 succeed_n, |
437 | 436 |
438 /* Followed by two-byte relative address, and two-byte number n. | 437 /* Followed by two-byte relative address, and two-byte number n. |
439 Jump to the address N times, then fail. */ | 438 Jump to the address N times, then fail. */ |
440 jump_n, | 439 jump_n, |
441 | 440 |
442 /* Set the following two-byte relative address to the | 441 /* Set the following two-byte relative address to the |
443 subsequent two-byte number. The address *includes* the two | 442 subsequent two-byte number. The address *includes* the two |
444 bytes of number. */ | 443 bytes of number. */ |
445 set_number_at, | 444 set_number_at, |
446 | 445 |
447 wordchar, /* Matches any word-constituent character. */ | 446 wordchar, /* Matches any word-constituent character. */ |
448 notwordchar, /* Matches any char that is not a word-constituent. */ | 447 notwordchar, /* Matches any char that is not a word-constituent. */ |
449 | 448 |
450 wordbeg, /* Succeeds if at word beginning. */ | 449 wordbeg, /* Succeeds if at word beginning. */ |
451 wordend, /* Succeeds if at word end. */ | 450 wordend, /* Succeeds if at word end. */ |
452 | 451 |
453 wordbound, /* Succeeds if at a word boundary. */ | 452 wordbound, /* Succeeds if at a word boundary. */ |
454 notwordbound /* Succeeds if not at a word boundary. */ | 453 notwordbound /* Succeeds if not at a word boundary. */ |
455 | 454 |
456 #ifdef emacs | 455 #ifdef emacs |
457 ,before_dot, /* Succeeds if before point. */ | 456 ,before_dot, /* Succeeds if before point. */ |
458 at_dot, /* Succeeds if at point. */ | 457 at_dot, /* Succeeds if at point. */ |
459 after_dot, /* Succeeds if after point. */ | 458 after_dot, /* Succeeds if after point. */ |
460 | 459 |
461 /* Matches any character whose syntax is specified. Followed by | 460 /* Matches any character whose syntax is specified. Followed by |
462 a byte which contains a syntax code, e.g., Sword. */ | 461 a byte which contains a syntax code, e.g., Sword. */ |
463 syntaxspec, | 462 syntaxspec, |
464 | 463 |
465 /* Matches any character whose syntax is not that specified. */ | 464 /* Matches any character whose syntax is not that specified. */ |
466 notsyntaxspec | 465 notsyntaxspec |
467 #endif /* emacs */ | 466 #endif /* emacs */ |
505 int temp = SIGN_EXTEND_CHAR (*(source + 1)); | 504 int temp = SIGN_EXTEND_CHAR (*(source + 1)); |
506 *dest = *source & 0377; | 505 *dest = *source & 0377; |
507 *dest += temp << 8; | 506 *dest += temp << 8; |
508 } | 507 } |
509 | 508 |
510 #ifndef EXTRACT_MACROS /* To debug the macros. */ | 509 #ifndef EXTRACT_MACROS /* To debug the macros. */ |
511 #undef EXTRACT_NUMBER | 510 #undef EXTRACT_NUMBER |
512 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | 511 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) |
513 #endif /* not EXTRACT_MACROS */ | 512 #endif /* not EXTRACT_MACROS */ |
514 | 513 |
515 #endif /* DEBUG */ | 514 #endif /* DEBUG */ |
518 SOURCE must be an lvalue. */ | 517 SOURCE must be an lvalue. */ |
519 | 518 |
520 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | 519 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ |
521 do { \ | 520 do { \ |
522 EXTRACT_NUMBER (destination, source); \ | 521 EXTRACT_NUMBER (destination, source); \ |
523 (source) += 2; \ | 522 (source) += 2; \ |
524 } while (0) | 523 } while (0) |
525 | 524 |
526 #ifdef DEBUG | 525 #ifdef DEBUG |
527 static void | 526 static void |
528 extract_number_and_incr (destination, source) | 527 extract_number_and_incr (destination, source) |
543 | 542 |
544 /* If DEBUG is defined, Regex prints many voluminous messages about what | 543 /* If DEBUG is defined, Regex prints many voluminous messages about what |
545 it is doing (if the variable `debug' is nonzero). If linked with the | 544 it is doing (if the variable `debug' is nonzero). If linked with the |
546 main program in `iregex.c', you can enter patterns and strings | 545 main program in `iregex.c', you can enter patterns and strings |
547 interactively. And if linked with the main program in `main.c' and | 546 interactively. And if linked with the main program in `main.c' and |
548 the other test files, you can run the already-written tests. */ | 547 the other test files, you can run the already-written tests. */ |
549 | 548 |
550 #ifdef DEBUG | 549 #ifdef DEBUG |
551 | 550 |
552 /* We use standard I/O for debugging. */ | 551 /* We use standard I/O for debugging. */ |
553 #include <stdio.h> | 552 #include <stdio.h> |
560 #define DEBUG_STATEMENT(e) e | 559 #define DEBUG_STATEMENT(e) e |
561 #define DEBUG_PRINT1(x) if (debug) printf (x) | 560 #define DEBUG_PRINT1(x) if (debug) printf (x) |
562 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | 561 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) |
563 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | 562 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) |
564 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | 563 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) |
565 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | 564 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
566 if (debug) print_partial_compiled_pattern (s, e) | 565 if (debug) print_partial_compiled_pattern (s, e) |
567 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | 566 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ |
568 if (debug) print_double_string (w, s1, sz1, s2, sz2) | 567 if (debug) print_double_string (w, s1, sz1, s2, sz2) |
569 | 568 |
570 | 569 |
580 while (i < (1 << BYTEWIDTH)) | 579 while (i < (1 << BYTEWIDTH)) |
581 { | 580 { |
582 if (fastmap[i++]) | 581 if (fastmap[i++]) |
583 { | 582 { |
584 was_a_range = 0; | 583 was_a_range = 0; |
585 putchar (i - 1); | 584 putchar (i - 1); |
586 while (i < (1 << BYTEWIDTH) && fastmap[i]) | 585 while (i < (1 << BYTEWIDTH) && fastmap[i]) |
587 { | 586 { |
588 was_a_range = 1; | 587 was_a_range = 1; |
589 i++; | 588 i++; |
590 } | 589 } |
591 if (was_a_range) | 590 if (was_a_range) |
592 { | 591 { |
593 printf ("-"); | 592 printf ("-"); |
594 putchar (i - 1); | 593 putchar (i - 1); |
595 } | 594 } |
596 } | 595 } |
597 } | 596 } |
598 putchar ('\n'); | 597 putchar ('\n'); |
599 } | 598 } |
600 | 599 |
601 | 600 |
622 { | 621 { |
623 printf ("%d:\t", p - start); | 622 printf ("%d:\t", p - start); |
624 | 623 |
625 switch ((re_opcode_t) *p++) | 624 switch ((re_opcode_t) *p++) |
626 { | 625 { |
627 case no_op: | 626 case no_op: |
628 printf ("/no_op"); | 627 printf ("/no_op"); |
629 break; | 628 break; |
630 | 629 |
631 case exactn: | 630 case exactn: |
632 mcnt = *p++; | 631 mcnt = *p++; |
633 printf ("/exactn/%d", mcnt); | 632 printf ("/exactn/%d", mcnt); |
634 do | 633 do |
635 { | 634 { |
636 putchar ('/'); | 635 putchar ('/'); |
637 putchar (*p++); | 636 putchar (*p++); |
638 } | 637 } |
639 while (--mcnt); | 638 while (--mcnt); |
640 break; | 639 break; |
641 | 640 |
642 case start_memory: | 641 case start_memory: |
643 mcnt = *p++; | 642 mcnt = *p++; |
644 printf ("/start_memory/%d/%d", mcnt, *p++); | 643 printf ("/start_memory/%d/%d", mcnt, *p++); |
645 break; | 644 break; |
646 | 645 |
647 case stop_memory: | 646 case stop_memory: |
648 mcnt = *p++; | 647 mcnt = *p++; |
649 printf ("/stop_memory/%d/%d", mcnt, *p++); | 648 printf ("/stop_memory/%d/%d", mcnt, *p++); |
650 break; | 649 break; |
651 | 650 |
652 case duplicate: | 651 case duplicate: |
653 printf ("/duplicate/%d", *p++); | 652 printf ("/duplicate/%d", *p++); |
654 break; | 653 break; |
655 | 654 |
656 case anychar: | 655 case anychar: |
657 printf ("/anychar"); | 656 printf ("/anychar"); |
658 break; | 657 break; |
659 | 658 |
660 case charset: | 659 case charset: |
661 case charset_not: | 660 case charset_not: |
662 { | 661 { |
663 register int c, last = -100; | 662 register int c, last = -100; |
664 register int in_range = 0; | 663 register int in_range = 0; |
665 | 664 |
666 printf ("/charset [%s", | 665 printf ("/charset [%s", |
667 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | 666 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); |
668 | 667 |
669 assert (p + *p < pend); | 668 assert (p + *p < pend); |
670 | 669 |
671 for (c = 0; c < 256; c++) | 670 for (c = 0; c < 256; c++) |
672 if (c / 8 < *p | 671 if (c / 8 < *p |
673 && (p[1 + (c/8)] & (1 << (c % 8)))) | 672 && (p[1 + (c/8)] & (1 << (c % 8)))) |
674 { | 673 { |
675 /* Are we starting a range? */ | 674 /* Are we starting a range? */ |
676 if (last + 1 == c && ! in_range) | 675 if (last + 1 == c && ! in_range) |
678 putchar ('-'); | 677 putchar ('-'); |
679 in_range = 1; | 678 in_range = 1; |
680 } | 679 } |
681 /* Have we broken a range? */ | 680 /* Have we broken a range? */ |
682 else if (last + 1 != c && in_range) | 681 else if (last + 1 != c && in_range) |
683 { | 682 { |
684 putchar (last); | 683 putchar (last); |
685 in_range = 0; | 684 in_range = 0; |
686 } | 685 } |
687 | 686 |
688 if (! in_range) | 687 if (! in_range) |
689 putchar (c); | 688 putchar (c); |
690 | 689 |
691 last = c; | 690 last = c; |
692 } | 691 } |
693 | 692 |
694 if (in_range) | 693 if (in_range) |
695 putchar (last); | 694 putchar (last); |
696 | 695 |
697 putchar (']'); | 696 putchar (']'); |
700 } | 699 } |
701 break; | 700 break; |
702 | 701 |
703 case begline: | 702 case begline: |
704 printf ("/begline"); | 703 printf ("/begline"); |
705 break; | 704 break; |
706 | 705 |
707 case endline: | 706 case endline: |
708 printf ("/endline"); | 707 printf ("/endline"); |
709 break; | 708 break; |
710 | 709 |
711 case on_failure_jump: | 710 case on_failure_jump: |
712 extract_number_and_incr (&mcnt, &p); | 711 extract_number_and_incr (&mcnt, &p); |
713 printf ("/on_failure_jump to %d", p + mcnt - start); | 712 printf ("/on_failure_jump to %d", p + mcnt - start); |
714 break; | 713 break; |
715 | 714 |
716 case on_failure_keep_string_jump: | 715 case on_failure_keep_string_jump: |
717 extract_number_and_incr (&mcnt, &p); | 716 extract_number_and_incr (&mcnt, &p); |
718 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); | 717 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); |
719 break; | 718 break; |
720 | 719 |
721 case dummy_failure_jump: | 720 case dummy_failure_jump: |
722 extract_number_and_incr (&mcnt, &p); | 721 extract_number_and_incr (&mcnt, &p); |
723 printf ("/dummy_failure_jump to %d", p + mcnt - start); | 722 printf ("/dummy_failure_jump to %d", p + mcnt - start); |
724 break; | 723 break; |
725 | 724 |
726 case push_dummy_failure: | 725 case push_dummy_failure: |
727 printf ("/push_dummy_failure"); | 726 printf ("/push_dummy_failure"); |
728 break; | 727 break; |
729 | 728 |
730 case maybe_pop_jump: | 729 case maybe_pop_jump: |
731 extract_number_and_incr (&mcnt, &p); | |
732 printf ("/maybe_pop_jump to %d", p + mcnt - start); | |
733 break; | |
734 | |
735 case pop_failure_jump: | |
736 extract_number_and_incr (&mcnt, &p); | 730 extract_number_and_incr (&mcnt, &p); |
737 printf ("/pop_failure_jump to %d", p + mcnt - start); | 731 printf ("/maybe_pop_jump to %d", p + mcnt - start); |
738 break; | 732 break; |
739 | 733 |
740 case jump_past_alt: | 734 case pop_failure_jump: |
741 extract_number_and_incr (&mcnt, &p); | 735 extract_number_and_incr (&mcnt, &p); |
742 printf ("/jump_past_alt to %d", p + mcnt - start); | 736 printf ("/pop_failure_jump to %d", p + mcnt - start); |
743 break; | 737 break; |
744 | 738 |
745 case jump: | 739 case jump_past_alt: |
746 extract_number_and_incr (&mcnt, &p); | 740 extract_number_and_incr (&mcnt, &p); |
747 printf ("/jump to %d", p + mcnt - start); | 741 printf ("/jump_past_alt to %d", p + mcnt - start); |
748 break; | 742 break; |
749 | 743 |
750 case succeed_n: | 744 case jump: |
751 extract_number_and_incr (&mcnt, &p); | 745 extract_number_and_incr (&mcnt, &p); |
752 extract_number_and_incr (&mcnt2, &p); | 746 printf ("/jump to %d", p + mcnt - start); |
747 break; | |
748 | |
749 case succeed_n: | |
750 extract_number_and_incr (&mcnt, &p); | |
751 extract_number_and_incr (&mcnt2, &p); | |
753 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); | 752 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); |
754 break; | 753 break; |
755 | 754 |
756 case jump_n: | 755 case jump_n: |
757 extract_number_and_incr (&mcnt, &p); | 756 extract_number_and_incr (&mcnt, &p); |
758 extract_number_and_incr (&mcnt2, &p); | 757 extract_number_and_incr (&mcnt2, &p); |
759 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); | 758 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); |
760 break; | 759 break; |
761 | 760 |
762 case set_number_at: | 761 case set_number_at: |
763 extract_number_and_incr (&mcnt, &p); | 762 extract_number_and_incr (&mcnt, &p); |
764 extract_number_and_incr (&mcnt2, &p); | 763 extract_number_and_incr (&mcnt2, &p); |
765 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); | 764 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); |
766 break; | 765 break; |
767 | 766 |
768 case wordbound: | 767 case wordbound: |
769 printf ("/wordbound"); | 768 printf ("/wordbound"); |
770 break; | 769 break; |
771 | 770 |
772 case notwordbound: | 771 case notwordbound: |
773 printf ("/notwordbound"); | 772 printf ("/notwordbound"); |
774 break; | 773 break; |
775 | 774 |
776 case wordbeg: | 775 case wordbeg: |
777 printf ("/wordbeg"); | 776 printf ("/wordbeg"); |
778 break; | 777 break; |
779 | 778 |
781 printf ("/wordend"); | 780 printf ("/wordend"); |
782 | 781 |
783 #ifdef emacs | 782 #ifdef emacs |
784 case before_dot: | 783 case before_dot: |
785 printf ("/before_dot"); | 784 printf ("/before_dot"); |
786 break; | 785 break; |
787 | 786 |
788 case at_dot: | 787 case at_dot: |
789 printf ("/at_dot"); | 788 printf ("/at_dot"); |
790 break; | 789 break; |
791 | 790 |
792 case after_dot: | 791 case after_dot: |
793 printf ("/after_dot"); | 792 printf ("/after_dot"); |
794 break; | 793 break; |
795 | 794 |
796 case syntaxspec: | 795 case syntaxspec: |
797 printf ("/syntaxspec"); | 796 printf ("/syntaxspec"); |
798 mcnt = *p++; | 797 mcnt = *p++; |
799 printf ("/%d", mcnt); | 798 printf ("/%d", mcnt); |
800 break; | 799 break; |
801 | 800 |
802 case notsyntaxspec: | 801 case notsyntaxspec: |
803 printf ("/notsyntaxspec"); | 802 printf ("/notsyntaxspec"); |
804 mcnt = *p++; | 803 mcnt = *p++; |
805 printf ("/%d", mcnt); | 804 printf ("/%d", mcnt); |
806 break; | 805 break; |
807 #endif /* emacs */ | 806 #endif /* emacs */ |
808 | 807 |
809 case wordchar: | 808 case wordchar: |
810 printf ("/wordchar"); | 809 printf ("/wordchar"); |
811 break; | 810 break; |
812 | 811 |
813 case notwordchar: | 812 case notwordchar: |
814 printf ("/notwordchar"); | 813 printf ("/notwordchar"); |
815 break; | 814 break; |
816 | 815 |
817 case begbuf: | 816 case begbuf: |
818 printf ("/begbuf"); | 817 printf ("/begbuf"); |
819 break; | 818 break; |
820 | 819 |
821 case endbuf: | 820 case endbuf: |
822 printf ("/endbuf"); | 821 printf ("/endbuf"); |
823 break; | 822 break; |
824 | 823 |
825 default: | 824 default: |
826 printf ("?%d", *(p-1)); | 825 printf ("?%d", *(p-1)); |
827 } | 826 } |
828 | 827 |
829 putchar ('\n'); | 828 putchar ('\n'); |
830 } | 829 } |
831 | 830 |
873 if (where == NULL) | 872 if (where == NULL) |
874 printf ("(null)"); | 873 printf ("(null)"); |
875 else | 874 else |
876 { | 875 { |
877 if (FIRST_STRING_P (where)) | 876 if (FIRST_STRING_P (where)) |
878 { | 877 { |
879 for (this_char = where - string1; this_char < size1; this_char++) | 878 for (this_char = where - string1; this_char < size1; this_char++) |
880 putchar (string1[this_char]); | 879 putchar (string1[this_char]); |
881 | 880 |
882 where = string2; | 881 where = string2; |
883 } | 882 } |
884 | 883 |
885 for (this_char = where - string2; this_char < size2; this_char++) | 884 for (this_char = where - string2; this_char < size2; this_char++) |
886 putchar (string2[this_char]); | 885 putchar (string2[this_char]); |
887 } | 886 } |
888 } | 887 } |
889 | 888 |
890 #else /* not DEBUG */ | 889 #else /* not DEBUG */ |
891 | 890 |
913 /* Specify the precise syntax of regexps for compilation. This provides | 912 /* Specify the precise syntax of regexps for compilation. This provides |
914 for compatibility for various utilities which historically have | 913 for compatibility for various utilities which historically have |
915 different, incompatible syntaxes. | 914 different, incompatible syntaxes. |
916 | 915 |
917 The argument SYNTAX is a bit mask comprised of the various bits | 916 The argument SYNTAX is a bit mask comprised of the various bits |
918 defined in regex.h. We return the old syntax. */ | 917 defined in regex.h. We return the old syntax. */ |
919 | 918 |
920 reg_syntax_t | 919 reg_syntax_t |
921 re_set_syntax (syntax) | 920 re_set_syntax (syntax) |
922 reg_syntax_t syntax; | 921 reg_syntax_t syntax; |
923 { | 922 { |
926 re_syntax_options = syntax; | 925 re_syntax_options = syntax; |
927 return ret; | 926 return ret; |
928 } | 927 } |
929 | 928 |
930 /* This table gives an error message for each of the error codes listed | 929 /* This table gives an error message for each of the error codes listed |
931 in regex.h. Obviously the order here has to be same as there. | 930 in regex.h. Obviously the order here has to be same as there. |
932 POSIX doesn't require that we do anything for REG_NOERROR, | 931 POSIX doesn't require that we do anything for REG_NOERROR, |
933 but why not be nice? */ | 932 but why not be nice? */ |
934 | 933 |
935 static const char *re_error_msgid[] = | 934 static const char *re_error_msgid[] = |
936 { | 935 { |
937 gettext_noop ("Success"), /* REG_NOERROR */ | 936 gettext_noop ("Success"), /* REG_NOERROR */ |
938 gettext_noop ("No match"), /* REG_NOMATCH */ | 937 gettext_noop ("No match"), /* REG_NOMATCH */ |
951 gettext_noop ("Premature end of regular expression"), /* REG_EEND */ | 950 gettext_noop ("Premature end of regular expression"), /* REG_EEND */ |
952 gettext_noop ("Regular expression too big"), /* REG_ESIZE */ | 951 gettext_noop ("Regular expression too big"), /* REG_ESIZE */ |
953 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ | 952 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ |
954 }; | 953 }; |
955 | 954 |
956 /* Avoiding alloca during matching, to placate r_alloc. */ | 955 /* Avoiding alloca during matching, to placate r_alloc. */ |
957 | 956 |
958 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the | 957 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
959 searching and matching functions should not call alloca. On some | 958 searching and matching functions should not call alloca. On some |
960 systems, alloca is implemented in terms of malloc, and if we're | 959 systems, alloca is implemented in terms of malloc, and if we're |
961 using the relocating allocator routines, then malloc could cause a | 960 using the relocating allocator routines, then malloc could cause a |
983 | 982 |
984 /* The match routines may not allocate if (1) they would do it with malloc | 983 /* The match routines may not allocate if (1) they would do it with malloc |
985 and (2) it's not safe for them to use malloc. | 984 and (2) it's not safe for them to use malloc. |
986 Note that if REL_ALLOC is defined, matching would not use malloc for the | 985 Note that if REL_ALLOC is defined, matching would not use malloc for the |
987 failure stack, but we would still use it for the register vectors; | 986 failure stack, but we would still use it for the register vectors; |
988 so REL_ALLOC should not affect this. */ | 987 so REL_ALLOC should not affect this. */ |
989 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) | 988 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) |
990 #undef MATCH_MAY_ALLOCATE | 989 #undef MATCH_MAY_ALLOCATE |
991 #endif | 990 #endif |
992 | 991 |
993 | 992 |
1004 #endif | 1003 #endif |
1005 | 1004 |
1006 /* Roughly the maximum number of failure points on the stack. Would be | 1005 /* Roughly the maximum number of failure points on the stack. Would be |
1007 exactly that if always used MAX_FAILURE_ITEMS items each time we failed. | 1006 exactly that if always used MAX_FAILURE_ITEMS items each time we failed. |
1008 This is a variable only so users of regex can assign to it; we never | 1007 This is a variable only so users of regex can assign to it; we never |
1009 change it ourselves. */ | 1008 change it ourselves. */ |
1010 #if defined (MATCH_MAY_ALLOCATE) | 1009 #if defined (MATCH_MAY_ALLOCATE) |
1011 /* 4400 was enough to cause a crash on Alpha OSF/1, | 1010 /* 4400 was enough to cause a crash on Alpha OSF/1, |
1012 whose default stack limit is 2mb. */ | 1011 whose default stack limit is 2mb. */ |
1013 int re_max_failures = 20000; | 1012 int re_max_failures = 20000; |
1014 #else | 1013 #else |
1065 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | 1064 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. |
1066 | 1065 |
1067 Return 1 if succeeds, and 0 if either ran out of memory | 1066 Return 1 if succeeds, and 0 if either ran out of memory |
1068 allocating space for it or it was already too large. | 1067 allocating space for it or it was already too large. |
1069 | 1068 |
1070 REGEX_REALLOCATE_STACK requires `destination' be declared. */ | 1069 REGEX_REALLOCATE_STACK requires `destination' be declared. */ |
1071 | 1070 |
1072 #define DOUBLE_FAIL_STACK(fail_stack) \ | 1071 #define DOUBLE_FAIL_STACK(fail_stack) \ |
1073 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | 1072 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ |
1074 ? 0 \ | 1073 ? 0 \ |
1075 : ((fail_stack).stack = (fail_stack_elt_t *) \ | 1074 : ((fail_stack).stack = (fail_stack_elt_t *) \ |
1076 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ | 1075 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ |
1077 (fail_stack).size * sizeof (fail_stack_elt_t), \ | 1076 (fail_stack).size * sizeof (fail_stack_elt_t), \ |
1078 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | 1077 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ |
1079 \ | 1078 \ |
1080 (fail_stack).stack == NULL \ | 1079 (fail_stack).stack == NULL \ |
1081 ? 0 \ | 1080 ? 0 \ |
1082 : ((fail_stack).size <<= 1, \ | 1081 : ((fail_stack).size <<= 1, \ |
1083 1))) | 1082 1))) |
1084 | 1083 |
1085 | 1084 |
1086 /* Push pointer POINTER on FAIL_STACK. | 1085 /* Push pointer POINTER on FAIL_STACK. |
1087 Return 1 if was able to do so and 0 if ran out of memory allocating | 1086 Return 1 if was able to do so and 0 if ran out of memory allocating |
1088 space to do so. */ | 1087 space to do so. */ |
1093 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ | 1092 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ |
1094 1)) | 1093 1)) |
1095 | 1094 |
1096 /* Push a pointer value onto the failure stack. | 1095 /* Push a pointer value onto the failure stack. |
1097 Assumes the variable `fail_stack'. Probably should only | 1096 Assumes the variable `fail_stack'. Probably should only |
1098 be called from within `PUSH_FAILURE_POINT'. */ | 1097 be called from within `PUSH_FAILURE_POINT'. */ |
1099 #define PUSH_FAILURE_POINTER(item) \ | 1098 #define PUSH_FAILURE_POINTER(item) \ |
1100 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) | 1099 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) |
1101 | 1100 |
1102 /* This pushes an integer-valued item onto the failure stack. | 1101 /* This pushes an integer-valued item onto the failure stack. |
1103 Assumes the variable `fail_stack'. Probably should only | 1102 Assumes the variable `fail_stack'. Probably should only |
1104 be called from within `PUSH_FAILURE_POINT'. */ | 1103 be called from within `PUSH_FAILURE_POINT'. */ |
1105 #define PUSH_FAILURE_INT(item) \ | 1104 #define PUSH_FAILURE_INT(item) \ |
1106 fail_stack.stack[fail_stack.avail++].integer = (item) | 1105 fail_stack.stack[fail_stack.avail++].integer = (item) |
1107 | 1106 |
1108 /* Push a fail_stack_elt_t value onto the failure stack. | 1107 /* Push a fail_stack_elt_t value onto the failure stack. |
1109 Assumes the variable `fail_stack'. Probably should only | 1108 Assumes the variable `fail_stack'. Probably should only |
1110 be called from within `PUSH_FAILURE_POINT'. */ | 1109 be called from within `PUSH_FAILURE_POINT'. */ |
1111 #define PUSH_FAILURE_ELT(item) \ | 1110 #define PUSH_FAILURE_ELT(item) \ |
1112 fail_stack.stack[fail_stack.avail++] = (item) | 1111 fail_stack.stack[fail_stack.avail++] = (item) |
1113 | 1112 |
1114 /* These three POP... operations complement the three PUSH... operations. | 1113 /* These three POP... operations complement the three PUSH... operations. |
1115 All assume that `fail_stack' is nonempty. */ | 1114 All assume that `fail_stack' is nonempty. */ |
1140 do { \ | 1139 do { \ |
1141 char *destination; \ | 1140 char *destination; \ |
1142 /* Must be int, so when we don't save any registers, the arithmetic \ | 1141 /* Must be int, so when we don't save any registers, the arithmetic \ |
1143 of 0 + -1 isn't done as unsigned. */ \ | 1142 of 0 + -1 isn't done as unsigned. */ \ |
1144 int this_reg; \ | 1143 int this_reg; \ |
1145 \ | 1144 \ |
1146 DEBUG_STATEMENT (failure_id++); \ | 1145 DEBUG_STATEMENT (failure_id++); \ |
1147 DEBUG_STATEMENT (nfailure_points_pushed++); \ | 1146 DEBUG_STATEMENT (nfailure_points_pushed++); \ |
1148 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | 1147 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ |
1149 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | 1148 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ |
1150 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | 1149 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ |
1151 \ | 1150 \ |
1152 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | 1151 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ |
1153 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | 1152 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ |
1154 \ | 1153 \ |
1155 /* Ensure we have enough space allocated for what we will push. */ \ | 1154 /* Ensure we have enough space allocated for what we will push. */ \ |
1156 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | 1155 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ |
1157 { \ | 1156 { \ |
1158 if (!DOUBLE_FAIL_STACK (fail_stack)) \ | 1157 if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
1159 return failure_code; \ | 1158 return failure_code; \ |
1160 \ | 1159 \ |
1161 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | 1160 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ |
1162 (fail_stack).size); \ | 1161 (fail_stack).size); \ |
1163 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | 1162 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ |
1164 } \ | 1163 } \ |
1165 \ | 1164 \ |
1166 /* Push the info, starting with the registers. */ \ | 1165 /* Push the info, starting with the registers. */ \ |
1167 DEBUG_PRINT1 ("\n"); \ | 1166 DEBUG_PRINT1 ("\n"); \ |
1168 \ | 1167 \ |
1200 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | 1199 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ |
1201 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | 1200 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ |
1202 PUSH_FAILURE_POINTER (pattern_place); \ | 1201 PUSH_FAILURE_POINTER (pattern_place); \ |
1203 \ | 1202 \ |
1204 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | 1203 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ |
1205 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | 1204 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ |
1206 size2); \ | 1205 size2); \ |
1207 DEBUG_PRINT1 ("'\n"); \ | 1206 DEBUG_PRINT1 ("'\n"); \ |
1208 PUSH_FAILURE_POINTER (string_place); \ | 1207 PUSH_FAILURE_POINTER (string_place); \ |
1209 \ | 1208 \ |
1210 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | 1209 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
1247 LOW_REG, HIGH_REG -- the highest and lowest active registers. | 1246 LOW_REG, HIGH_REG -- the highest and lowest active registers. |
1248 REGSTART, REGEND -- arrays of string positions. | 1247 REGSTART, REGEND -- arrays of string positions. |
1249 REG_INFO -- array of information about each subexpression. | 1248 REG_INFO -- array of information about each subexpression. |
1250 | 1249 |
1251 Also assumes the variables `fail_stack' and (if debugging), `bufp', | 1250 Also assumes the variables `fail_stack' and (if debugging), `bufp', |
1252 `pend', `string1', `size1', `string2', and `size2'. */ | 1251 `pend', `string1', `size1', `string2', and `size2'. */ |
1253 | 1252 |
1254 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ | 1253 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ |
1255 { \ | 1254 { \ |
1256 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | 1255 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ |
1257 int this_reg; \ | 1256 int this_reg; \ |
1260 assert (!FAIL_STACK_EMPTY ()); \ | 1259 assert (!FAIL_STACK_EMPTY ()); \ |
1261 \ | 1260 \ |
1262 /* Remove failure points and point to how many regs pushed. */ \ | 1261 /* Remove failure points and point to how many regs pushed. */ \ |
1263 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | 1262 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ |
1264 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | 1263 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ |
1265 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | 1264 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ |
1266 \ | 1265 \ |
1267 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | 1266 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ |
1268 \ | 1267 \ |
1269 DEBUG_POP (&failure_id); \ | 1268 DEBUG_POP (&failure_id); \ |
1270 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | 1269 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ |
1292 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ | 1291 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ |
1293 \ | 1292 \ |
1294 if (1) \ | 1293 if (1) \ |
1295 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | 1294 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ |
1296 { \ | 1295 { \ |
1297 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | 1296 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ |
1298 \ | 1297 \ |
1299 reg_info[this_reg].word = POP_FAILURE_ELT (); \ | 1298 reg_info[this_reg].word = POP_FAILURE_ELT (); \ |
1300 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ | 1299 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ |
1301 \ | 1300 \ |
1302 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ | 1301 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
1303 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | 1302 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ |
1304 \ | 1303 \ |
1305 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ | 1304 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
1306 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | 1305 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ |
1307 } \ | 1306 } \ |
1308 else \ | 1307 else \ |
1309 { \ | 1308 { \ |
1310 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ | 1309 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ |
1311 { \ | 1310 { \ |
1337 { | 1336 { |
1338 fail_stack_elt_t word; | 1337 fail_stack_elt_t word; |
1339 struct | 1338 struct |
1340 { | 1339 { |
1341 /* This field is one if this group can match the empty string, | 1340 /* This field is one if this group can match the empty string, |
1342 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | 1341 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ |
1343 #define MATCH_NULL_UNSET_VALUE 3 | 1342 #define MATCH_NULL_UNSET_VALUE 3 |
1344 unsigned match_null_string_p : 2; | 1343 unsigned match_null_string_p : 2; |
1345 unsigned is_active : 1; | 1344 unsigned is_active : 1; |
1346 unsigned matched_something : 1; | 1345 unsigned matched_something : 1; |
1347 unsigned ever_matched_something : 1; | 1346 unsigned ever_matched_something : 1; |
1398 if (translate) c = (unsigned char) translate[c]; \ | 1397 if (translate) c = (unsigned char) translate[c]; \ |
1399 } while (0) | 1398 } while (0) |
1400 #endif | 1399 #endif |
1401 | 1400 |
1402 /* Fetch the next character in the uncompiled pattern, with no | 1401 /* Fetch the next character in the uncompiled pattern, with no |
1403 translation. */ | 1402 translation. */ |
1404 #define PATFETCH_RAW(c) \ | 1403 #define PATFETCH_RAW(c) \ |
1405 do {if (p == pend) return REG_EEND; \ | 1404 do {if (p == pend) return REG_EEND; \ |
1406 c = (unsigned char) *p++; \ | 1405 c = (unsigned char) *p++; \ |
1407 } while (0) | 1406 } while (0) |
1408 | 1407 |
1409 /* Go backwards one character in the pattern. */ | 1408 /* Go backwards one character in the pattern. */ |
1410 #define PATUNFETCH p-- | 1409 #define PATUNFETCH p-- |
1411 | 1410 |
1423 /* Macros for outputting the compiled pattern into `buffer'. */ | 1422 /* Macros for outputting the compiled pattern into `buffer'. */ |
1424 | 1423 |
1425 /* If the buffer isn't allocated when it comes in, use this. */ | 1424 /* If the buffer isn't allocated when it comes in, use this. */ |
1426 #define INIT_BUF_SIZE 32 | 1425 #define INIT_BUF_SIZE 32 |
1427 | 1426 |
1428 /* Make sure we have at least N more bytes of space in buffer. */ | 1427 /* Make sure we have at least N more bytes of space in buffer. */ |
1429 #define GET_BUFFER_SPACE(n) \ | 1428 #define GET_BUFFER_SPACE(n) \ |
1430 while (b - bufp->buffer + (n) > bufp->allocated) \ | 1429 while (b - bufp->buffer + (n) > bufp->allocated) \ |
1431 EXTEND_BUFFER () | 1430 EXTEND_BUFFER () |
1432 | 1431 |
1433 /* Make sure we have one more byte of buffer space and then add C to it. */ | 1432 /* Make sure we have one more byte of buffer space and then add C to it. */ |
1445 *b++ = (unsigned char) (c1); \ | 1444 *b++ = (unsigned char) (c1); \ |
1446 *b++ = (unsigned char) (c2); \ | 1445 *b++ = (unsigned char) (c2); \ |
1447 } while (0) | 1446 } while (0) |
1448 | 1447 |
1449 | 1448 |
1450 /* As with BUF_PUSH_2, except for three bytes. */ | 1449 /* As with BUF_PUSH_2, except for three bytes. */ |
1451 #define BUF_PUSH_3(c1, c2, c3) \ | 1450 #define BUF_PUSH_3(c1, c2, c3) \ |
1452 do { \ | 1451 do { \ |
1453 GET_BUFFER_SPACE (3); \ | 1452 GET_BUFFER_SPACE (3); \ |
1454 *b++ = (unsigned char) (c1); \ | 1453 *b++ = (unsigned char) (c1); \ |
1455 *b++ = (unsigned char) (c2); \ | 1454 *b++ = (unsigned char) (c2); \ |
1456 *b++ = (unsigned char) (c3); \ | 1455 *b++ = (unsigned char) (c3); \ |
1457 } while (0) | 1456 } while (0) |
1458 | 1457 |
1459 | 1458 |
1460 /* Store a jump with opcode OP at LOC to location TO. We store a | 1459 /* Store a jump with opcode OP at LOC to location TO. We store a |
1461 relative address offset by the three bytes the jump itself occupies. */ | 1460 relative address offset by the three bytes the jump itself occupies. */ |
1462 #define STORE_JUMP(op, loc, to) \ | 1461 #define STORE_JUMP(op, loc, to) \ |
1463 store_op1 (op, loc, (to) - (loc) - 3) | 1462 store_op1 (op, loc, (to) - (loc) - 3) |
1464 | 1463 |
1465 /* Likewise, for a two-argument jump. */ | 1464 /* Likewise, for a two-argument jump. */ |
1466 #define STORE_JUMP2(op, loc, to, arg) \ | 1465 #define STORE_JUMP2(op, loc, to, arg) \ |
1467 store_op2 (op, loc, (to) - (loc) - 3, arg) | 1466 store_op2 (op, loc, (to) - (loc) - 3, arg) |
1468 | 1467 |
1469 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | 1468 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ |
1470 #define INSERT_JUMP(op, loc, to) \ | 1469 #define INSERT_JUMP(op, loc, to) \ |
1471 insert_op1 (op, loc, (to) - (loc) - 3, b) | 1470 insert_op1 (op, loc, (to) - (loc) - 3, b) |
1472 | 1471 |
1473 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | 1472 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ |
1474 #define INSERT_JUMP2(op, loc, to, arg) \ | 1473 #define INSERT_JUMP2(op, loc, to, arg) \ |
1475 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | 1474 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) |
1476 | 1475 |
1477 | 1476 |
1478 /* This is not an arbitrary limit: the arguments which represent offsets | 1477 /* This is not an arbitrary limit: the arguments which represent offsets |
1479 into the pattern are two bytes long. So if 2^16 bytes turns out to | 1478 into the pattern are two bytes long. So if 2^16 bytes turns out to |
1480 be too small, many things would have to change. */ | 1479 be too small, many things would have to change. */ |
1481 #define MAX_BUF_SIZE (1L << 16) | 1480 #define MAX_BUF_SIZE (1L << 16) |
1482 | 1481 |
1483 | 1482 |
1484 /* Extend the buffer by twice its current size via realloc and | 1483 /* Extend the buffer by twice its current size via realloc and |
1485 reset the pointers that pointed into the old block to point to the | 1484 reset the pointers that pointed into the old block to point to the |
1486 correct places in the new one. If extending the buffer results in it | 1485 correct places in the new one. If extending the buffer results in it |
1487 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | 1486 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ |
1488 #define EXTEND_BUFFER() \ | 1487 #define EXTEND_BUFFER() \ |
1489 do { \ | 1488 do { \ |
1490 unsigned char *old_buffer = bufp->buffer; \ | 1489 unsigned char *old_buffer = bufp->buffer; \ |
1491 if (bufp->allocated == MAX_BUF_SIZE) \ | 1490 if (bufp->allocated == MAX_BUF_SIZE) \ |
1492 return REG_ESIZE; \ | 1491 return REG_ESIZE; \ |
1493 bufp->allocated <<= 1; \ | 1492 bufp->allocated <<= 1; \ |
1494 if (bufp->allocated > MAX_BUF_SIZE) \ | 1493 if (bufp->allocated > MAX_BUF_SIZE) \ |
1495 bufp->allocated = MAX_BUF_SIZE; \ | 1494 bufp->allocated = MAX_BUF_SIZE; \ |
1496 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | 1495 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ |
1497 if (bufp->buffer == NULL) \ | 1496 if (bufp->buffer == NULL) \ |
1498 return REG_ESPACE; \ | 1497 return REG_ESPACE; \ |
1499 /* If the buffer moved, move all the pointers into it. */ \ | 1498 /* If the buffer moved, move all the pointers into it. */ \ |
1500 if (old_buffer != bufp->buffer) \ | 1499 if (old_buffer != bufp->buffer) \ |
1501 { \ | 1500 { \ |
1502 b = (b - old_buffer) + bufp->buffer; \ | 1501 b = (b - old_buffer) + bufp->buffer; \ |
1503 begalt = (begalt - old_buffer) + bufp->buffer; \ | 1502 begalt = (begalt - old_buffer) + bufp->buffer; \ |
1504 if (fixup_alt_jump) \ | 1503 if (fixup_alt_jump) \ |
1505 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | 1504 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ |
1506 if (laststart) \ | 1505 if (laststart) \ |
1507 laststart = (laststart - old_buffer) + bufp->buffer; \ | 1506 laststart = (laststart - old_buffer) + bufp->buffer; \ |
1508 if (pending_exact) \ | 1507 if (pending_exact) \ |
1509 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | 1508 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ |
1510 } \ | 1509 } \ |
1511 } while (0) | 1510 } while (0) |
1512 | 1511 |
1513 | 1512 |
1514 /* Since we have one byte reserved for the register number argument to | 1513 /* Since we have one byte reserved for the register number argument to |
1522 | 1521 |
1523 | 1522 |
1524 /* Macros for the compile stack. */ | 1523 /* Macros for the compile stack. */ |
1525 | 1524 |
1526 /* Since offsets can go either forwards or backwards, this type needs to | 1525 /* Since offsets can go either forwards or backwards, this type needs to |
1527 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | 1526 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ |
1528 typedef int pattern_offset_t; | 1527 typedef int pattern_offset_t; |
1529 | 1528 |
1530 typedef struct | 1529 typedef struct |
1531 { | 1530 { |
1532 pattern_offset_t begalt_offset; | 1531 pattern_offset_t begalt_offset; |
1548 #define INIT_COMPILE_STACK_SIZE 32 | 1547 #define INIT_COMPILE_STACK_SIZE 32 |
1549 | 1548 |
1550 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | 1549 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) |
1551 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | 1550 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) |
1552 | 1551 |
1553 /* The next available element. */ | 1552 /* The next available element. */ |
1554 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | 1553 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) |
1555 | 1554 |
1556 | 1555 |
1557 /* Set the bit for character C in a list. */ | 1556 /* Set the bit for character C in a list. */ |
1558 #define SET_LIST_BIT(c) \ | 1557 #define SET_LIST_BIT(c) \ |
1559 (b[((unsigned char) (c)) / BYTEWIDTH] \ | 1558 (b[((unsigned char) (c)) / BYTEWIDTH] \ |
1560 |= 1 << (((unsigned char) c) % BYTEWIDTH)) | 1559 |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
1561 | 1560 |
1562 | 1561 |
1563 /* Get the next unsigned number in the uncompiled pattern. */ | 1562 /* Get the next unsigned number in the uncompiled pattern. */ |
1564 #define GET_UNSIGNED_NUMBER(num) \ | 1563 #define GET_UNSIGNED_NUMBER(num) \ |
1565 { if (p != pend) \ | 1564 { if (p != pend) \ |
1566 { \ | 1565 { \ |
1567 PATFETCH (c); \ | 1566 PATFETCH (c); \ |
1568 while (ISDIGIT (c)) \ | 1567 while (ISDIGIT (c)) \ |
1569 { \ | 1568 { \ |
1570 if (num < 0) \ | 1569 if (num < 0) \ |
1571 num = 0; \ | 1570 num = 0; \ |
1572 num = num * 10 + c - '0'; \ | 1571 num = num * 10 + c - '0'; \ |
1573 if (p == pend) \ | 1572 if (p == pend) \ |
1574 break; \ | 1573 break; \ |
1575 PATFETCH (c); \ | 1574 PATFETCH (c); \ |
1576 } \ | 1575 } \ |
1577 } \ | 1576 } \ |
1578 } | 1577 } |
1579 | 1578 |
1580 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | 1579 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ |
1581 | 1580 |
1582 #define IS_CHAR_CLASS(string) \ | 1581 #define IS_CHAR_CLASS(string) \ |
1598 | 1597 |
1599 static fail_stack_type fail_stack; | 1598 static fail_stack_type fail_stack; |
1600 | 1599 |
1601 /* Size with which the following vectors are currently allocated. | 1600 /* Size with which the following vectors are currently allocated. |
1602 That is so we can make them bigger as needed, | 1601 That is so we can make them bigger as needed, |
1603 but never make them smaller. */ | 1602 but never make them smaller. */ |
1604 static int regs_allocated_size; | 1603 static int regs_allocated_size; |
1605 | 1604 |
1606 static const char ** regstart, ** regend; | 1605 static const char ** regstart, ** regend; |
1607 static const char ** old_regstart, ** old_regend; | 1606 static const char ** old_regstart, ** old_regend; |
1608 static const char **best_regstart, **best_regend; | 1607 static const char **best_regstart, **best_regend; |
1609 static register_info_type *reg_info; | 1608 static register_info_type *reg_info; |
1610 static const char **reg_dummy; | 1609 static const char **reg_dummy; |
1611 static register_info_type *reg_info_dummy; | 1610 static register_info_type *reg_info_dummy; |
1612 | 1611 |
1613 /* Make the register vectors big enough for NUM_REGS registers, | 1612 /* Make the register vectors big enough for NUM_REGS registers, |
1614 but don't make them smaller. */ | 1613 but don't make them smaller. */ |
1615 | 1614 |
1616 static | 1615 static |
1617 regex_grow_registers (num_regs) | 1616 regex_grow_registers (num_regs) |
1618 int num_regs; | 1617 int num_regs; |
1619 { | 1618 { |
1702 /* Place in the uncompiled pattern (i.e., the {) to | 1701 /* Place in the uncompiled pattern (i.e., the {) to |
1703 which to go back if the interval is invalid. */ | 1702 which to go back if the interval is invalid. */ |
1704 const char *beg_interval; | 1703 const char *beg_interval; |
1705 | 1704 |
1706 /* Address of the place where a forward jump should go to the end of | 1705 /* Address of the place where a forward jump should go to the end of |
1707 the containing expression. Each alternative of an `or' -- except the | 1706 the containing expression. Each alternative of an `or' -- except the |
1708 last -- ends with a forward jump of this sort. */ | 1707 last -- ends with a forward jump of this sort. */ |
1709 unsigned char *fixup_alt_jump = 0; | 1708 unsigned char *fixup_alt_jump = 0; |
1710 | 1709 |
1711 /* Counts open-groups as they are encountered. Remembered for the | 1710 /* Counts open-groups as they are encountered. Remembered for the |
1712 matching close-group on the compile stack, so the same register | 1711 matching close-group on the compile stack, so the same register |
1718 if (debug) | 1717 if (debug) |
1719 { | 1718 { |
1720 unsigned debug_count; | 1719 unsigned debug_count; |
1721 | 1720 |
1722 for (debug_count = 0; debug_count < size; debug_count++) | 1721 for (debug_count = 0; debug_count < size; debug_count++) |
1723 putchar (pattern[debug_count]); | 1722 putchar (pattern[debug_count]); |
1724 putchar ('\n'); | 1723 putchar ('\n'); |
1725 } | 1724 } |
1726 #endif /* DEBUG */ | 1725 #endif /* DEBUG */ |
1727 | 1726 |
1728 /* Initialize the compile stack. */ | 1727 /* Initialize the compile stack. */ |
1753 | 1752 |
1754 if (bufp->allocated == 0) | 1753 if (bufp->allocated == 0) |
1755 { | 1754 { |
1756 if (bufp->buffer) | 1755 if (bufp->buffer) |
1757 { /* If zero allocated, but buffer is non-null, try to realloc | 1756 { /* If zero allocated, but buffer is non-null, try to realloc |
1758 enough space. This loses if buffer's address is bogus, but | 1757 enough space. This loses if buffer's address is bogus, but |
1759 that is the user's responsibility. */ | 1758 that is the user's responsibility. */ |
1760 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | 1759 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); |
1761 } | 1760 } |
1762 else | 1761 else |
1763 { /* Caller did not allocate a buffer. Do it for them. */ | 1762 { /* Caller did not allocate a buffer. Do it for them. */ |
1764 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | 1763 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); |
1765 } | 1764 } |
1766 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); | 1765 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); |
1767 | 1766 |
1768 bufp->allocated = INIT_BUF_SIZE; | 1767 bufp->allocated = INIT_BUF_SIZE; |
1769 } | 1768 } |
1770 | 1769 |
1774 while (p != pend) | 1773 while (p != pend) |
1775 { | 1774 { |
1776 PATFETCH (c); | 1775 PATFETCH (c); |
1777 | 1776 |
1778 switch (c) | 1777 switch (c) |
1779 { | 1778 { |
1780 case '^': | 1779 case '^': |
1781 { | 1780 { |
1782 if ( /* If at start of pattern, it's an operator. */ | 1781 if ( /* If at start of pattern, it's an operator. */ |
1783 p == pattern + 1 | 1782 p == pattern + 1 |
1784 /* If context independent, it's an operator. */ | 1783 /* If context independent, it's an operator. */ |
1785 || syntax & RE_CONTEXT_INDEP_ANCHORS | 1784 || syntax & RE_CONTEXT_INDEP_ANCHORS |
1786 /* Otherwise, depends on what's come before. */ | 1785 /* Otherwise, depends on what's come before. */ |
1787 || at_begline_loc_p (pattern, p, syntax)) | 1786 || at_begline_loc_p (pattern, p, syntax)) |
1788 BUF_PUSH (begline); | 1787 BUF_PUSH (begline); |
1789 else | 1788 else |
1790 goto normal_char; | 1789 goto normal_char; |
1791 } | 1790 } |
1792 break; | 1791 break; |
1793 | 1792 |
1794 | 1793 |
1795 case '$': | 1794 case '$': |
1796 { | 1795 { |
1797 if ( /* If at end of pattern, it's an operator. */ | 1796 if ( /* If at end of pattern, it's an operator. */ |
1798 p == pend | 1797 p == pend |
1799 /* If context independent, it's an operator. */ | 1798 /* If context independent, it's an operator. */ |
1800 || syntax & RE_CONTEXT_INDEP_ANCHORS | 1799 || syntax & RE_CONTEXT_INDEP_ANCHORS |
1801 /* Otherwise, depends on what's next. */ | 1800 /* Otherwise, depends on what's next. */ |
1802 || at_endline_loc_p (p, pend, syntax)) | 1801 || at_endline_loc_p (p, pend, syntax)) |
1803 BUF_PUSH (endline); | 1802 BUF_PUSH (endline); |
1804 else | 1803 else |
1805 goto normal_char; | 1804 goto normal_char; |
1806 } | 1805 } |
1807 break; | 1806 break; |
1808 | 1807 |
1809 | 1808 |
1810 case '+': | 1809 case '+': |
1811 case '?': | 1810 case '?': |
1812 if ((syntax & RE_BK_PLUS_QM) | 1811 if ((syntax & RE_BK_PLUS_QM) |
1813 || (syntax & RE_LIMITED_OPS)) | 1812 || (syntax & RE_LIMITED_OPS)) |
1814 goto normal_char; | 1813 goto normal_char; |
1815 handle_plus: | 1814 handle_plus: |
1816 case '*': | 1815 case '*': |
1817 /* If there is no previous pattern... */ | 1816 /* If there is no previous pattern... */ |
1818 if (!laststart) | 1817 if (!laststart) |
1819 { | 1818 { |
1820 if (syntax & RE_CONTEXT_INVALID_OPS) | 1819 if (syntax & RE_CONTEXT_INVALID_OPS) |
1821 FREE_STACK_RETURN (REG_BADRPT); | 1820 FREE_STACK_RETURN (REG_BADRPT); |
1822 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | 1821 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) |
1823 goto normal_char; | 1822 goto normal_char; |
1824 } | 1823 } |
1825 | 1824 |
1826 { | 1825 { |
1827 /* Are we optimizing this jump? */ | 1826 /* Are we optimizing this jump? */ |
1828 boolean keep_string_p = false; | 1827 boolean keep_string_p = false; |
1829 | 1828 |
1830 /* 1 means zero (many) matches is allowed. */ | 1829 /* 1 means zero (many) matches is allowed. */ |
1831 char zero_times_ok = 0, many_times_ok = 0; | 1830 char zero_times_ok = 0, many_times_ok = 0; |
1832 | 1831 |
1833 /* If there is a sequence of repetition chars, collapse it | 1832 /* If there is a sequence of repetition chars, collapse it |
1834 down to just one (the right one). We can't combine | 1833 down to just one (the right one). We can't combine |
1835 interval operators with these because of, e.g., `a{2}*', | 1834 interval operators with these because of, e.g., `a{2}*', |
1836 which should only match an even number of `a's. */ | 1835 which should only match an even number of `a's. */ |
1837 | 1836 |
1838 for (;;) | 1837 for (;;) |
1839 { | 1838 { |
1840 zero_times_ok |= c != '+'; | 1839 zero_times_ok |= c != '+'; |
1841 many_times_ok |= c != '?'; | 1840 many_times_ok |= c != '?'; |
1842 | 1841 |
1843 if (p == pend) | 1842 if (p == pend) |
1844 break; | 1843 break; |
1845 | 1844 |
1846 PATFETCH (c); | 1845 PATFETCH (c); |
1847 | 1846 |
1848 if (c == '*' | 1847 if (c == '*' |
1849 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | 1848 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) |
1850 ; | 1849 ; |
1851 | 1850 |
1852 else if (syntax & RE_BK_PLUS_QM && c == '\\') | 1851 else if (syntax & RE_BK_PLUS_QM && c == '\\') |
1853 { | 1852 { |
1854 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 1853 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
1855 | 1854 |
1856 PATFETCH (c1); | 1855 PATFETCH (c1); |
1857 if (!(c1 == '+' || c1 == '?')) | 1856 if (!(c1 == '+' || c1 == '?')) |
1858 { | 1857 { |
1859 PATUNFETCH; | 1858 PATUNFETCH; |
1860 PATUNFETCH; | 1859 PATUNFETCH; |
1861 break; | 1860 break; |
1862 } | 1861 } |
1863 | 1862 |
1864 c = c1; | 1863 c = c1; |
1865 } | 1864 } |
1866 else | 1865 else |
1867 { | 1866 { |
1868 PATUNFETCH; | 1867 PATUNFETCH; |
1869 break; | 1868 break; |
1870 } | 1869 } |
1871 | 1870 |
1872 /* If we get here, we found another repeat character. */ | 1871 /* If we get here, we found another repeat character. */ |
1873 } | 1872 } |
1874 | 1873 |
1875 /* Star, etc. applied to an empty pattern is equivalent | 1874 /* Star, etc. applied to an empty pattern is equivalent |
1876 to an empty pattern. */ | 1875 to an empty pattern. */ |
1877 if (!laststart) | 1876 if (!laststart) |
1878 break; | 1877 break; |
1879 | 1878 |
1880 /* Now we know whether or not zero matches is allowed | 1879 /* Now we know whether or not zero matches is allowed |
1881 and also whether or not two or more matches is allowed. */ | 1880 and also whether or not two or more matches is allowed. */ |
1882 if (many_times_ok) | 1881 if (many_times_ok) |
1883 { /* More than one repetition is allowed, so put in at the | 1882 { /* More than one repetition is allowed, so put in at the |
1884 end a backward relative jump from `b' to before the next | 1883 end a backward relative jump from `b' to before the next |
1885 jump we're going to put in below (which jumps from | 1884 jump we're going to put in below (which jumps from |
1886 laststart to after this jump). | 1885 laststart to after this jump). |
1887 | 1886 |
1888 But if we are at the `*' in the exact sequence `.*\n', | 1887 But if we are at the `*' in the exact sequence `.*\n', |
1889 insert an unconditional jump backwards to the ., | 1888 insert an unconditional jump backwards to the ., |
1890 instead of the beginning of the loop. This way we only | 1889 instead of the beginning of the loop. This way we only |
1891 push a failure point once, instead of every time | 1890 push a failure point once, instead of every time |
1892 through the loop. */ | 1891 through the loop. */ |
1893 assert (p - 1 > pattern); | 1892 assert (p - 1 > pattern); |
1894 | 1893 |
1895 /* Allocate the space for the jump. */ | 1894 /* Allocate the space for the jump. */ |
1896 GET_BUFFER_SPACE (3); | 1895 GET_BUFFER_SPACE (3); |
1897 | 1896 |
1898 /* We know we are not at the first character of the pattern, | 1897 /* We know we are not at the first character of the pattern, |
1899 because laststart was nonzero. And we've already | 1898 because laststart was nonzero. And we've already |
1900 incremented `p', by the way, to be the character after | 1899 incremented `p', by the way, to be the character after |
1901 the `*'. Do we have to do something analogous here | 1900 the `*'. Do we have to do something analogous here |
1902 for null bytes, because of RE_DOT_NOT_NULL? */ | 1901 for null bytes, because of RE_DOT_NOT_NULL? */ |
1903 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | 1902 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') |
1904 && zero_times_ok | 1903 && zero_times_ok |
1905 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') | 1904 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') |
1906 && !(syntax & RE_DOT_NEWLINE)) | 1905 && !(syntax & RE_DOT_NEWLINE)) |
1907 { /* We have .*\n. */ | 1906 { /* We have .*\n. */ |
1908 STORE_JUMP (jump, b, laststart); | 1907 STORE_JUMP (jump, b, laststart); |
1909 keep_string_p = true; | 1908 keep_string_p = true; |
1910 } | 1909 } |
1911 else | 1910 else |
1912 /* Anything else. */ | 1911 /* Anything else. */ |
1913 STORE_JUMP (maybe_pop_jump, b, laststart - 3); | 1912 STORE_JUMP (maybe_pop_jump, b, laststart - 3); |
1914 | 1913 |
1915 /* We've added more stuff to the buffer. */ | 1914 /* We've added more stuff to the buffer. */ |
1916 b += 3; | 1915 b += 3; |
1917 } | 1916 } |
1918 | 1917 |
1919 /* On failure, jump from laststart to b + 3, which will be the | 1918 /* On failure, jump from laststart to b + 3, which will be the |
1920 end of the buffer after this jump is inserted. */ | 1919 end of the buffer after this jump is inserted. */ |
1921 GET_BUFFER_SPACE (3); | 1920 GET_BUFFER_SPACE (3); |
1922 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | 1921 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump |
1923 : on_failure_jump, | 1922 : on_failure_jump, |
1924 laststart, b + 3); | 1923 laststart, b + 3); |
1925 pending_exact = 0; | 1924 pending_exact = 0; |
1926 b += 3; | 1925 b += 3; |
1927 | 1926 |
1928 if (!zero_times_ok) | 1927 if (!zero_times_ok) |
1929 { | 1928 { |
1930 /* At least one repetition is required, so insert a | 1929 /* At least one repetition is required, so insert a |
1931 `dummy_failure_jump' before the initial | 1930 `dummy_failure_jump' before the initial |
1932 `on_failure_jump' instruction of the loop. This | 1931 `on_failure_jump' instruction of the loop. This |
1933 effects a skip over that instruction the first time | 1932 effects a skip over that instruction the first time |
1934 we hit that loop. */ | 1933 we hit that loop. */ |
1935 GET_BUFFER_SPACE (3); | 1934 GET_BUFFER_SPACE (3); |
1936 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | 1935 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); |
1937 b += 3; | 1936 b += 3; |
1938 } | 1937 } |
1939 } | 1938 } |
1940 break; | 1939 break; |
1941 | 1940 |
1942 | 1941 |
1943 case '.': | 1942 case '.': |
1944 laststart = b; | 1943 laststart = b; |
1945 BUF_PUSH (anychar); | 1944 BUF_PUSH (anychar); |
1946 break; | 1945 break; |
1947 | 1946 |
1948 | 1947 |
1949 case '[': | 1948 case '[': |
1950 { | 1949 { |
1951 boolean had_char_class = false; | 1950 boolean had_char_class = false; |
1952 | 1951 |
1953 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 1952 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
1954 | 1953 |
1955 /* Ensure that we have enough space to push a charset: the | 1954 /* Ensure that we have enough space to push a charset: the |
1956 opcode, the length count, and the bitset; 34 bytes in all. */ | 1955 opcode, the length count, and the bitset; 34 bytes in all. */ |
1957 GET_BUFFER_SPACE (34); | 1956 GET_BUFFER_SPACE (34); |
1958 | 1957 |
1959 laststart = b; | 1958 laststart = b; |
1960 | 1959 |
1961 /* We test `*p == '^' twice, instead of using an if | 1960 /* We test `*p == '^' twice, instead of using an if |
1962 statement, so we only need one BUF_PUSH. */ | 1961 statement, so we only need one BUF_PUSH. */ |
1963 BUF_PUSH (*p == '^' ? charset_not : charset); | 1962 BUF_PUSH (*p == '^' ? charset_not : charset); |
1964 if (*p == '^') | 1963 if (*p == '^') |
1965 p++; | 1964 p++; |
1966 | 1965 |
1967 /* Remember the first position in the bracket expression. */ | 1966 /* Remember the first position in the bracket expression. */ |
1968 p1 = p; | 1967 p1 = p; |
1969 | 1968 |
1970 /* Push the number of bytes in the bitmap. */ | 1969 /* Push the number of bytes in the bitmap. */ |
1971 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | 1970 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); |
1972 | 1971 |
1973 /* Clear the whole map. */ | 1972 /* Clear the whole map. */ |
1974 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); | 1973 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); |
1975 | 1974 |
1976 /* charset_not matches newline according to a syntax bit. */ | 1975 /* charset_not matches newline according to a syntax bit. */ |
1977 if ((re_opcode_t) b[-2] == charset_not | 1976 if ((re_opcode_t) b[-2] == charset_not |
1978 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | 1977 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
1979 SET_LIST_BIT ('\n'); | 1978 SET_LIST_BIT ('\n'); |
1980 | 1979 |
1981 /* Read in characters and ranges, setting map bits. */ | 1980 /* Read in characters and ranges, setting map bits. */ |
1982 for (;;) | 1981 for (;;) |
1983 { | 1982 { |
1984 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 1983 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
1985 | 1984 |
1986 PATFETCH (c); | 1985 PATFETCH (c); |
1987 | 1986 |
1988 /* \ might escape characters inside [...] and [^...]. */ | 1987 /* \ might escape characters inside [...] and [^...]. */ |
1989 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | 1988 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') |
1990 { | 1989 { |
1991 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 1990 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
1992 | 1991 |
1993 PATFETCH (c1); | 1992 PATFETCH (c1); |
1994 SET_LIST_BIT (c1); | 1993 SET_LIST_BIT (c1); |
1995 continue; | 1994 continue; |
1996 } | 1995 } |
1997 | 1996 |
1998 /* Could be the end of the bracket expression. If it's | 1997 /* Could be the end of the bracket expression. If it's |
1999 not (i.e., when the bracket expression is `[]' so | 1998 not (i.e., when the bracket expression is `[]' so |
2000 far), the ']' character bit gets set way below. */ | 1999 far), the ']' character bit gets set way below. */ |
2001 if (c == ']' && p != p1 + 1) | 2000 if (c == ']' && p != p1 + 1) |
2002 break; | 2001 break; |
2003 | 2002 |
2004 /* Look ahead to see if it's a range when the last thing | 2003 /* Look ahead to see if it's a range when the last thing |
2005 was a character class. */ | 2004 was a character class. */ |
2006 if (had_char_class && c == '-' && *p != ']') | 2005 if (had_char_class && c == '-' && *p != ']') |
2007 FREE_STACK_RETURN (REG_ERANGE); | 2006 FREE_STACK_RETURN (REG_ERANGE); |
2008 | 2007 |
2009 /* Look ahead to see if it's a range when the last thing | 2008 /* Look ahead to see if it's a range when the last thing |
2010 was a character: if this is a hyphen not at the | 2009 was a character: if this is a hyphen not at the |
2011 beginning or the end of a list, then it's the range | 2010 beginning or the end of a list, then it's the range |
2012 operator. */ | 2011 operator. */ |
2013 if (c == '-' | 2012 if (c == '-' |
2014 && !(p - 2 >= pattern && p[-2] == '[') | 2013 && !(p - 2 >= pattern && p[-2] == '[') |
2015 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | 2014 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') |
2016 && *p != ']') | 2015 && *p != ']') |
2017 { | 2016 { |
2018 reg_errcode_t ret | 2017 reg_errcode_t ret |
2019 = compile_range (&p, pend, translate, syntax, b); | 2018 = compile_range (&p, pend, translate, syntax, b); |
2020 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | 2019 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
2021 } | 2020 } |
2022 | 2021 |
2023 else if (p[0] == '-' && p[1] != ']') | 2022 else if (p[0] == '-' && p[1] != ']') |
2024 { /* This handles ranges made up of characters only. */ | 2023 { /* This handles ranges made up of characters only. */ |
2025 reg_errcode_t ret; | 2024 reg_errcode_t ret; |
2026 | 2025 |
2027 /* Move past the `-'. */ | 2026 /* Move past the `-'. */ |
2028 PATFETCH (c1); | 2027 PATFETCH (c1); |
2029 | 2028 |
2030 ret = compile_range (&p, pend, translate, syntax, b); | 2029 ret = compile_range (&p, pend, translate, syntax, b); |
2031 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | 2030 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
2032 } | 2031 } |
2033 | 2032 |
2034 /* See if we're at the beginning of a possible character | 2033 /* See if we're at the beginning of a possible character |
2035 class. */ | 2034 class. */ |
2036 | 2035 |
2037 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | 2036 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') |
2038 { /* Leave room for the null. */ | 2037 { /* Leave room for the null. */ |
2039 char str[CHAR_CLASS_MAX_LENGTH + 1]; | 2038 char str[CHAR_CLASS_MAX_LENGTH + 1]; |
2040 | 2039 |
2041 PATFETCH (c); | 2040 PATFETCH (c); |
2042 c1 = 0; | 2041 c1 = 0; |
2043 | 2042 |
2044 /* If pattern is `[[:'. */ | 2043 /* If pattern is `[[:'. */ |
2045 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 2044 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
2046 | 2045 |
2047 for (;;) | 2046 for (;;) |
2048 { | 2047 { |
2049 PATFETCH (c); | 2048 PATFETCH (c); |
2050 if (c == ':' || c == ']' || p == pend | 2049 if (c == ':' || c == ']' || p == pend |
2051 || c1 == CHAR_CLASS_MAX_LENGTH) | 2050 || c1 == CHAR_CLASS_MAX_LENGTH) |
2052 break; | 2051 break; |
2053 str[c1++] = c; | 2052 str[c1++] = c; |
2054 } | 2053 } |
2055 str[c1] = '\0'; | 2054 str[c1] = '\0'; |
2056 | 2055 |
2057 /* If isn't a word bracketed by `[:' and:`]': | 2056 /* If isn't a word bracketed by `[:' and:`]': |
2058 undo the ending character, the letters, and leave | 2057 undo the ending character, the letters, and leave |
2059 the leading `:' and `[' (but set bits for them). */ | 2058 the leading `:' and `[' (but set bits for them). */ |
2060 if (c == ':' && *p == ']') | 2059 if (c == ':' && *p == ']') |
2061 { | 2060 { |
2062 int ch; | 2061 int ch; |
2063 boolean is_alnum = STREQ (str, "alnum"); | 2062 boolean is_alnum = STREQ (str, "alnum"); |
2064 boolean is_alpha = STREQ (str, "alpha"); | 2063 boolean is_alpha = STREQ (str, "alpha"); |
2065 boolean is_blank = STREQ (str, "blank"); | 2064 boolean is_blank = STREQ (str, "blank"); |
2066 boolean is_cntrl = STREQ (str, "cntrl"); | 2065 boolean is_cntrl = STREQ (str, "cntrl"); |
2067 boolean is_digit = STREQ (str, "digit"); | 2066 boolean is_digit = STREQ (str, "digit"); |
2068 boolean is_graph = STREQ (str, "graph"); | 2067 boolean is_graph = STREQ (str, "graph"); |
2069 boolean is_lower = STREQ (str, "lower"); | 2068 boolean is_lower = STREQ (str, "lower"); |
2070 boolean is_print = STREQ (str, "print"); | 2069 boolean is_print = STREQ (str, "print"); |
2071 boolean is_punct = STREQ (str, "punct"); | 2070 boolean is_punct = STREQ (str, "punct"); |
2072 boolean is_space = STREQ (str, "space"); | 2071 boolean is_space = STREQ (str, "space"); |
2073 boolean is_upper = STREQ (str, "upper"); | 2072 boolean is_upper = STREQ (str, "upper"); |
2074 boolean is_xdigit = STREQ (str, "xdigit"); | 2073 boolean is_xdigit = STREQ (str, "xdigit"); |
2075 | 2074 |
2076 if (!IS_CHAR_CLASS (str)) | 2075 if (!IS_CHAR_CLASS (str)) |
2077 FREE_STACK_RETURN (REG_ECTYPE); | 2076 FREE_STACK_RETURN (REG_ECTYPE); |
2078 | 2077 |
2079 /* Throw away the ] at the end of the character | 2078 /* Throw away the ] at the end of the character |
2080 class. */ | 2079 class. */ |
2081 PATFETCH (c); | 2080 PATFETCH (c); |
2082 | 2081 |
2083 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 2082 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
2084 | 2083 |
2085 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | 2084 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) |
2086 { | 2085 { |
2087 /* This was split into 3 if's to | 2086 /* This was split into 3 if's to |
2088 avoid an arbitrary limit in some compiler. */ | 2087 avoid an arbitrary limit in some compiler. */ |
2089 if ( (is_alnum && ISALNUM (ch)) | 2088 if ( (is_alnum && ISALNUM (ch)) |
2090 || (is_alpha && ISALPHA (ch)) | 2089 || (is_alpha && ISALPHA (ch)) |
2091 || (is_blank && ISBLANK (ch)) | 2090 || (is_blank && ISBLANK (ch)) |
2092 || (is_cntrl && ISCNTRL (ch))) | 2091 || (is_cntrl && ISCNTRL (ch))) |
2093 SET_LIST_BIT (ch); | 2092 SET_LIST_BIT (ch); |
2094 if ( (is_digit && ISDIGIT (ch)) | 2093 if ( (is_digit && ISDIGIT (ch)) |
2095 || (is_graph && ISGRAPH (ch)) | 2094 || (is_graph && ISGRAPH (ch)) |
2096 || (is_lower && ISLOWER (ch)) | 2095 || (is_lower && ISLOWER (ch)) |
2097 || (is_print && ISPRINT (ch))) | 2096 || (is_print && ISPRINT (ch))) |
2098 SET_LIST_BIT (ch); | 2097 SET_LIST_BIT (ch); |
2099 if ( (is_punct && ISPUNCT (ch)) | 2098 if ( (is_punct && ISPUNCT (ch)) |
2100 || (is_space && ISSPACE (ch)) | 2099 || (is_space && ISSPACE (ch)) |
2101 || (is_upper && ISUPPER (ch)) | 2100 || (is_upper && ISUPPER (ch)) |
2102 || (is_xdigit && ISXDIGIT (ch))) | 2101 || (is_xdigit && ISXDIGIT (ch))) |
2103 SET_LIST_BIT (ch); | 2102 SET_LIST_BIT (ch); |
2104 } | 2103 } |
2105 had_char_class = true; | 2104 had_char_class = true; |
2106 } | 2105 } |
2107 else | 2106 else |
2108 { | 2107 { |
2109 c1++; | 2108 c1++; |
2110 while (c1--) | 2109 while (c1--) |
2111 PATUNFETCH; | 2110 PATUNFETCH; |
2112 SET_LIST_BIT ('['); | 2111 SET_LIST_BIT ('['); |
2113 SET_LIST_BIT (':'); | 2112 SET_LIST_BIT (':'); |
2114 had_char_class = false; | 2113 had_char_class = false; |
2115 } | 2114 } |
2116 } | 2115 } |
2117 else | 2116 else |
2118 { | 2117 { |
2119 had_char_class = false; | 2118 had_char_class = false; |
2120 SET_LIST_BIT (c); | 2119 SET_LIST_BIT (c); |
2121 } | 2120 } |
2122 } | 2121 } |
2123 | 2122 |
2124 /* Discard any (non)matching list bytes that are all 0 at the | 2123 /* Discard any (non)matching list bytes that are all 0 at the |
2125 end of the map. Decrease the map-length byte too. */ | 2124 end of the map. Decrease the map-length byte too. */ |
2126 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | 2125 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) |
2127 b[-1]--; | 2126 b[-1]--; |
2128 b += b[-1]; | 2127 b += b[-1]; |
2129 } | 2128 } |
2130 break; | 2129 break; |
2131 | 2130 |
2132 | 2131 |
2133 case '(': | 2132 case '(': |
2134 if (syntax & RE_NO_BK_PARENS) | 2133 if (syntax & RE_NO_BK_PARENS) |
2135 goto handle_open; | 2134 goto handle_open; |
2136 else | 2135 else |
2137 goto normal_char; | 2136 goto normal_char; |
2138 | 2137 |
2139 | 2138 |
2140 case ')': | 2139 case ')': |
2141 if (syntax & RE_NO_BK_PARENS) | 2140 if (syntax & RE_NO_BK_PARENS) |
2142 goto handle_close; | 2141 goto handle_close; |
2143 else | 2142 else |
2144 goto normal_char; | 2143 goto normal_char; |
2145 | 2144 |
2146 | 2145 |
2147 case '\n': | 2146 case '\n': |
2148 if (syntax & RE_NEWLINE_ALT) | 2147 if (syntax & RE_NEWLINE_ALT) |
2149 goto handle_alt; | 2148 goto handle_alt; |
2150 else | 2149 else |
2151 goto normal_char; | 2150 goto normal_char; |
2152 | 2151 |
2153 | 2152 |
2154 case '|': | 2153 case '|': |
2155 if (syntax & RE_NO_BK_VBAR) | 2154 if (syntax & RE_NO_BK_VBAR) |
2156 goto handle_alt; | 2155 goto handle_alt; |
2157 else | 2156 else |
2158 goto normal_char; | 2157 goto normal_char; |
2159 | 2158 |
2160 | 2159 |
2161 case '{': | 2160 case '{': |
2162 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | 2161 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) |
2163 goto handle_interval; | 2162 goto handle_interval; |
2164 else | 2163 else |
2165 goto normal_char; | 2164 goto normal_char; |
2166 | 2165 |
2167 | 2166 |
2168 case '\\': | 2167 case '\\': |
2169 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 2168 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
2170 | 2169 |
2171 /* Do not translate the character after the \, so that we can | 2170 /* Do not translate the character after the \, so that we can |
2172 distinguish, e.g., \B from \b, even if we normally would | 2171 distinguish, e.g., \B from \b, even if we normally would |
2173 translate, e.g., B to b. */ | 2172 translate, e.g., B to b. */ |
2174 PATFETCH_RAW (c); | 2173 PATFETCH_RAW (c); |
2175 | 2174 |
2176 switch (c) | 2175 switch (c) |
2177 { | 2176 { |
2178 case '(': | 2177 case '(': |
2179 if (syntax & RE_NO_BK_PARENS) | 2178 if (syntax & RE_NO_BK_PARENS) |
2180 goto normal_backslash; | 2179 goto normal_backslash; |
2181 | 2180 |
2182 handle_open: | 2181 handle_open: |
2183 bufp->re_nsub++; | 2182 bufp->re_nsub++; |
2184 regnum++; | 2183 regnum++; |
2185 | 2184 |
2186 if (COMPILE_STACK_FULL) | 2185 if (COMPILE_STACK_FULL) |
2187 { | 2186 { |
2188 RETALLOC (compile_stack.stack, compile_stack.size << 1, | 2187 RETALLOC (compile_stack.stack, compile_stack.size << 1, |
2189 compile_stack_elt_t); | 2188 compile_stack_elt_t); |
2190 if (compile_stack.stack == NULL) return REG_ESPACE; | 2189 if (compile_stack.stack == NULL) return REG_ESPACE; |
2191 | 2190 |
2192 compile_stack.size <<= 1; | 2191 compile_stack.size <<= 1; |
2193 } | 2192 } |
2194 | 2193 |
2195 /* These are the values to restore when we hit end of this | 2194 /* These are the values to restore when we hit end of this |
2196 group. They are all relative offsets, so that if the | 2195 group. They are all relative offsets, so that if the |
2197 whole pattern moves because of realloc, they will still | 2196 whole pattern moves because of realloc, they will still |
2198 be valid. */ | 2197 be valid. */ |
2199 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | 2198 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; |
2200 COMPILE_STACK_TOP.fixup_alt_jump | 2199 COMPILE_STACK_TOP.fixup_alt_jump |
2201 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | 2200 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; |
2202 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; | 2201 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; |
2203 COMPILE_STACK_TOP.regnum = regnum; | 2202 COMPILE_STACK_TOP.regnum = regnum; |
2204 | 2203 |
2205 /* We will eventually replace the 0 with the number of | 2204 /* We will eventually replace the 0 with the number of |
2206 groups inner to this one. But do not push a | 2205 groups inner to this one. But do not push a |
2207 start_memory for groups beyond the last one we can | 2206 start_memory for groups beyond the last one we can |
2208 represent in the compiled pattern. */ | 2207 represent in the compiled pattern. */ |
2209 if (regnum <= MAX_REGNUM) | 2208 if (regnum <= MAX_REGNUM) |
2210 { | 2209 { |
2211 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; | 2210 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; |
2212 BUF_PUSH_3 (start_memory, regnum, 0); | 2211 BUF_PUSH_3 (start_memory, regnum, 0); |
2213 } | 2212 } |
2214 | 2213 |
2215 compile_stack.avail++; | 2214 compile_stack.avail++; |
2216 | 2215 |
2217 fixup_alt_jump = 0; | 2216 fixup_alt_jump = 0; |
2218 laststart = 0; | 2217 laststart = 0; |
2219 begalt = b; | 2218 begalt = b; |
2220 /* If we've reached MAX_REGNUM groups, then this open | 2219 /* If we've reached MAX_REGNUM groups, then this open |
2221 won't actually generate any code, so we'll have to | 2220 won't actually generate any code, so we'll have to |
2222 clear pending_exact explicitly. */ | 2221 clear pending_exact explicitly. */ |
2223 pending_exact = 0; | 2222 pending_exact = 0; |
2224 break; | 2223 break; |
2225 | 2224 |
2226 | 2225 |
2227 case ')': | 2226 case ')': |
2228 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | 2227 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; |
2229 | 2228 |
2230 if (COMPILE_STACK_EMPTY) | 2229 if (COMPILE_STACK_EMPTY) |
2231 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | 2230 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
2232 goto normal_backslash; | 2231 goto normal_backslash; |
2233 else | 2232 else |
2234 FREE_STACK_RETURN (REG_ERPAREN); | 2233 FREE_STACK_RETURN (REG_ERPAREN); |
2235 | 2234 |
2236 handle_close: | 2235 handle_close: |
2237 if (fixup_alt_jump) | 2236 if (fixup_alt_jump) |
2238 { /* Push a dummy failure point at the end of the | 2237 { /* Push a dummy failure point at the end of the |
2239 alternative for a possible future | 2238 alternative for a possible future |
2240 `pop_failure_jump' to pop. See comments at | 2239 `pop_failure_jump' to pop. See comments at |
2241 `push_dummy_failure' in `re_match_2'. */ | 2240 `push_dummy_failure' in `re_match_2'. */ |
2242 BUF_PUSH (push_dummy_failure); | 2241 BUF_PUSH (push_dummy_failure); |
2243 | 2242 |
2244 /* We allocated space for this jump when we assigned | 2243 /* We allocated space for this jump when we assigned |
2245 to `fixup_alt_jump', in the `handle_alt' case below. */ | 2244 to `fixup_alt_jump', in the `handle_alt' case below. */ |
2246 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); | 2245 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); |
2247 } | 2246 } |
2248 | 2247 |
2249 /* See similar code for backslashed left paren above. */ | 2248 /* See similar code for backslashed left paren above. */ |
2250 if (COMPILE_STACK_EMPTY) | 2249 if (COMPILE_STACK_EMPTY) |
2251 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | 2250 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
2252 goto normal_char; | 2251 goto normal_char; |
2253 else | 2252 else |
2254 FREE_STACK_RETURN (REG_ERPAREN); | 2253 FREE_STACK_RETURN (REG_ERPAREN); |
2255 | 2254 |
2256 /* Since we just checked for an empty stack above, this | 2255 /* Since we just checked for an empty stack above, this |
2257 ``can't happen''. */ | 2256 ``can't happen''. */ |
2258 assert (compile_stack.avail != 0); | 2257 assert (compile_stack.avail != 0); |
2259 { | 2258 { |
2260 /* We don't just want to restore into `regnum', because | 2259 /* We don't just want to restore into `regnum', because |
2261 later groups should continue to be numbered higher, | 2260 later groups should continue to be numbered higher, |
2262 as in `(ab)c(de)' -- the second group is #2. */ | 2261 as in `(ab)c(de)' -- the second group is #2. */ |
2263 regnum_t this_group_regnum; | 2262 regnum_t this_group_regnum; |
2264 | 2263 |
2265 compile_stack.avail--; | 2264 compile_stack.avail--; |
2266 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | 2265 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; |
2267 fixup_alt_jump | 2266 fixup_alt_jump |
2268 = COMPILE_STACK_TOP.fixup_alt_jump | 2267 = COMPILE_STACK_TOP.fixup_alt_jump |
2269 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | 2268 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 |
2270 : 0; | 2269 : 0; |
2271 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | 2270 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; |
2272 this_group_regnum = COMPILE_STACK_TOP.regnum; | 2271 this_group_regnum = COMPILE_STACK_TOP.regnum; |
2273 /* If we've reached MAX_REGNUM groups, then this open | 2272 /* If we've reached MAX_REGNUM groups, then this open |
2274 won't actually generate any code, so we'll have to | 2273 won't actually generate any code, so we'll have to |
2275 clear pending_exact explicitly. */ | 2274 clear pending_exact explicitly. */ |
2276 pending_exact = 0; | 2275 pending_exact = 0; |
2277 | 2276 |
2278 /* We're at the end of the group, so now we know how many | 2277 /* We're at the end of the group, so now we know how many |
2279 groups were inside this one. */ | 2278 groups were inside this one. */ |
2280 if (this_group_regnum <= MAX_REGNUM) | 2279 if (this_group_regnum <= MAX_REGNUM) |
2281 { | 2280 { |
2282 unsigned char *inner_group_loc | 2281 unsigned char *inner_group_loc |
2283 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | 2282 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; |
2284 | 2283 |
2285 *inner_group_loc = regnum - this_group_regnum; | 2284 *inner_group_loc = regnum - this_group_regnum; |
2286 BUF_PUSH_3 (stop_memory, this_group_regnum, | 2285 BUF_PUSH_3 (stop_memory, this_group_regnum, |
2287 regnum - this_group_regnum); | 2286 regnum - this_group_regnum); |
2288 } | 2287 } |
2289 } | 2288 } |
2290 break; | 2289 break; |
2291 | 2290 |
2292 | 2291 |
2293 case '|': /* `\|'. */ | 2292 case '|': /* `\|'. */ |
2294 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | 2293 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) |
2295 goto normal_backslash; | 2294 goto normal_backslash; |
2296 handle_alt: | 2295 handle_alt: |
2297 if (syntax & RE_LIMITED_OPS) | 2296 if (syntax & RE_LIMITED_OPS) |
2298 goto normal_char; | 2297 goto normal_char; |
2299 | 2298 |
2300 /* Insert before the previous alternative a jump which | 2299 /* Insert before the previous alternative a jump which |
2301 jumps to this alternative if the former fails. */ | 2300 jumps to this alternative if the former fails. */ |
2302 GET_BUFFER_SPACE (3); | 2301 GET_BUFFER_SPACE (3); |
2303 INSERT_JUMP (on_failure_jump, begalt, b + 6); | 2302 INSERT_JUMP (on_failure_jump, begalt, b + 6); |
2304 pending_exact = 0; | 2303 pending_exact = 0; |
2305 b += 3; | 2304 b += 3; |
2306 | 2305 |
2307 /* The alternative before this one has a jump after it | 2306 /* The alternative before this one has a jump after it |
2308 which gets executed if it gets matched. Adjust that | 2307 which gets executed if it gets matched. Adjust that |
2309 jump so it will jump to this alternative's analogous | 2308 jump so it will jump to this alternative's analogous |
2310 jump (put in below, which in turn will jump to the next | 2309 jump (put in below, which in turn will jump to the next |
2311 (if any) alternative's such jump, etc.). The last such | 2310 (if any) alternative's such jump, etc.). The last such |
2312 jump jumps to the correct final destination. A picture: | 2311 jump jumps to the correct final destination. A picture: |
2313 _____ _____ | 2312 _____ _____ |
2314 | | | | | 2313 | | | | |
2315 | v | v | 2314 | v | v |
2316 a | b | c | 2315 a | b | c |
2317 | 2316 |
2318 If we are at `b', then fixup_alt_jump right now points to a | 2317 If we are at `b', then fixup_alt_jump right now points to a |
2319 three-byte space after `a'. We'll put in the jump, set | 2318 three-byte space after `a'. We'll put in the jump, set |
2320 fixup_alt_jump to right after `b', and leave behind three | 2319 fixup_alt_jump to right after `b', and leave behind three |
2321 bytes which we'll fill in when we get to after `c'. */ | 2320 bytes which we'll fill in when we get to after `c'. */ |
2322 | 2321 |
2323 if (fixup_alt_jump) | 2322 if (fixup_alt_jump) |
2324 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | 2323 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); |
2325 | 2324 |
2326 /* Mark and leave space for a jump after this alternative, | 2325 /* Mark and leave space for a jump after this alternative, |
2327 to be filled in later either by next alternative or | 2326 to be filled in later either by next alternative or |
2328 when know we're at the end of a series of alternatives. */ | 2327 when know we're at the end of a series of alternatives. */ |
2329 fixup_alt_jump = b; | 2328 fixup_alt_jump = b; |
2330 GET_BUFFER_SPACE (3); | 2329 GET_BUFFER_SPACE (3); |
2331 b += 3; | 2330 b += 3; |
2332 | 2331 |
2333 laststart = 0; | 2332 laststart = 0; |
2334 begalt = b; | 2333 begalt = b; |
2335 break; | 2334 break; |
2336 | 2335 |
2337 | 2336 |
2338 case '{': | 2337 case '{': |
2339 /* If \{ is a literal. */ | 2338 /* If \{ is a literal. */ |
2340 if (!(syntax & RE_INTERVALS) | 2339 if (!(syntax & RE_INTERVALS) |
2341 /* If we're at `\{' and it's not the open-interval | 2340 /* If we're at `\{' and it's not the open-interval |
2342 operator. */ | 2341 operator. */ |
2343 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | 2342 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) |
2344 || (p - 2 == pattern && p == pend)) | 2343 || (p - 2 == pattern && p == pend)) |
2345 goto normal_backslash; | 2344 goto normal_backslash; |
2346 | 2345 |
2347 handle_interval: | 2346 handle_interval: |
2348 { | 2347 { |
2349 /* If got here, then the syntax allows intervals. */ | 2348 /* If got here, then the syntax allows intervals. */ |
2350 | 2349 |
2351 /* At least (most) this many matches must be made. */ | 2350 /* At least (most) this many matches must be made. */ |
2352 int lower_bound = -1, upper_bound = -1; | 2351 int lower_bound = -1, upper_bound = -1; |
2353 | 2352 |
2354 beg_interval = p - 1; | 2353 beg_interval = p - 1; |
2355 | 2354 |
2356 if (p == pend) | 2355 if (p == pend) |
2357 { | 2356 { |
2358 if (syntax & RE_NO_BK_BRACES) | 2357 if (syntax & RE_NO_BK_BRACES) |
2359 goto unfetch_interval; | 2358 goto unfetch_interval; |
2360 else | 2359 else |
2361 FREE_STACK_RETURN (REG_EBRACE); | 2360 FREE_STACK_RETURN (REG_EBRACE); |
2362 } | 2361 } |
2363 | 2362 |
2364 GET_UNSIGNED_NUMBER (lower_bound); | 2363 GET_UNSIGNED_NUMBER (lower_bound); |
2365 | 2364 |
2366 if (c == ',') | 2365 if (c == ',') |
2367 { | 2366 { |
2368 GET_UNSIGNED_NUMBER (upper_bound); | 2367 GET_UNSIGNED_NUMBER (upper_bound); |
2369 if (upper_bound < 0) upper_bound = RE_DUP_MAX; | 2368 if (upper_bound < 0) upper_bound = RE_DUP_MAX; |
2370 } | 2369 } |
2371 else | 2370 else |
2372 /* Interval such as `{1}' => match exactly once. */ | 2371 /* Interval such as `{1}' => match exactly once. */ |
2373 upper_bound = lower_bound; | 2372 upper_bound = lower_bound; |
2374 | 2373 |
2375 if (lower_bound < 0 || upper_bound > RE_DUP_MAX | 2374 if (lower_bound < 0 || upper_bound > RE_DUP_MAX |
2376 || lower_bound > upper_bound) | 2375 || lower_bound > upper_bound) |
2377 { | 2376 { |
2378 if (syntax & RE_NO_BK_BRACES) | 2377 if (syntax & RE_NO_BK_BRACES) |
2379 goto unfetch_interval; | 2378 goto unfetch_interval; |
2380 else | 2379 else |
2381 FREE_STACK_RETURN (REG_BADBR); | 2380 FREE_STACK_RETURN (REG_BADBR); |
2382 } | 2381 } |
2383 | 2382 |
2384 if (!(syntax & RE_NO_BK_BRACES)) | 2383 if (!(syntax & RE_NO_BK_BRACES)) |
2385 { | 2384 { |
2386 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); | 2385 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); |
2387 | 2386 |
2388 PATFETCH (c); | 2387 PATFETCH (c); |
2389 } | 2388 } |
2390 | 2389 |
2391 if (c != '}') | 2390 if (c != '}') |
2392 { | 2391 { |
2393 if (syntax & RE_NO_BK_BRACES) | 2392 if (syntax & RE_NO_BK_BRACES) |
2394 goto unfetch_interval; | 2393 goto unfetch_interval; |
2395 else | 2394 else |
2396 FREE_STACK_RETURN (REG_BADBR); | 2395 FREE_STACK_RETURN (REG_BADBR); |
2397 } | 2396 } |
2398 | 2397 |
2399 /* We just parsed a valid interval. */ | 2398 /* We just parsed a valid interval. */ |
2400 | 2399 |
2401 /* If it's invalid to have no preceding re. */ | 2400 /* If it's invalid to have no preceding re. */ |
2402 if (!laststart) | 2401 if (!laststart) |
2403 { | 2402 { |
2404 if (syntax & RE_CONTEXT_INVALID_OPS) | 2403 if (syntax & RE_CONTEXT_INVALID_OPS) |
2405 FREE_STACK_RETURN (REG_BADRPT); | 2404 FREE_STACK_RETURN (REG_BADRPT); |
2406 else if (syntax & RE_CONTEXT_INDEP_OPS) | 2405 else if (syntax & RE_CONTEXT_INDEP_OPS) |
2407 laststart = b; | 2406 laststart = b; |
2408 else | 2407 else |
2409 goto unfetch_interval; | 2408 goto unfetch_interval; |
2410 } | 2409 } |
2411 | 2410 |
2412 /* If the upper bound is zero, don't want to succeed at | 2411 /* If the upper bound is zero, don't want to succeed at |
2413 all; jump from `laststart' to `b + 3', which will be | 2412 all; jump from `laststart' to `b + 3', which will be |
2414 the end of the buffer after we insert the jump. */ | 2413 the end of the buffer after we insert the jump. */ |
2415 if (upper_bound == 0) | 2414 if (upper_bound == 0) |
2416 { | 2415 { |
2417 GET_BUFFER_SPACE (3); | 2416 GET_BUFFER_SPACE (3); |
2418 INSERT_JUMP (jump, laststart, b + 3); | 2417 INSERT_JUMP (jump, laststart, b + 3); |
2419 b += 3; | 2418 b += 3; |
2420 } | 2419 } |
2421 | 2420 |
2422 /* Otherwise, we have a nontrivial interval. When | 2421 /* Otherwise, we have a nontrivial interval. When |
2423 we're all done, the pattern will look like: | 2422 we're all done, the pattern will look like: |
2424 set_number_at <jump count> <upper bound> | 2423 set_number_at <jump count> <upper bound> |
2425 set_number_at <succeed_n count> <lower bound> | 2424 set_number_at <succeed_n count> <lower bound> |
2426 succeed_n <after jump addr> <succeed_n count> | 2425 succeed_n <after jump addr> <succeed_n count> |
2427 <body of loop> | 2426 <body of loop> |
2428 jump_n <succeed_n addr> <jump count> | 2427 jump_n <succeed_n addr> <jump count> |
2429 (The upper bound and `jump_n' are omitted if | 2428 (The upper bound and `jump_n' are omitted if |
2430 `upper_bound' is 1, though.) */ | 2429 `upper_bound' is 1, though.) */ |
2431 else | 2430 else |
2432 { /* If the upper bound is > 1, we need to insert | 2431 { /* If the upper bound is > 1, we need to insert |
2433 more at the end of the loop. */ | 2432 more at the end of the loop. */ |
2434 unsigned nbytes = 10 + (upper_bound > 1) * 10; | 2433 unsigned nbytes = 10 + (upper_bound > 1) * 10; |
2435 | 2434 |
2436 GET_BUFFER_SPACE (nbytes); | 2435 GET_BUFFER_SPACE (nbytes); |
2437 | 2436 |
2438 /* Initialize lower bound of the `succeed_n', even | 2437 /* Initialize lower bound of the `succeed_n', even |
2439 though it will be set during matching by its | 2438 though it will be set during matching by its |
2440 attendant `set_number_at' (inserted next), | 2439 attendant `set_number_at' (inserted next), |
2441 because `re_compile_fastmap' needs to know. | 2440 because `re_compile_fastmap' needs to know. |
2442 Jump to the `jump_n' we might insert below. */ | 2441 Jump to the `jump_n' we might insert below. */ |
2443 INSERT_JUMP2 (succeed_n, laststart, | 2442 INSERT_JUMP2 (succeed_n, laststart, |
2444 b + 5 + (upper_bound > 1) * 5, | 2443 b + 5 + (upper_bound > 1) * 5, |
2445 lower_bound); | 2444 lower_bound); |
2446 b += 5; | 2445 b += 5; |
2447 | 2446 |
2448 /* Code to initialize the lower bound. Insert | 2447 /* Code to initialize the lower bound. Insert |
2449 before the `succeed_n'. The `5' is the last two | 2448 before the `succeed_n'. The `5' is the last two |
2450 bytes of this `set_number_at', plus 3 bytes of | 2449 bytes of this `set_number_at', plus 3 bytes of |
2451 the following `succeed_n'. */ | 2450 the following `succeed_n'. */ |
2452 insert_op2 (set_number_at, laststart, 5, lower_bound, b); | 2451 insert_op2 (set_number_at, laststart, 5, lower_bound, b); |
2453 b += 5; | 2452 b += 5; |
2454 | 2453 |
2455 if (upper_bound > 1) | 2454 if (upper_bound > 1) |
2456 { /* More than one repetition is allowed, so | 2455 { /* More than one repetition is allowed, so |
2457 append a backward jump to the `succeed_n' | 2456 append a backward jump to the `succeed_n' |
2458 that starts this interval. | 2457 that starts this interval. |
2459 | 2458 |
2460 When we've reached this during matching, | 2459 When we've reached this during matching, |
2461 we'll have matched the interval once, so | 2460 we'll have matched the interval once, so |
2462 jump back only `upper_bound - 1' times. */ | 2461 jump back only `upper_bound - 1' times. */ |
2463 STORE_JUMP2 (jump_n, b, laststart + 5, | 2462 STORE_JUMP2 (jump_n, b, laststart + 5, |
2464 upper_bound - 1); | 2463 upper_bound - 1); |
2465 b += 5; | 2464 b += 5; |
2466 | 2465 |
2467 /* The location we want to set is the second | 2466 /* The location we want to set is the second |
2468 parameter of the `jump_n'; that is `b-2' as | 2467 parameter of the `jump_n'; that is `b-2' as |
2469 an absolute address. `laststart' will be | 2468 an absolute address. `laststart' will be |
2470 the `set_number_at' we're about to insert; | 2469 the `set_number_at' we're about to insert; |
2471 `laststart+3' the number to set, the source | 2470 `laststart+3' the number to set, the source |
2472 for the relative address. But we are | 2471 for the relative address. But we are |
2473 inserting into the middle of the pattern -- | 2472 inserting into the middle of the pattern -- |
2474 so everything is getting moved up by 5. | 2473 so everything is getting moved up by 5. |
2475 Conclusion: (b - 2) - (laststart + 3) + 5, | 2474 Conclusion: (b - 2) - (laststart + 3) + 5, |
2476 i.e., b - laststart. | 2475 i.e., b - laststart. |
2477 | 2476 |
2478 We insert this at the beginning of the loop | 2477 We insert this at the beginning of the loop |
2479 so that if we fail during matching, we'll | 2478 so that if we fail during matching, we'll |
2480 reinitialize the bounds. */ | 2479 reinitialize the bounds. */ |
2481 insert_op2 (set_number_at, laststart, b - laststart, | 2480 insert_op2 (set_number_at, laststart, b - laststart, |
2482 upper_bound - 1, b); | 2481 upper_bound - 1, b); |
2483 b += 5; | 2482 b += 5; |
2484 } | 2483 } |
2485 } | 2484 } |
2486 pending_exact = 0; | 2485 pending_exact = 0; |
2487 beg_interval = NULL; | 2486 beg_interval = NULL; |
2488 } | 2487 } |
2489 break; | 2488 break; |
2490 | 2489 |
2491 unfetch_interval: | 2490 unfetch_interval: |
2492 /* If an invalid interval, match the characters as literals. */ | 2491 /* If an invalid interval, match the characters as literals. */ |
2493 assert (beg_interval); | 2492 assert (beg_interval); |
2494 p = beg_interval; | 2493 p = beg_interval; |
2495 beg_interval = NULL; | 2494 beg_interval = NULL; |
2496 | 2495 |
2497 /* normal_char and normal_backslash need `c'. */ | 2496 /* normal_char and normal_backslash need `c'. */ |
2498 PATFETCH (c); | 2497 PATFETCH (c); |
2499 | 2498 |
2500 if (!(syntax & RE_NO_BK_BRACES)) | 2499 if (!(syntax & RE_NO_BK_BRACES)) |
2501 { | 2500 { |
2502 if (p > pattern && p[-1] == '\\') | 2501 if (p > pattern && p[-1] == '\\') |
2503 goto normal_backslash; | 2502 goto normal_backslash; |
2504 } | 2503 } |
2505 goto normal_char; | 2504 goto normal_char; |
2506 | 2505 |
2507 #ifdef emacs | 2506 #ifdef emacs |
2508 /* There is no way to specify the before_dot and after_dot | 2507 /* There is no way to specify the before_dot and after_dot |
2509 operators. rms says this is ok. --karl */ | 2508 operators. rms says this is ok. --karl */ |
2510 case '=': | 2509 case '=': |
2511 BUF_PUSH (at_dot); | 2510 BUF_PUSH (at_dot); |
2512 break; | 2511 break; |
2513 | 2512 |
2514 case 's': | 2513 case 's': |
2515 laststart = b; | 2514 laststart = b; |
2516 PATFETCH (c); | 2515 PATFETCH (c); |
2517 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | 2516 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); |
2518 break; | 2517 break; |
2519 | 2518 |
2520 case 'S': | 2519 case 'S': |
2521 laststart = b; | 2520 laststart = b; |
2522 PATFETCH (c); | 2521 PATFETCH (c); |
2523 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | 2522 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); |
2524 break; | 2523 break; |
2525 #endif /* emacs */ | 2524 #endif /* emacs */ |
2526 | 2525 |
2527 | 2526 |
2528 case 'w': | 2527 case 'w': |
2529 laststart = b; | 2528 laststart = b; |
2530 BUF_PUSH (wordchar); | 2529 BUF_PUSH (wordchar); |
2531 break; | 2530 break; |
2532 | 2531 |
2533 | 2532 |
2534 case 'W': | 2533 case 'W': |
2535 laststart = b; | 2534 laststart = b; |
2536 BUF_PUSH (notwordchar); | 2535 BUF_PUSH (notwordchar); |
2537 break; | 2536 break; |
2538 | 2537 |
2539 | 2538 |
2540 case '<': | 2539 case '<': |
2541 BUF_PUSH (wordbeg); | 2540 BUF_PUSH (wordbeg); |
2542 break; | 2541 break; |
2543 | 2542 |
2544 case '>': | 2543 case '>': |
2545 BUF_PUSH (wordend); | 2544 BUF_PUSH (wordend); |
2546 break; | 2545 break; |
2547 | 2546 |
2548 case 'b': | 2547 case 'b': |
2549 BUF_PUSH (wordbound); | 2548 BUF_PUSH (wordbound); |
2550 break; | 2549 break; |
2551 | 2550 |
2552 case 'B': | 2551 case 'B': |
2553 BUF_PUSH (notwordbound); | 2552 BUF_PUSH (notwordbound); |
2554 break; | 2553 break; |
2555 | 2554 |
2556 case '`': | 2555 case '`': |
2557 BUF_PUSH (begbuf); | 2556 BUF_PUSH (begbuf); |
2558 break; | 2557 break; |
2559 | 2558 |
2560 case '\'': | 2559 case '\'': |
2561 BUF_PUSH (endbuf); | 2560 BUF_PUSH (endbuf); |
2562 break; | 2561 break; |
2563 | 2562 |
2564 case '1': case '2': case '3': case '4': case '5': | 2563 case '1': case '2': case '3': case '4': case '5': |
2565 case '6': case '7': case '8': case '9': | 2564 case '6': case '7': case '8': case '9': |
2566 if (syntax & RE_NO_BK_REFS) | 2565 if (syntax & RE_NO_BK_REFS) |
2567 goto normal_char; | 2566 goto normal_char; |
2568 | 2567 |
2569 c1 = c - '0'; | 2568 c1 = c - '0'; |
2570 | 2569 |
2571 if (c1 > regnum) | 2570 if (c1 > regnum) |
2572 FREE_STACK_RETURN (REG_ESUBREG); | 2571 FREE_STACK_RETURN (REG_ESUBREG); |
2573 | 2572 |
2574 /* Can't back reference to a subexpression if inside of it. */ | 2573 /* Can't back reference to a subexpression if inside of it. */ |
2575 if (group_in_compile_stack (compile_stack, c1)) | 2574 if (group_in_compile_stack (compile_stack, c1)) |
2576 goto normal_char; | 2575 goto normal_char; |
2577 | 2576 |
2578 laststart = b; | 2577 laststart = b; |
2579 BUF_PUSH_2 (duplicate, c1); | 2578 BUF_PUSH_2 (duplicate, c1); |
2580 break; | 2579 break; |
2581 | 2580 |
2582 | 2581 |
2583 case '+': | 2582 case '+': |
2584 case '?': | 2583 case '?': |
2585 if (syntax & RE_BK_PLUS_QM) | 2584 if (syntax & RE_BK_PLUS_QM) |
2586 goto handle_plus; | 2585 goto handle_plus; |
2587 else | 2586 else |
2588 goto normal_backslash; | 2587 goto normal_backslash; |
2589 | 2588 |
2590 default: | 2589 default: |
2591 normal_backslash: | 2590 normal_backslash: |
2592 /* You might think it would be useful for \ to mean | 2591 /* You might think it would be useful for \ to mean |
2593 not to translate; but if we don't translate it | 2592 not to translate; but if we don't translate it |
2594 it will never match anything. */ | 2593 it will never match anything. */ |
2595 c = TRANSLATE (c); | 2594 c = TRANSLATE (c); |
2596 goto normal_char; | 2595 goto normal_char; |
2597 } | 2596 } |
2598 break; | 2597 break; |
2599 | 2598 |
2600 | 2599 |
2601 default: | 2600 default: |
2602 /* Expects the character in `c'. */ | 2601 /* Expects the character in `c'. */ |
2603 normal_char: | 2602 normal_char: |
2604 /* If no exactn currently being built. */ | 2603 /* If no exactn currently being built. */ |
2605 if (!pending_exact | 2604 if (!pending_exact |
2606 | 2605 |
2607 /* If last exactn not at current position. */ | 2606 /* If last exactn not at current position. */ |
2608 || pending_exact + *pending_exact + 1 != b | 2607 || pending_exact + *pending_exact + 1 != b |
2609 | 2608 |
2610 /* We have only one byte following the exactn for the count. */ | 2609 /* We have only one byte following the exactn for the count. */ |
2611 || *pending_exact == (1 << BYTEWIDTH) - 1 | 2610 || *pending_exact == (1 << BYTEWIDTH) - 1 |
2612 | 2611 |
2613 /* If followed by a repetition operator. */ | 2612 /* If followed by a repetition operator. */ |
2614 || *p == '*' || *p == '^' | 2613 || *p == '*' || *p == '^' |
2615 || ((syntax & RE_BK_PLUS_QM) | 2614 || ((syntax & RE_BK_PLUS_QM) |
2616 ? *p == '\\' && (p[1] == '+' || p[1] == '?') | 2615 ? *p == '\\' && (p[1] == '+' || p[1] == '?') |
2617 : (*p == '+' || *p == '?')) | 2616 : (*p == '+' || *p == '?')) |
2618 || ((syntax & RE_INTERVALS) | 2617 || ((syntax & RE_INTERVALS) |
2619 && ((syntax & RE_NO_BK_BRACES) | 2618 && ((syntax & RE_NO_BK_BRACES) |
2620 ? *p == '{' | 2619 ? *p == '{' |
2621 : (p[0] == '\\' && p[1] == '{')))) | 2620 : (p[0] == '\\' && p[1] == '{')))) |
2622 { | 2621 { |
2623 /* Start building a new exactn. */ | 2622 /* Start building a new exactn. */ |
2624 | 2623 |
2625 laststart = b; | 2624 laststart = b; |
2626 | 2625 |
2627 BUF_PUSH_2 (exactn, 0); | 2626 BUF_PUSH_2 (exactn, 0); |
2628 pending_exact = b - 1; | 2627 pending_exact = b - 1; |
2629 } | 2628 } |
2630 | 2629 |
2631 BUF_PUSH (c); | 2630 BUF_PUSH (c); |
2632 (*pending_exact)++; | 2631 (*pending_exact)++; |
2633 break; | 2632 break; |
2634 } /* switch (c) */ | 2633 } /* switch (c) */ |
2635 } /* while p != pend */ | 2634 } /* while p != pend */ |
2636 | 2635 |
2637 | 2636 |
2638 /* Through the pattern now. */ | 2637 /* Through the pattern now. */ |
2639 | 2638 |
2705 return REG_NOERROR; | 2704 return REG_NOERROR; |
2706 } /* regex_compile */ | 2705 } /* regex_compile */ |
2707 | 2706 |
2708 /* Subroutines for `regex_compile'. */ | 2707 /* Subroutines for `regex_compile'. */ |
2709 | 2708 |
2710 /* Store OP at LOC followed by two-byte integer parameter ARG. */ | 2709 /* Store OP at LOC followed by two-byte integer parameter ARG. */ |
2711 | 2710 |
2712 static void | 2711 static void |
2713 store_op1 (op, loc, arg) | 2712 store_op1 (op, loc, arg) |
2714 re_opcode_t op; | 2713 re_opcode_t op; |
2715 unsigned char *loc; | 2714 unsigned char *loc; |
2786 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | 2785 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
2787 | 2786 |
2788 return | 2787 return |
2789 /* After a subexpression? */ | 2788 /* After a subexpression? */ |
2790 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | 2789 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) |
2791 /* After an alternative? */ | 2790 /* After an alternative? */ |
2792 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | 2791 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); |
2793 } | 2792 } |
2794 | 2793 |
2795 | 2794 |
2796 /* The dual of at_begline_loc_p. This one is for $. We assume there is | 2795 /* The dual of at_begline_loc_p. This one is for $. We assume there is |
2806 const char *next_next = p + 1 < pend ? p + 1 : 0; | 2805 const char *next_next = p + 1 < pend ? p + 1 : 0; |
2807 | 2806 |
2808 return | 2807 return |
2809 /* Before a subexpression? */ | 2808 /* Before a subexpression? */ |
2810 (syntax & RE_NO_BK_PARENS ? *next == ')' | 2809 (syntax & RE_NO_BK_PARENS ? *next == ')' |
2811 : next_backslash && next_next && *next_next == ')') | 2810 : next_backslash && next_next && *next_next == ')') |
2812 /* Before an alternative? */ | 2811 /* Before an alternative? */ |
2813 || (syntax & RE_NO_BK_VBAR ? *next == '|' | 2812 || (syntax & RE_NO_BK_VBAR ? *next == '|' |
2814 : next_backslash && next_next && *next_next == '|'); | 2813 : next_backslash && next_next && *next_next == '|'); |
2815 } | 2814 } |
2816 | 2815 |
2817 | 2816 |
2818 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | 2817 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and |
2819 false if it's not. */ | 2818 false if it's not. */ |
2874 | 2873 |
2875 /* Have to increment the pointer into the pattern string, so the | 2874 /* Have to increment the pointer into the pattern string, so the |
2876 caller isn't still at the ending character. */ | 2875 caller isn't still at the ending character. */ |
2877 (*p_ptr)++; | 2876 (*p_ptr)++; |
2878 | 2877 |
2879 /* If the start is after the end, the range is empty. */ | 2878 /* If the start is after the end, the range is empty. */ |
2880 if (range_start > range_end) | 2879 if (range_start > range_end) |
2881 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | 2880 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; |
2882 | 2881 |
2883 /* Here we see why `this_char' has to be larger than an `unsigned | 2882 /* Here we see why `this_char' has to be larger than an `unsigned |
2884 char' -- the range is inclusive, so if `range_end' == 0xff | 2883 char' -- the range is inclusive, so if `range_end' == 0xff |
2928 /* This holds the pointer to the failure stack, when | 2927 /* This holds the pointer to the failure stack, when |
2929 it is allocated relocatably. */ | 2928 it is allocated relocatably. */ |
2930 fail_stack_elt_t *failure_stack_ptr; | 2929 fail_stack_elt_t *failure_stack_ptr; |
2931 | 2930 |
2932 /* Assume that each path through the pattern can be null until | 2931 /* Assume that each path through the pattern can be null until |
2933 proven otherwise. We set this false at the bottom of switch | 2932 proven otherwise. We set this false at the bottom of switch |
2934 statement, to which we get only if a particular path doesn't | 2933 statement, to which we get only if a particular path doesn't |
2935 match the empty string. */ | 2934 match the empty string. */ |
2936 boolean path_can_be_null = true; | 2935 boolean path_can_be_null = true; |
2937 | 2936 |
2938 /* We aren't doing a `succeed_n' to begin with. */ | 2937 /* We aren't doing a `succeed_n' to begin with. */ |
2939 boolean succeed_n_p = false; | 2938 boolean succeed_n_p = false; |
2940 | 2939 |
2941 assert (fastmap != NULL && p != NULL); | 2940 assert (fastmap != NULL && p != NULL); |
2942 | 2941 |
2943 INIT_FAIL_STACK (); | 2942 INIT_FAIL_STACK (); |
2944 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | 2943 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ |
2945 bufp->fastmap_accurate = 1; /* It will be when we're done. */ | 2944 bufp->fastmap_accurate = 1; /* It will be when we're done. */ |
2946 bufp->can_be_null = 0; | 2945 bufp->can_be_null = 0; |
2947 | 2946 |
2948 while (1) | 2947 while (1) |
2949 { | 2948 { |
2963 } | 2962 } |
2964 else | 2963 else |
2965 break; | 2964 break; |
2966 } | 2965 } |
2967 | 2966 |
2968 /* We should never be about to go beyond the end of the pattern. */ | 2967 /* We should never be about to go beyond the end of the pattern. */ |
2969 assert (p < pend); | 2968 assert (p < pend); |
2970 | 2969 |
2971 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | 2970 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
2972 { | 2971 { |
2973 | 2972 |
2974 /* I guess the idea here is to simply not bother with a fastmap | 2973 /* I guess the idea here is to simply not bother with a fastmap |
2975 if a backreference is used, since it's too hard to figure out | 2974 if a backreference is used, since it's too hard to figure out |
2976 the fastmap for the corresponding group. Setting | 2975 the fastmap for the corresponding group. Setting |
2977 `can_be_null' stops `re_search_2' from using the fastmap, so | 2976 `can_be_null' stops `re_search_2' from using the fastmap, so |
2978 that is all we do. */ | 2977 that is all we do. */ |
2979 case duplicate: | 2978 case duplicate: |
2980 bufp->can_be_null = 1; | 2979 bufp->can_be_null = 1; |
2981 goto done; | 2980 goto done; |
2982 | 2981 |
2983 | 2982 |
2984 /* Following are the cases which match a character. These end | 2983 /* Following are the cases which match a character. These end |
2985 with `break'. */ | 2984 with `break'. */ |
2986 | 2985 |
2987 case exactn: | 2986 case exactn: |
2988 fastmap[p[1]] = 1; | 2987 fastmap[p[1]] = 1; |
2989 break; | 2988 break; |
2990 | 2989 |
2991 | 2990 |
2992 case charset: | 2991 case charset: |
2993 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | 2992 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
2994 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | 2993 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) |
2995 fastmap[j] = 1; | 2994 fastmap[j] = 1; |
2996 break; | 2995 break; |
2997 | 2996 |
2998 | 2997 |
2999 case charset_not: | 2998 case charset_not: |
3000 /* Chars beyond end of map must be allowed. */ | 2999 /* Chars beyond end of map must be allowed. */ |
3001 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) | 3000 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
3002 fastmap[j] = 1; | 3001 fastmap[j] = 1; |
3003 | 3002 |
3004 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | 3003 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
3005 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | 3004 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) |
3006 fastmap[j] = 1; | 3005 fastmap[j] = 1; |
3007 break; | 3006 break; |
3008 | 3007 |
3009 | 3008 |
3010 case wordchar: | 3009 case wordchar: |
3011 for (j = 0; j < (1 << BYTEWIDTH); j++) | 3010 for (j = 0; j < (1 << BYTEWIDTH); j++) |
3012 if (SYNTAX (j) == Sword) | 3011 if (SYNTAX (j) == Sword) |
3019 if (SYNTAX (j) != Sword) | 3018 if (SYNTAX (j) != Sword) |
3020 fastmap[j] = 1; | 3019 fastmap[j] = 1; |
3021 break; | 3020 break; |
3022 | 3021 |
3023 | 3022 |
3024 case anychar: | 3023 case anychar: |
3025 { | 3024 { |
3026 int fastmap_newline = fastmap['\n']; | 3025 int fastmap_newline = fastmap['\n']; |
3027 | 3026 |
3028 /* `.' matches anything ... */ | 3027 /* `.' matches anything ... */ |
3029 for (j = 0; j < (1 << BYTEWIDTH); j++) | 3028 for (j = 0; j < (1 << BYTEWIDTH); j++) |
3030 fastmap[j] = 1; | 3029 fastmap[j] = 1; |
3031 | 3030 |
3032 /* ... except perhaps newline. */ | 3031 /* ... except perhaps newline. */ |
3033 if (!(bufp->syntax & RE_DOT_NEWLINE)) | 3032 if (!(bufp->syntax & RE_DOT_NEWLINE)) |
3034 fastmap['\n'] = fastmap_newline; | 3033 fastmap['\n'] = fastmap_newline; |
3035 | 3034 |
3036 /* Return if we have already set `can_be_null'; if we have, | 3035 /* Return if we have already set `can_be_null'; if we have, |
3037 then the fastmap is irrelevant. Something's wrong here. */ | 3036 then the fastmap is irrelevant. Something's wrong here. */ |
3038 else if (bufp->can_be_null) | 3037 else if (bufp->can_be_null) |
3039 goto done; | 3038 goto done; |
3040 | 3039 |
3041 /* Otherwise, have to check alternative paths. */ | 3040 /* Otherwise, have to check alternative paths. */ |
3042 break; | 3041 break; |
3043 } | 3042 } |
3044 | 3043 |
3045 #ifdef emacs | 3044 #ifdef emacs |
3046 case syntaxspec: | 3045 case syntaxspec: |
3047 k = *p++; | 3046 k = *p++; |
3048 for (j = 0; j < (1 << BYTEWIDTH); j++) | 3047 for (j = 0; j < (1 << BYTEWIDTH); j++) |
3049 if (SYNTAX (j) == (enum syntaxcode) k) | 3048 if (SYNTAX (j) == (enum syntaxcode) k) |
3050 fastmap[j] = 1; | 3049 fastmap[j] = 1; |
3051 break; | 3050 break; |
3058 fastmap[j] = 1; | 3057 fastmap[j] = 1; |
3059 break; | 3058 break; |
3060 | 3059 |
3061 | 3060 |
3062 /* All cases after this match the empty string. These end with | 3061 /* All cases after this match the empty string. These end with |
3063 `continue'. */ | 3062 `continue'. */ |
3064 | 3063 |
3065 | 3064 |
3066 case before_dot: | 3065 case before_dot: |
3067 case at_dot: | 3066 case at_dot: |
3068 case after_dot: | 3067 case after_dot: |
3069 continue; | 3068 continue; |
3070 #endif /* emacs */ | 3069 #endif /* emacs */ |
3071 | 3070 |
3072 | 3071 |
3073 case no_op: | 3072 case no_op: |
3074 case begline: | 3073 case begline: |
3075 case endline: | 3074 case endline: |
3076 case begbuf: | 3075 case begbuf: |
3077 case endbuf: | 3076 case endbuf: |
3078 case wordbound: | 3077 case wordbound: |
3079 case notwordbound: | 3078 case notwordbound: |
3080 case wordbeg: | 3079 case wordbeg: |
3081 case wordend: | 3080 case wordend: |
3082 case push_dummy_failure: | 3081 case push_dummy_failure: |
3083 continue; | 3082 continue; |
3084 | 3083 |
3085 | 3084 |
3086 case jump_n: | 3085 case jump_n: |
3087 case pop_failure_jump: | 3086 case pop_failure_jump: |
3088 case maybe_pop_jump: | 3087 case maybe_pop_jump: |
3089 case jump: | 3088 case jump: |
3090 case jump_past_alt: | 3089 case jump_past_alt: |
3091 case dummy_failure_jump: | 3090 case dummy_failure_jump: |
3092 EXTRACT_NUMBER_AND_INCR (j, p); | 3091 EXTRACT_NUMBER_AND_INCR (j, p); |
3093 p += j; | 3092 p += j; |
3094 if (j > 0) | 3093 if (j > 0) |
3095 continue; | 3094 continue; |
3096 | 3095 |
3097 /* Jump backward implies we just went through the body of a | 3096 /* Jump backward implies we just went through the body of a |
3098 loop and matched nothing. Opcode jumped to should be | 3097 loop and matched nothing. Opcode jumped to should be |
3099 `on_failure_jump' or `succeed_n'. Just treat it like an | 3098 `on_failure_jump' or `succeed_n'. Just treat it like an |
3100 ordinary jump. For a * loop, it has pushed its failure | 3099 ordinary jump. For a * loop, it has pushed its failure |
3101 point already; if so, discard that as redundant. */ | 3100 point already; if so, discard that as redundant. */ |
3102 if ((re_opcode_t) *p != on_failure_jump | 3101 if ((re_opcode_t) *p != on_failure_jump |
3103 && (re_opcode_t) *p != succeed_n) | 3102 && (re_opcode_t) *p != succeed_n) |
3104 continue; | 3103 continue; |
3105 | 3104 |
3106 p++; | 3105 p++; |
3107 EXTRACT_NUMBER_AND_INCR (j, p); | 3106 EXTRACT_NUMBER_AND_INCR (j, p); |
3108 p += j; | 3107 p += j; |
3109 | 3108 |
3110 /* If what's on the stack is where we are now, pop it. */ | 3109 /* If what's on the stack is where we are now, pop it. */ |
3111 if (!FAIL_STACK_EMPTY () | 3110 if (!FAIL_STACK_EMPTY () |
3112 && fail_stack.stack[fail_stack.avail - 1].pointer == p) | 3111 && fail_stack.stack[fail_stack.avail - 1].pointer == p) |
3113 fail_stack.avail--; | 3112 fail_stack.avail--; |
3114 | 3113 |
3115 continue; | 3114 continue; |
3116 | 3115 |
3117 | 3116 |
3118 case on_failure_jump: | 3117 case on_failure_jump: |
3119 case on_failure_keep_string_jump: | 3118 case on_failure_keep_string_jump: |
3120 handle_on_failure_jump: | 3119 handle_on_failure_jump: |
3121 EXTRACT_NUMBER_AND_INCR (j, p); | 3120 EXTRACT_NUMBER_AND_INCR (j, p); |
3122 | 3121 |
3123 /* For some patterns, e.g., `(a?)?', `p+j' here points to the | 3122 /* For some patterns, e.g., `(a?)?', `p+j' here points to the |
3124 end of the pattern. We don't want to push such a point, | 3123 end of the pattern. We don't want to push such a point, |
3125 since when we restore it above, entering the switch will | 3124 since when we restore it above, entering the switch will |
3126 increment `p' past the end of the pattern. We don't need | 3125 increment `p' past the end of the pattern. We don't need |
3127 to push such a point since we obviously won't find any more | 3126 to push such a point since we obviously won't find any more |
3128 fastmap entries beyond `pend'. Such a pattern can match | 3127 fastmap entries beyond `pend'. Such a pattern can match |
3129 the null string, though. */ | 3128 the null string, though. */ |
3130 if (p + j < pend) | 3129 if (p + j < pend) |
3131 { | 3130 { |
3132 if (!PUSH_PATTERN_OP (p + j, fail_stack)) | 3131 if (!PUSH_PATTERN_OP (p + j, fail_stack)) |
3133 { | 3132 { |
3134 RESET_FAIL_STACK (); | 3133 RESET_FAIL_STACK (); |
3135 return -2; | 3134 return -2; |
3136 } | 3135 } |
3137 } | |
3138 else | |
3139 bufp->can_be_null = 1; | |
3140 | |
3141 if (succeed_n_p) | |
3142 { | |
3143 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | |
3144 succeed_n_p = false; | |
3145 } | 3136 } |
3146 | 3137 else |
3147 continue; | 3138 bufp->can_be_null = 1; |
3139 | |
3140 if (succeed_n_p) | |
3141 { | |
3142 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | |
3143 succeed_n_p = false; | |
3144 } | |
3145 | |
3146 continue; | |
3148 | 3147 |
3149 | 3148 |
3150 case succeed_n: | 3149 case succeed_n: |
3151 /* Get to the number of times to succeed. */ | 3150 /* Get to the number of times to succeed. */ |
3152 p += 2; | 3151 p += 2; |
3153 | 3152 |
3154 /* Increment p past the n for when k != 0. */ | 3153 /* Increment p past the n for when k != 0. */ |
3155 EXTRACT_NUMBER_AND_INCR (k, p); | 3154 EXTRACT_NUMBER_AND_INCR (k, p); |
3156 if (k == 0) | 3155 if (k == 0) |
3157 { | 3156 { |
3158 p -= 4; | 3157 p -= 4; |
3159 succeed_n_p = true; /* Spaghetti code alert. */ | 3158 succeed_n_p = true; /* Spaghetti code alert. */ |
3160 goto handle_on_failure_jump; | 3159 goto handle_on_failure_jump; |
3161 } | 3160 } |
3162 continue; | 3161 continue; |
3163 | 3162 |
3164 | 3163 |
3165 case set_number_at: | 3164 case set_number_at: |
3166 p += 4; | 3165 p += 4; |
3167 continue; | 3166 continue; |
3168 | 3167 |
3169 | 3168 |
3170 case start_memory: | 3169 case start_memory: |
3171 case stop_memory: | 3170 case stop_memory: |
3172 p += 2; | 3171 p += 2; |
3173 continue; | 3172 continue; |
3174 | 3173 |
3175 | 3174 |
3176 default: | 3175 default: |
3177 abort (); /* We have listed all the cases. */ | 3176 abort (); /* We have listed all the cases. */ |
3178 } /* switch *p++ */ | 3177 } /* switch *p++ */ |
3179 | 3178 |
3180 /* Getting here means we have found the possible starting | 3179 /* Getting here means we have found the possible starting |
3181 characters for one path of the pattern -- and that the empty | 3180 characters for one path of the pattern -- and that the empty |
3182 string does not match. We need not follow this path further. | 3181 string does not match. We need not follow this path further. |
3183 Instead, look at the next alternative (remembered on the | 3182 Instead, look at the next alternative (remembered on the |
3184 stack), or quit if no more. The test at the top of the loop | 3183 stack), or quit if no more. The test at the top of the loop |
3185 does these things. */ | 3184 does these things. */ |
3186 path_can_be_null = false; | 3185 path_can_be_null = false; |
3187 p = pend; | 3186 p = pend; |
3188 } /* while p */ | 3187 } /* while p */ |
3189 | 3188 |
3190 /* Set `can_be_null' for the last path (also the first path, if the | 3189 /* Set `can_be_null' for the last path (also the first path, if the |
3191 pattern is empty). */ | 3190 pattern is empty). */ |
3192 bufp->can_be_null |= path_can_be_null; | 3191 bufp->can_be_null |= path_can_be_null; |
3193 | 3192 |
3194 done: | 3193 done: |
3195 RESET_FAIL_STACK (); | 3194 RESET_FAIL_STACK (); |
3196 return 0; | 3195 return 0; |
3229 regs->num_regs = 0; | 3228 regs->num_regs = 0; |
3230 regs->start = regs->end = (regoff_t *) 0; | 3229 regs->start = regs->end = (regoff_t *) 0; |
3231 } | 3230 } |
3232 } | 3231 } |
3233 | 3232 |
3234 /* Searching routines. */ | 3233 /* Searching routines. */ |
3235 | 3234 |
3236 /* Like re_search_2, below, but only one string is specified, and | 3235 /* Like re_search_2, below, but only one string is specified, and |
3237 doesn't let you say where to stop matching. */ | 3236 doesn't let you say where to stop matching. */ |
3238 | 3237 |
3239 int | 3238 int |
3343 == '\n'))) | 3342 == '\n'))) |
3344 goto advance; | 3343 goto advance; |
3345 } | 3344 } |
3346 | 3345 |
3347 /* If a fastmap is supplied, skip quickly over characters that | 3346 /* If a fastmap is supplied, skip quickly over characters that |
3348 cannot be the start of a match. If the pattern can match the | 3347 cannot be the start of a match. If the pattern can match the |
3349 null string, however, we don't need to skip characters; we want | 3348 null string, however, we don't need to skip characters; we want |
3350 the first null string. */ | 3349 the first null string. */ |
3351 if (fastmap && startpos < total_size && !bufp->can_be_null) | 3350 if (fastmap && startpos < total_size && !bufp->can_be_null) |
3352 { | 3351 { |
3353 if (range > 0) /* Searching forwards. */ | 3352 if (range > 0) /* Searching forwards. */ |
3354 { | 3353 { |
3355 register const char *d; | 3354 register const char *d; |
3356 register int lim = 0; | 3355 register int lim = 0; |
3357 int irange = range; | 3356 int irange = range; |
3358 | 3357 |
3359 if (startpos < size1 && startpos + range >= size1) | 3358 if (startpos < size1 && startpos + range >= size1) |
3360 lim = range - (size1 - startpos); | 3359 lim = range - (size1 - startpos); |
3361 | 3360 |
3362 d = (startpos >= size1 ? string2 - size1 : string1) + startpos; | 3361 d = (startpos >= size1 ? string2 - size1 : string1) + startpos; |
3363 | 3362 |
3364 /* Written out as an if-else to avoid testing `translate' | 3363 /* Written out as an if-else to avoid testing `translate' |
3365 inside the loop. */ | 3364 inside the loop. */ |
3366 if (translate) | 3365 if (translate) |
3367 while (range > lim | 3366 while (range > lim |
3368 && !fastmap[(unsigned char) | 3367 && !fastmap[(unsigned char) |
3369 translate[(unsigned char) *d++]]) | 3368 translate[(unsigned char) *d++]]) |
3370 range--; | 3369 range--; |
3371 else | 3370 else |
3372 while (range > lim && !fastmap[(unsigned char) *d++]) | 3371 while (range > lim && !fastmap[(unsigned char) *d++]) |
3373 range--; | 3372 range--; |
3374 | 3373 |
3375 startpos += irange - range; | 3374 startpos += irange - range; |
3376 } | 3375 } |
3377 else /* Searching backwards. */ | 3376 else /* Searching backwards. */ |
3378 { | 3377 { |
3379 register char c = (size1 == 0 || startpos >= size1 | 3378 register char c = (size1 == 0 || startpos >= size1 |
3380 ? string2[startpos - size1] | 3379 ? string2[startpos - size1] |
3381 : string1[startpos]); | 3380 : string1[startpos]); |
3382 | 3381 |
3383 if (!fastmap[(unsigned char) TRANSLATE (c)]) | 3382 if (!fastmap[(unsigned char) TRANSLATE (c)]) |
3384 goto advance; | 3383 goto advance; |
3385 } | 3384 } |
3386 } | 3385 } |
3387 | 3386 |
3388 /* If can't match the null string, and that's all we have left, fail. */ | 3387 /* If can't match the null string, and that's all we have left, fail. */ |
3389 if (range >= 0 && startpos == total_size && fastmap | 3388 if (range >= 0 && startpos == total_size && fastmap |
3390 && !bufp->can_be_null) | 3389 && !bufp->can_be_null) |
3391 return -1; | 3390 return -1; |
3392 | 3391 |
3393 val = re_match_2_internal (bufp, string1, size1, string2, size2, | 3392 val = re_match_2_internal (bufp, string1, size1, string2, size2, |
3394 startpos, regs, stop); | 3393 startpos, regs, stop); |
3395 #ifndef REGEX_MALLOC | 3394 #ifndef REGEX_MALLOC |
3404 if (val == -2) | 3403 if (val == -2) |
3405 return -2; | 3404 return -2; |
3406 | 3405 |
3407 advance: | 3406 advance: |
3408 if (!range) | 3407 if (!range) |
3409 break; | 3408 break; |
3410 else if (range > 0) | 3409 else if (range > 0) |
3411 { | 3410 { |
3412 range--; | 3411 range--; |
3413 startpos++; | 3412 startpos++; |
3414 } | 3413 } |
3415 else | 3414 else |
3416 { | 3415 { |
3417 range++; | 3416 range++; |
3418 startpos--; | 3417 startpos--; |
3419 } | 3418 } |
3420 } | 3419 } |
3421 return -1; | 3420 return -1; |
3422 } /* re_search_2 */ | 3421 } /* re_search_2 */ |
3423 | 3422 |
3424 /* Declarations and macros for re_match_2. */ | 3423 /* Declarations and macros for re_match_2. */ |
3425 | 3424 |
3426 static int bcmp_translate (); | 3425 static int bcmp_translate (); |
3427 static boolean alt_match_null_string_p (), | 3426 static boolean alt_match_null_string_p (), |
3428 common_op_match_null_string_p (), | 3427 common_op_match_null_string_p (), |
3429 group_match_null_string_p (); | 3428 group_match_null_string_p (); |
3430 | 3429 |
3431 /* This converts PTR, a pointer into one of the search strings `string1' | 3430 /* This converts PTR, a pointer into one of the search strings `string1' |
3432 and `string2' into an offset from the beginning of that string. */ | 3431 and `string2' into an offset from the beginning of that string. */ |
3433 #define POINTER_TO_OFFSET(ptr) \ | 3432 #define POINTER_TO_OFFSET(ptr) \ |
3434 (FIRST_STRING_P (ptr) \ | 3433 (FIRST_STRING_P (ptr) \ |
3440 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | 3439 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) |
3441 | 3440 |
3442 /* Call before fetching a character with *d. This switches over to | 3441 /* Call before fetching a character with *d. This switches over to |
3443 string2 if necessary. */ | 3442 string2 if necessary. */ |
3444 #define PREFETCH() \ | 3443 #define PREFETCH() \ |
3445 while (d == dend) \ | 3444 while (d == dend) \ |
3446 { \ | 3445 { \ |
3447 /* End of string2 => fail. */ \ | 3446 /* End of string2 => fail. */ \ |
3448 if (dend == end_match_2) \ | 3447 if (dend == end_match_2) \ |
3449 goto fail; \ | 3448 goto fail; \ |
3450 /* End of string1 => advance to string2. */ \ | 3449 /* End of string1 => advance to string2. */ \ |
3451 d = string2; \ | 3450 d = string2; \ |
3452 dend = end_match_2; \ | 3451 dend = end_match_2; \ |
3453 } | 3452 } |
3454 | 3453 |
3455 | 3454 |
3456 /* Test if at very beginning or at very end of the virtual concatenation | 3455 /* Test if at very beginning or at very end of the virtual concatenation |
3457 of `string1' and `string2'. If only one string, it's `string2'. */ | 3456 of `string1' and `string2'. If only one string, it's `string2'. */ |
3458 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | 3457 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) |
3459 #define AT_STRINGS_END(d) ((d) == end2) | 3458 #define AT_STRINGS_END(d) ((d) == end2) |
3460 | 3459 |
3461 | 3460 |
3462 /* Test if D points to a character which is word-constituent. We have | 3461 /* Test if D points to a character which is word-constituent. We have |
3463 two special cases to check for: if past the end of string1, look at | 3462 two special cases to check for: if past the end of string1, look at |
3464 the first character in string2; and if before the beginning of | 3463 the first character in string2; and if before the beginning of |
3465 string2, look at the last character in string1. */ | 3464 string2, look at the last character in string1. */ |
3466 #define WORDCHAR_P(d) \ | 3465 #define WORDCHAR_P(d) \ |
3467 (SYNTAX ((d) == end1 ? *string2 \ | 3466 (SYNTAX ((d) == end1 ? *string2 \ |
3468 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ | 3467 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ |
3469 == Sword) | 3468 == Sword) |
3470 | 3469 |
3471 /* Disabled due to a compiler bug -- see comment at case wordbound */ | 3470 /* Disabled due to a compiler bug -- see comment at case wordbound */ |
3472 #if 0 | 3471 #if 0 |
3473 /* Test if the character before D and the one at D differ with respect | 3472 /* Test if the character before D and the one at D differ with respect |
3495 } while (0) | 3494 } while (0) |
3496 #else | 3495 #else |
3497 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ | 3496 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ |
3498 #endif /* not MATCH_MAY_ALLOCATE */ | 3497 #endif /* not MATCH_MAY_ALLOCATE */ |
3499 | 3498 |
3500 /* These values must meet several constraints. They must not be valid | 3499 /* These values must meet several constraints. They must not be valid |
3501 register values; since we have a limit of 255 registers (because | 3500 register values; since we have a limit of 255 registers (because |
3502 we use only one byte in the pattern for the register number), we can | 3501 we use only one byte in the pattern for the register number), we can |
3503 use numbers larger than 255. They must differ by 1, because of | 3502 use numbers larger than 255. They must differ by 1, because of |
3504 NUM_FAILURE_ITEMS above. And the value for the lowest register must | 3503 NUM_FAILURE_ITEMS above. And the value for the lowest register must |
3505 be larger than the value for the highest register, so we do not try | 3504 be larger than the value for the highest register, so we do not try |
3506 to actually save any registers when none are active. */ | 3505 to actually save any registers when none are active. */ |
3507 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | 3506 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) |
3508 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | 3507 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) |
3509 | 3508 |
3510 /* Matching routines. */ | 3509 /* Matching routines. */ |
3511 | 3510 |
3512 #ifndef emacs /* Emacs never uses this. */ | 3511 #ifndef emacs /* Emacs never uses this. */ |
3513 /* re_match is like re_match_2 except it takes only a single string. */ | 3512 /* re_match is like re_match_2 except it takes only a single string. */ |
3514 | 3513 |
3515 int | 3514 int |
3516 re_match (bufp, string, size, pos, regs) | 3515 re_match (bufp, string, size, pos, regs) |
3517 struct re_pattern_buffer *bufp; | 3516 struct re_pattern_buffer *bufp; |
3531 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | 3530 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 |
3532 and SIZE2, respectively). We start matching at POS, and stop | 3531 and SIZE2, respectively). We start matching at POS, and stop |
3533 matching at STOP. | 3532 matching at STOP. |
3534 | 3533 |
3535 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | 3534 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we |
3536 store offsets for the substring each group matched in REGS. See the | 3535 store offsets for the substring each group matched in REGS. See the |
3537 documentation for exactly how many groups we fill. | 3536 documentation for exactly how many groups we fill. |
3538 | 3537 |
3539 We return -1 if no match, -2 if an internal error (such as the | 3538 We return -1 if no match, -2 if an internal error (such as the |
3540 failure stack overflowing). Otherwise, we return the length of the | 3539 failure stack overflowing). Otherwise, we return the length of the |
3541 matched substring. */ | 3540 matched substring. */ |
3542 | 3541 |
3543 int | 3542 int |
3544 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | 3543 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
3545 struct re_pattern_buffer *bufp; | 3544 struct re_pattern_buffer *bufp; |
3554 alloca (0); | 3553 alloca (0); |
3555 return result; | 3554 return result; |
3556 } | 3555 } |
3557 | 3556 |
3558 /* This is a separate function so that we can force an alloca cleanup | 3557 /* This is a separate function so that we can force an alloca cleanup |
3559 afterwards. */ | 3558 afterwards. */ |
3560 static int | 3559 static int |
3561 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) | 3560 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) |
3562 struct re_pattern_buffer *bufp; | 3561 struct re_pattern_buffer *bufp; |
3563 const char *string1, *string2; | 3562 const char *string1, *string2; |
3564 int size1, size2; | 3563 int size1, size2; |
3572 | 3571 |
3573 /* Just past the end of the corresponding string. */ | 3572 /* Just past the end of the corresponding string. */ |
3574 const char *end1, *end2; | 3573 const char *end1, *end2; |
3575 | 3574 |
3576 /* Pointers into string1 and string2, just past the last characters in | 3575 /* Pointers into string1 and string2, just past the last characters in |
3577 each to consider matching. */ | 3576 each to consider matching. */ |
3578 const char *end_match_1, *end_match_2; | 3577 const char *end_match_1, *end_match_2; |
3579 | 3578 |
3580 /* Where we are in the data, and the end of the current string. */ | 3579 /* Where we are in the data, and the end of the current string. */ |
3581 const char *d, *dend; | 3580 const char *d, *dend; |
3582 | 3581 |
3586 | 3585 |
3587 /* Mark the opcode just after a start_memory, so we can test for an | 3586 /* Mark the opcode just after a start_memory, so we can test for an |
3588 empty subpattern when we get to the stop_memory. */ | 3587 empty subpattern when we get to the stop_memory. */ |
3589 unsigned char *just_past_start_mem = 0; | 3588 unsigned char *just_past_start_mem = 0; |
3590 | 3589 |
3591 /* We use this to map every character in the string. */ | 3590 /* We use this to map every character in the string. */ |
3592 RE_TRANSLATE_TYPE translate = bufp->translate; | 3591 RE_TRANSLATE_TYPE translate = bufp->translate; |
3593 | 3592 |
3594 /* Failure point stack. Each place that can handle a failure further | 3593 /* Failure point stack. Each place that can handle a failure further |
3595 down the line pushes a failure point on this stack. It consists of | 3594 down the line pushes a failure point on this stack. It consists of |
3596 restart, regend, and reg_info for all registers corresponding to | 3595 restart, regend, and reg_info for all registers corresponding to |
3597 the subexpressions we're currently inside, plus the number of such | 3596 the subexpressions we're currently inside, plus the number of such |
3598 registers, and, finally, two char *'s. The first char * is where | 3597 registers, and, finally, two char *'s. The first char * is where |
3599 to resume scanning the pattern; the second one is where to resume | 3598 to resume scanning the pattern; the second one is where to resume |
3600 scanning the strings. If the latter is zero, the failure point is | 3599 scanning the strings. If the latter is zero, the failure point is |
3601 a ``dummy''; if a failure happens and the failure point is a dummy, | 3600 a ``dummy''; if a failure happens and the failure point is a dummy, |
3602 it gets discarded and the next next one is tried. */ | 3601 it gets discarded and the next next one is tried. */ |
3603 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | 3602 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
3604 fail_stack_type fail_stack; | 3603 fail_stack_type fail_stack; |
3605 #endif | 3604 #endif |
3606 #ifdef DEBUG | 3605 #ifdef DEBUG |
3607 static unsigned failure_id = 0; | 3606 static unsigned failure_id = 0; |
3608 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | 3607 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; |
3611 /* This holds the pointer to the failure stack, when | 3610 /* This holds the pointer to the failure stack, when |
3612 it is allocated relocatably. */ | 3611 it is allocated relocatably. */ |
3613 fail_stack_elt_t *failure_stack_ptr; | 3612 fail_stack_elt_t *failure_stack_ptr; |
3614 | 3613 |
3615 /* We fill all the registers internally, independent of what we | 3614 /* We fill all the registers internally, independent of what we |
3616 return, for use in backreferences. The number here includes | 3615 return, for use in backreferences. The number here includes |
3617 an element for register zero. */ | 3616 an element for register zero. */ |
3618 unsigned num_regs = bufp->re_nsub + 1; | 3617 unsigned num_regs = bufp->re_nsub + 1; |
3619 | 3618 |
3620 /* The currently active registers. */ | 3619 /* The currently active registers. */ |
3621 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 3620 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
3644 /* The is_active field of reg_info helps us keep track of which (possibly | 3643 /* The is_active field of reg_info helps us keep track of which (possibly |
3645 nested) subexpressions we are currently in. The matched_something | 3644 nested) subexpressions we are currently in. The matched_something |
3646 field of reg_info[reg_num] helps us tell whether or not we have | 3645 field of reg_info[reg_num] helps us tell whether or not we have |
3647 matched any of the pattern so far this time through the reg_num-th | 3646 matched any of the pattern so far this time through the reg_num-th |
3648 subexpression. These two fields get reset each time through any | 3647 subexpression. These two fields get reset each time through any |
3649 loop their register is in. */ | 3648 loop their register is in. */ |
3650 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | 3649 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
3651 register_info_type *reg_info; | 3650 register_info_type *reg_info; |
3652 #endif | 3651 #endif |
3653 | 3652 |
3654 /* The following record the register info as found in the above | 3653 /* The following record the register info as found in the above |
3655 variables when we find a match better than any we've seen before. | 3654 variables when we find a match better than any we've seen before. |
3660 const char **best_regstart, **best_regend; | 3659 const char **best_regstart, **best_regend; |
3661 #endif | 3660 #endif |
3662 | 3661 |
3663 /* Logically, this is `best_regend[0]'. But we don't want to have to | 3662 /* Logically, this is `best_regend[0]'. But we don't want to have to |
3664 allocate space for that if we're not allocating space for anything | 3663 allocate space for that if we're not allocating space for anything |
3665 else (see below). Also, we never need info about register 0 for | 3664 else (see below). Also, we never need info about register 0 for |
3666 any of the other register vectors, and it seems rather a kludge to | 3665 any of the other register vectors, and it seems rather a kludge to |
3667 treat `best_regend' differently than the rest. So we keep track of | 3666 treat `best_regend' differently than the rest. So we keep track of |
3668 the end of the best match so far in a separate variable. We | 3667 the end of the best match so far in a separate variable. We |
3669 initialize this to NULL so that when we backtrack the first time | 3668 initialize this to NULL so that when we backtrack the first time |
3670 and need to test it, it's not garbage. */ | 3669 and need to test it, it's not garbage. */ |
3705 reg_info = REGEX_TALLOC (num_regs, register_info_type); | 3704 reg_info = REGEX_TALLOC (num_regs, register_info_type); |
3706 reg_dummy = REGEX_TALLOC (num_regs, const char *); | 3705 reg_dummy = REGEX_TALLOC (num_regs, const char *); |
3707 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); | 3706 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); |
3708 | 3707 |
3709 if (!(regstart && regend && old_regstart && old_regend && reg_info | 3708 if (!(regstart && regend && old_regstart && old_regend && reg_info |
3710 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | 3709 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) |
3711 { | 3710 { |
3712 FREE_VARIABLES (); | 3711 FREE_VARIABLES (); |
3713 return -2; | 3712 return -2; |
3714 } | 3713 } |
3715 } | 3714 } |
3716 else | 3715 else |
3717 { | 3716 { |
3718 /* We must initialize all our variables to NULL, so that | 3717 /* We must initialize all our variables to NULL, so that |
3719 `FREE_VARIABLES' doesn't try to free them. */ | 3718 `FREE_VARIABLES' doesn't try to free them. */ |
3720 regstart = regend = old_regstart = old_regend = best_regstart | 3719 regstart = regend = old_regstart = old_regend = best_regstart |
3721 = best_regend = reg_dummy = NULL; | 3720 = best_regend = reg_dummy = NULL; |
3722 reg_info = reg_info_dummy = (register_info_type *) NULL; | 3721 reg_info = reg_info_dummy = (register_info_type *) NULL; |
3723 } | 3722 } |
3724 #endif /* MATCH_MAY_ALLOCATE */ | 3723 #endif /* MATCH_MAY_ALLOCATE */ |
3725 | 3724 |
3726 /* The starting position is bogus. */ | 3725 /* The starting position is bogus. */ |
3734 start_memory/stop_memory has been seen for. Also initialize the | 3733 start_memory/stop_memory has been seen for. Also initialize the |
3735 register information struct. */ | 3734 register information struct. */ |
3736 for (mcnt = 1; mcnt < num_regs; mcnt++) | 3735 for (mcnt = 1; mcnt < num_regs; mcnt++) |
3737 { | 3736 { |
3738 regstart[mcnt] = regend[mcnt] | 3737 regstart[mcnt] = regend[mcnt] |
3739 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | 3738 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; |
3740 | 3739 |
3741 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | 3740 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; |
3742 IS_ACTIVE (reg_info[mcnt]) = 0; | 3741 IS_ACTIVE (reg_info[mcnt]) = 0; |
3743 MATCHED_SOMETHING (reg_info[mcnt]) = 0; | 3742 MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
3744 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | 3743 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
3745 } | 3744 } |
3746 | 3745 |
3747 /* We move `string1' into `string2' if the latter's empty -- but not if | 3746 /* We move `string1' into `string2' if the latter's empty -- but not if |
3748 `string1' is null. */ | 3747 `string1' is null. */ |
3749 if (size2 == 0 && string1 != NULL) | 3748 if (size2 == 0 && string1 != NULL) |
3750 { | 3749 { |
3751 string2 = string1; | 3750 string2 = string1; |
3752 size2 = size1; | 3751 size2 = size1; |
3753 string1 = 0; | 3752 string1 = 0; |
3789 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | 3788 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); |
3790 DEBUG_PRINT1 ("The string to match is: `"); | 3789 DEBUG_PRINT1 ("The string to match is: `"); |
3791 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | 3790 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); |
3792 DEBUG_PRINT1 ("'\n"); | 3791 DEBUG_PRINT1 ("'\n"); |
3793 | 3792 |
3794 /* This loops over pattern commands. It exits by returning from the | 3793 /* This loops over pattern commands. It exits by returning from the |
3795 function if the match is complete, or it drops through if the match | 3794 function if the match is complete, or it drops through if the match |
3796 fails at this starting point in the input data. */ | 3795 fails at this starting point in the input data. */ |
3797 for (;;) | 3796 for (;;) |
3798 { | 3797 { |
3799 DEBUG_PRINT2 ("\n0x%x: ", p); | 3798 DEBUG_PRINT2 ("\n0x%x: ", p); |
3800 | 3799 |
3801 if (p == pend) | 3800 if (p == pend) |
3802 { /* End of pattern means we might have succeeded. */ | 3801 { /* End of pattern means we might have succeeded. */ |
3803 DEBUG_PRINT1 ("end of pattern ... "); | 3802 DEBUG_PRINT1 ("end of pattern ... "); |
3804 | 3803 |
3805 /* If we haven't matched the entire string, and we want the | 3804 /* If we haven't matched the entire string, and we want the |
3806 longest match, try backtracking. */ | 3805 longest match, try backtracking. */ |
3807 if (d != end_match_2) | 3806 if (d != end_match_2) |
3808 { | 3807 { |
3809 /* 1 if this match ends in the same string (string1 or string2) | 3808 /* 1 if this match ends in the same string (string1 or string2) |
3810 as the best previous match. */ | 3809 as the best previous match. */ |
3811 boolean same_str_p = (FIRST_STRING_P (match_end) | 3810 boolean same_str_p = (FIRST_STRING_P (match_end) |
3812 == MATCHING_IN_FIRST_STRING); | 3811 == MATCHING_IN_FIRST_STRING); |
3813 /* 1 if this match is the best seen so far. */ | 3812 /* 1 if this match is the best seen so far. */ |
3814 boolean best_match_p; | 3813 boolean best_match_p; |
3815 | 3814 |
3816 /* AIX compiler got confused when this was combined | 3815 /* AIX compiler got confused when this was combined |
3817 with the previous declaration. */ | 3816 with the previous declaration. */ |
3818 if (same_str_p) | 3817 if (same_str_p) |
3819 best_match_p = d > match_end; | 3818 best_match_p = d > match_end; |
3820 else | 3819 else |
3821 best_match_p = !MATCHING_IN_FIRST_STRING; | 3820 best_match_p = !MATCHING_IN_FIRST_STRING; |
3822 | 3821 |
3823 DEBUG_PRINT1 ("backtracking.\n"); | 3822 DEBUG_PRINT1 ("backtracking.\n"); |
3824 | 3823 |
3825 if (!FAIL_STACK_EMPTY ()) | 3824 if (!FAIL_STACK_EMPTY ()) |
3826 { /* More failure points to try. */ | 3825 { /* More failure points to try. */ |
3827 | 3826 |
3828 /* If exceeds best match so far, save it. */ | 3827 /* If exceeds best match so far, save it. */ |
3829 if (!best_regs_set || best_match_p) | 3828 if (!best_regs_set || best_match_p) |
3830 { | 3829 { |
3831 best_regs_set = true; | 3830 best_regs_set = true; |
3832 match_end = d; | 3831 match_end = d; |
3833 | 3832 |
3834 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | 3833 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); |
3835 | 3834 |
3836 for (mcnt = 1; mcnt < num_regs; mcnt++) | 3835 for (mcnt = 1; mcnt < num_regs; mcnt++) |
3837 { | 3836 { |
3838 best_regstart[mcnt] = regstart[mcnt]; | 3837 best_regstart[mcnt] = regstart[mcnt]; |
3839 best_regend[mcnt] = regend[mcnt]; | 3838 best_regend[mcnt] = regend[mcnt]; |
3840 } | 3839 } |
3841 } | 3840 } |
3842 goto fail; | 3841 goto fail; |
3843 } | 3842 } |
3844 | 3843 |
3845 /* If no failure points, don't restore garbage. And if | 3844 /* If no failure points, don't restore garbage. And if |
3846 last match is real best match, don't restore second | 3845 last match is real best match, don't restore second |
3847 best one. */ | 3846 best one. */ |
3848 else if (best_regs_set && !best_match_p) | 3847 else if (best_regs_set && !best_match_p) |
3849 { | 3848 { |
3850 restore_best_regs: | 3849 restore_best_regs: |
3851 /* Restore best match. It may happen that `dend == | 3850 /* Restore best match. It may happen that `dend == |
3852 end_match_1' while the restored d is in string2. | 3851 end_match_1' while the restored d is in string2. |
3853 For example, the pattern `x.*y.*z' against the | 3852 For example, the pattern `x.*y.*z' against the |
3854 strings `x-' and `y-z-', if the two strings are | 3853 strings `x-' and `y-z-', if the two strings are |
3855 not consecutive in memory. */ | 3854 not consecutive in memory. */ |
3856 DEBUG_PRINT1 ("Restoring best registers.\n"); | 3855 DEBUG_PRINT1 ("Restoring best registers.\n"); |
3857 | 3856 |
3858 d = match_end; | 3857 d = match_end; |
3859 dend = ((d >= string1 && d <= end1) | 3858 dend = ((d >= string1 && d <= end1) |
3860 ? end_match_1 : end_match_2); | 3859 ? end_match_1 : end_match_2); |
3861 | 3860 |
3862 for (mcnt = 1; mcnt < num_regs; mcnt++) | 3861 for (mcnt = 1; mcnt < num_regs; mcnt++) |
3863 { | 3862 { |
3864 regstart[mcnt] = best_regstart[mcnt]; | 3863 regstart[mcnt] = best_regstart[mcnt]; |
3865 regend[mcnt] = best_regend[mcnt]; | 3864 regend[mcnt] = best_regend[mcnt]; |
3866 } | 3865 } |
3867 } | 3866 } |
3868 } /* d != end_match_2 */ | 3867 } /* d != end_match_2 */ |
3869 | 3868 |
3870 succeed_label: | 3869 succeed_label: |
3871 DEBUG_PRINT1 ("Accepting match.\n"); | 3870 DEBUG_PRINT1 ("Accepting match.\n"); |
3872 | 3871 |
3873 /* If caller wants register contents data back, do it. */ | 3872 /* If caller wants register contents data back, do it. */ |
3874 if (regs && !bufp->no_sub) | 3873 if (regs && !bufp->no_sub) |
3875 { | 3874 { |
3876 /* Have the register data arrays been allocated? */ | 3875 /* Have the register data arrays been allocated? */ |
3877 if (bufp->regs_allocated == REGS_UNALLOCATED) | 3876 if (bufp->regs_allocated == REGS_UNALLOCATED) |
3878 { /* No. So allocate them with malloc. We need one | 3877 { /* No. So allocate them with malloc. We need one |
3879 extra element beyond `num_regs' for the `-1' marker | 3878 extra element beyond `num_regs' for the `-1' marker |
3880 GNU code uses. */ | 3879 GNU code uses. */ |
3881 regs->num_regs = MAX (RE_NREGS, num_regs + 1); | 3880 regs->num_regs = MAX (RE_NREGS, num_regs + 1); |
3882 regs->start = TALLOC (regs->num_regs, regoff_t); | 3881 regs->start = TALLOC (regs->num_regs, regoff_t); |
3883 regs->end = TALLOC (regs->num_regs, regoff_t); | 3882 regs->end = TALLOC (regs->num_regs, regoff_t); |
3884 if (regs->start == NULL || regs->end == NULL) | 3883 if (regs->start == NULL || regs->end == NULL) |
3885 { | 3884 { |
3886 FREE_VARIABLES (); | 3885 FREE_VARIABLES (); |
3887 return -2; | 3886 return -2; |
3888 } | 3887 } |
3889 bufp->regs_allocated = REGS_REALLOCATE; | 3888 bufp->regs_allocated = REGS_REALLOCATE; |
3890 } | 3889 } |
3891 else if (bufp->regs_allocated == REGS_REALLOCATE) | 3890 else if (bufp->regs_allocated == REGS_REALLOCATE) |
3892 { /* Yes. If we need more elements than were already | 3891 { /* Yes. If we need more elements than were already |
3893 allocated, reallocate them. If we need fewer, just | 3892 allocated, reallocate them. If we need fewer, just |
3894 leave it alone. */ | 3893 leave it alone. */ |
3895 if (regs->num_regs < num_regs + 1) | 3894 if (regs->num_regs < num_regs + 1) |
3896 { | 3895 { |
3897 regs->num_regs = num_regs + 1; | 3896 regs->num_regs = num_regs + 1; |
3898 RETALLOC (regs->start, regs->num_regs, regoff_t); | 3897 RETALLOC (regs->start, regs->num_regs, regoff_t); |
3899 RETALLOC (regs->end, regs->num_regs, regoff_t); | 3898 RETALLOC (regs->end, regs->num_regs, regoff_t); |
3900 if (regs->start == NULL || regs->end == NULL) | 3899 if (regs->start == NULL || regs->end == NULL) |
3901 { | 3900 { |
3902 FREE_VARIABLES (); | 3901 FREE_VARIABLES (); |
3903 return -2; | 3902 return -2; |
3904 } | 3903 } |
3905 } | 3904 } |
3906 } | 3905 } |
3907 else | 3906 else |
3908 { | 3907 { |
3909 /* These braces fend off a "empty body in an else-statement" | 3908 /* These braces fend off a "empty body in an else-statement" |
3910 warning under GCC when assert expands to nothing. */ | 3909 warning under GCC when assert expands to nothing. */ |
3911 assert (bufp->regs_allocated == REGS_FIXED); | 3910 assert (bufp->regs_allocated == REGS_FIXED); |
3912 } | 3911 } |
3913 | 3912 |
3914 /* Convert the pointer data in `regstart' and `regend' to | 3913 /* Convert the pointer data in `regstart' and `regend' to |
3915 indices. Register zero has to be set differently, | 3914 indices. Register zero has to be set differently, |
3916 since we haven't kept track of any info for it. */ | 3915 since we haven't kept track of any info for it. */ |
3917 if (regs->num_regs > 0) | 3916 if (regs->num_regs > 0) |
3918 { | 3917 { |
3919 regs->start[0] = pos; | 3918 regs->start[0] = pos; |
3920 regs->end[0] = (MATCHING_IN_FIRST_STRING | 3919 regs->end[0] = (MATCHING_IN_FIRST_STRING |
3921 ? ((regoff_t) (d - string1)) | 3920 ? ((regoff_t) (d - string1)) |
3922 : ((regoff_t) (d - string2 + size1))); | 3921 : ((regoff_t) (d - string2 + size1))); |
3923 } | 3922 } |
3924 | 3923 |
3925 /* Go through the first `min (num_regs, regs->num_regs)' | 3924 /* Go through the first `min (num_regs, regs->num_regs)' |
3926 registers, since that is all we initialized. */ | 3925 registers, since that is all we initialized. */ |
3927 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) | 3926 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) |
3928 { | 3927 { |
3929 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) | 3928 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) |
3930 regs->start[mcnt] = regs->end[mcnt] = -1; | 3929 regs->start[mcnt] = regs->end[mcnt] = -1; |
3931 else | 3930 else |
3932 { | 3931 { |
3933 regs->start[mcnt] | 3932 regs->start[mcnt] |
3934 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); | 3933 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); |
3935 regs->end[mcnt] | 3934 regs->end[mcnt] |
3936 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); | 3935 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); |
3937 } | 3936 } |
3938 } | 3937 } |
3939 | 3938 |
3940 /* If the regs structure we return has more elements than | 3939 /* If the regs structure we return has more elements than |
3941 were in the pattern, set the extra elements to -1. If | 3940 were in the pattern, set the extra elements to -1. If |
3942 we (re)allocated the registers, this is the case, | 3941 we (re)allocated the registers, this is the case, |
3943 because we always allocate enough to have at least one | 3942 because we always allocate enough to have at least one |
3944 -1 at the end. */ | 3943 -1 at the end. */ |
3945 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | 3944 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) |
3946 regs->start[mcnt] = regs->end[mcnt] = -1; | 3945 regs->start[mcnt] = regs->end[mcnt] = -1; |
3947 } /* regs && !bufp->no_sub */ | 3946 } /* regs && !bufp->no_sub */ |
3948 | 3947 |
3949 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | 3948 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
3950 nfailure_points_pushed, nfailure_points_popped, | 3949 nfailure_points_pushed, nfailure_points_popped, |
3951 nfailure_points_pushed - nfailure_points_popped); | 3950 nfailure_points_pushed - nfailure_points_popped); |
3952 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | 3951 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
3953 | 3952 |
3954 mcnt = d - pos - (MATCHING_IN_FIRST_STRING | 3953 mcnt = d - pos - (MATCHING_IN_FIRST_STRING |
3955 ? string1 | 3954 ? string1 |
3956 : string2 - size1); | 3955 : string2 - size1); |
3957 | 3956 |
3958 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | 3957 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); |
3959 | 3958 |
3960 FREE_VARIABLES (); | 3959 FREE_VARIABLES (); |
3961 return mcnt; | 3960 return mcnt; |
3962 } | 3961 } |
3963 | 3962 |
3964 /* Otherwise match next pattern command. */ | 3963 /* Otherwise match next pattern command. */ |
3965 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | 3964 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
3966 { | 3965 { |
3967 /* Ignore these. Used to ignore the n of succeed_n's which | 3966 /* Ignore these. Used to ignore the n of succeed_n's which |
3968 currently have n == 0. */ | 3967 currently have n == 0. */ |
3969 case no_op: | 3968 case no_op: |
3970 DEBUG_PRINT1 ("EXECUTING no_op.\n"); | 3969 DEBUG_PRINT1 ("EXECUTING no_op.\n"); |
3971 break; | 3970 break; |
3972 | 3971 |
3973 case succeed: | 3972 case succeed: |
3974 DEBUG_PRINT1 ("EXECUTING succeed.\n"); | 3973 DEBUG_PRINT1 ("EXECUTING succeed.\n"); |
3975 goto succeed_label; | 3974 goto succeed_label; |
3976 | 3975 |
3977 /* Match the next n pattern characters exactly. The following | 3976 /* Match the next n pattern characters exactly. The following |
3978 byte in the pattern defines n, and the n bytes after that | 3977 byte in the pattern defines n, and the n bytes after that |
3979 are the characters to match. */ | 3978 are the characters to match. */ |
3980 case exactn: | 3979 case exactn: |
3981 mcnt = *p++; | 3980 mcnt = *p++; |
3982 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | 3981 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); |
3983 | 3982 |
3984 /* This is written out as an if-else so we don't waste time | 3983 /* This is written out as an if-else so we don't waste time |
3985 testing `translate' inside the loop. */ | 3984 testing `translate' inside the loop. */ |
3986 if (translate) | 3985 if (translate) |
3987 { | 3986 { |
3988 do | 3987 do |
3989 { | 3988 { |
3990 PREFETCH (); | 3989 PREFETCH (); |
3991 if ((unsigned char) translate[(unsigned char) *d++] | 3990 if ((unsigned char) translate[(unsigned char) *d++] |
3992 != (unsigned char) *p++) | 3991 != (unsigned char) *p++) |
3993 goto fail; | 3992 goto fail; |
3994 } | 3993 } |
3995 while (--mcnt); | 3994 while (--mcnt); |
3996 } | 3995 } |
3997 else | 3996 else |
3998 { | 3997 { |
4002 if (*d++ != (char) *p++) goto fail; | 4001 if (*d++ != (char) *p++) goto fail; |
4003 } | 4002 } |
4004 while (--mcnt); | 4003 while (--mcnt); |
4005 } | 4004 } |
4006 SET_REGS_MATCHED (); | 4005 SET_REGS_MATCHED (); |
4007 break; | 4006 break; |
4008 | 4007 |
4009 | 4008 |
4010 /* Match any character except possibly a newline or a null. */ | 4009 /* Match any character except possibly a newline or a null. */ |
4011 case anychar: | 4010 case anychar: |
4012 DEBUG_PRINT1 ("EXECUTING anychar.\n"); | 4011 DEBUG_PRINT1 ("EXECUTING anychar.\n"); |
4013 | 4012 |
4014 PREFETCH (); | 4013 PREFETCH (); |
4015 | 4014 |
4016 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') | 4015 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') |
4017 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) | 4016 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) |
4018 goto fail; | 4017 goto fail; |
4019 | 4018 |
4020 SET_REGS_MATCHED (); | 4019 SET_REGS_MATCHED (); |
4021 DEBUG_PRINT2 (" Matched `%d'.\n", *d); | 4020 DEBUG_PRINT2 (" Matched `%d'.\n", *d); |
4022 d++; | 4021 d++; |
4023 break; | 4022 break; |
4024 | 4023 |
4025 | 4024 |
4026 case charset: | 4025 case charset: |
4027 case charset_not: | 4026 case charset_not: |
4028 { | 4027 { |
4029 register unsigned char c; | 4028 register unsigned char c; |
4030 boolean not = (re_opcode_t) *(p - 1) == charset_not; | 4029 boolean not = (re_opcode_t) *(p - 1) == charset_not; |
4031 | 4030 |
4032 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | 4031 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); |
4033 | 4032 |
4034 PREFETCH (); | 4033 PREFETCH (); |
4035 c = TRANSLATE (*d); /* The character to match. */ | 4034 c = TRANSLATE (*d); /* The character to match. */ |
4036 | 4035 |
4037 /* Cast to `unsigned' instead of `unsigned char' in case the | 4036 /* Cast to `unsigned' instead of `unsigned char' in case the |
4038 bit list is a full 32 bytes long. */ | 4037 bit list is a full 32 bytes long. */ |
4039 if (c < (unsigned) (*p * BYTEWIDTH) | 4038 if (c < (unsigned) (*p * BYTEWIDTH) |
4040 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | 4039 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
4041 not = !not; | 4040 not = !not; |
4042 | 4041 |
4043 p += 1 + *p; | 4042 p += 1 + *p; |
4044 | 4043 |
4045 if (!not) goto fail; | 4044 if (!not) goto fail; |
4046 | 4045 |
4047 SET_REGS_MATCHED (); | 4046 SET_REGS_MATCHED (); |
4048 d++; | 4047 d++; |
4049 break; | 4048 break; |
4050 } | 4049 } |
4051 | 4050 |
4052 | 4051 |
4053 /* The beginning of a group is represented by start_memory. | 4052 /* The beginning of a group is represented by start_memory. |
4054 The arguments are the register number in the next byte, and the | 4053 The arguments are the register number in the next byte, and the |
4055 number of groups inner to this one in the next. The text | 4054 number of groups inner to this one in the next. The text |
4056 matched within the group is recorded (in the internal | 4055 matched within the group is recorded (in the internal |
4057 registers data structure) under the register number. */ | 4056 registers data structure) under the register number. */ |
4058 case start_memory: | 4057 case start_memory: |
4059 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | 4058 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); |
4060 | 4059 |
4061 /* Find out if this group can match the empty string. */ | 4060 /* Find out if this group can match the empty string. */ |
4062 p1 = p; /* To send to group_match_null_string_p. */ | 4061 p1 = p; /* To send to group_match_null_string_p. */ |
4063 | 4062 |
4064 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | 4063 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) |
4065 REG_MATCH_NULL_STRING_P (reg_info[*p]) | 4064 REG_MATCH_NULL_STRING_P (reg_info[*p]) |
4066 = group_match_null_string_p (&p1, pend, reg_info); | 4065 = group_match_null_string_p (&p1, pend, reg_info); |
4067 | 4066 |
4068 /* Save the position in the string where we were the last time | 4067 /* Save the position in the string where we were the last time |
4069 we were at this open-group operator in case the group is | 4068 we were at this open-group operator in case the group is |
4070 operated upon by a repetition operator, e.g., with `(a*)*b' | 4069 operated upon by a repetition operator, e.g., with `(a*)*b' |
4071 against `ab'; then we want to ignore where we are now in | 4070 against `ab'; then we want to ignore where we are now in |
4072 the string in case this attempt to match fails. */ | 4071 the string in case this attempt to match fails. */ |
4073 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | 4072 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
4074 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | 4073 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] |
4075 : regstart[*p]; | 4074 : regstart[*p]; |
4076 DEBUG_PRINT2 (" old_regstart: %d\n", | 4075 DEBUG_PRINT2 (" old_regstart: %d\n", |
4077 POINTER_TO_OFFSET (old_regstart[*p])); | 4076 POINTER_TO_OFFSET (old_regstart[*p])); |
4078 | 4077 |
4079 regstart[*p] = d; | 4078 regstart[*p] = d; |
4080 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | 4079 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); |
4081 | 4080 |
4082 IS_ACTIVE (reg_info[*p]) = 1; | 4081 IS_ACTIVE (reg_info[*p]) = 1; |
4083 MATCHED_SOMETHING (reg_info[*p]) = 0; | 4082 MATCHED_SOMETHING (reg_info[*p]) = 0; |
4084 | 4083 |
4085 /* Clear this whenever we change the register activity status. */ | 4084 /* Clear this whenever we change the register activity status. */ |
4086 set_regs_matched_done = 0; | 4085 set_regs_matched_done = 0; |
4087 | 4086 |
4088 /* This is the new highest active register. */ | 4087 /* This is the new highest active register. */ |
4089 highest_active_reg = *p; | 4088 highest_active_reg = *p; |
4090 | 4089 |
4091 /* If nothing was active before, this is the new lowest active | 4090 /* If nothing was active before, this is the new lowest active |
4092 register. */ | 4091 register. */ |
4093 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | 4092 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
4094 lowest_active_reg = *p; | 4093 lowest_active_reg = *p; |
4095 | 4094 |
4096 /* Move past the register number and inner group count. */ | 4095 /* Move past the register number and inner group count. */ |
4097 p += 2; | 4096 p += 2; |
4098 just_past_start_mem = p; | 4097 just_past_start_mem = p; |
4099 | 4098 |
4100 break; | 4099 break; |
4101 | 4100 |
4102 | 4101 |
4103 /* The stop_memory opcode represents the end of a group. Its | 4102 /* The stop_memory opcode represents the end of a group. Its |
4104 arguments are the same as start_memory's: the register | 4103 arguments are the same as start_memory's: the register |
4105 number, and the number of inner groups. */ | 4104 number, and the number of inner groups. */ |
4106 case stop_memory: | 4105 case stop_memory: |
4107 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | 4106 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); |
4108 | 4107 |
4109 /* We need to save the string position the last time we were at | 4108 /* We need to save the string position the last time we were at |
4110 this close-group operator in case the group is operated | 4109 this close-group operator in case the group is operated |
4111 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | 4110 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' |
4112 against `aba'; then we want to ignore where we are now in | 4111 against `aba'; then we want to ignore where we are now in |
4113 the string in case this attempt to match fails. */ | 4112 the string in case this attempt to match fails. */ |
4114 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | 4113 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
4115 ? REG_UNSET (regend[*p]) ? d : regend[*p] | 4114 ? REG_UNSET (regend[*p]) ? d : regend[*p] |
4116 : regend[*p]; | 4115 : regend[*p]; |
4117 DEBUG_PRINT2 (" old_regend: %d\n", | 4116 DEBUG_PRINT2 (" old_regend: %d\n", |
4118 POINTER_TO_OFFSET (old_regend[*p])); | 4117 POINTER_TO_OFFSET (old_regend[*p])); |
4119 | 4118 |
4120 regend[*p] = d; | 4119 regend[*p] = d; |
4121 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | 4120 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); |
4122 | 4121 |
4123 /* This register isn't active anymore. */ | 4122 /* This register isn't active anymore. */ |
4124 IS_ACTIVE (reg_info[*p]) = 0; | 4123 IS_ACTIVE (reg_info[*p]) = 0; |
4125 | 4124 |
4126 /* Clear this whenever we change the register activity status. */ | 4125 /* Clear this whenever we change the register activity status. */ |
4127 set_regs_matched_done = 0; | 4126 set_regs_matched_done = 0; |
4128 | 4127 |
4129 /* If this was the only register active, nothing is active | 4128 /* If this was the only register active, nothing is active |
4130 anymore. */ | 4129 anymore. */ |
4131 if (lowest_active_reg == highest_active_reg) | 4130 if (lowest_active_reg == highest_active_reg) |
4132 { | 4131 { |
4133 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 4132 lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
4134 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | 4133 highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
4135 } | 4134 } |
4136 else | 4135 else |
4137 { /* We must scan for the new highest active register, since | 4136 { /* We must scan for the new highest active register, since |
4138 it isn't necessarily one less than now: consider | 4137 it isn't necessarily one less than now: consider |
4139 (a(b)c(d(e)f)g). When group 3 ends, after the f), the | 4138 (a(b)c(d(e)f)g). When group 3 ends, after the f), the |
4140 new highest active register is 1. */ | 4139 new highest active register is 1. */ |
4141 unsigned char r = *p - 1; | 4140 unsigned char r = *p - 1; |
4142 while (r > 0 && !IS_ACTIVE (reg_info[r])) | 4141 while (r > 0 && !IS_ACTIVE (reg_info[r])) |
4143 r--; | 4142 r--; |
4144 | 4143 |
4145 /* If we end up at register zero, that means that we saved | 4144 /* If we end up at register zero, that means that we saved |
4146 the registers as the result of an `on_failure_jump', not | 4145 the registers as the result of an `on_failure_jump', not |
4147 a `start_memory', and we jumped to past the innermost | 4146 a `start_memory', and we jumped to past the innermost |
4148 `stop_memory'. For example, in ((.)*) we save | 4147 `stop_memory'. For example, in ((.)*) we save |
4149 registers 1 and 2 as a result of the *, but when we pop | 4148 registers 1 and 2 as a result of the *, but when we pop |
4150 back to the second ), we are at the stop_memory 1. | 4149 back to the second ), we are at the stop_memory 1. |
4151 Thus, nothing is active. */ | 4150 Thus, nothing is active. */ |
4152 if (r == 0) | 4151 if (r == 0) |
4153 { | 4152 { |
4154 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 4153 lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
4155 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | 4154 highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
4156 } | 4155 } |
4157 else | 4156 else |
4158 highest_active_reg = r; | 4157 highest_active_reg = r; |
4159 } | 4158 } |
4160 | 4159 |
4161 /* If just failed to match something this time around with a | 4160 /* If just failed to match something this time around with a |
4162 group that's operated on by a repetition operator, try to | 4161 group that's operated on by a repetition operator, try to |
4163 force exit from the ``loop'', and restore the register | 4162 force exit from the ``loop'', and restore the register |
4164 information for this group that we had before trying this | 4163 information for this group that we had before trying this |
4165 last match. */ | 4164 last match. */ |
4166 if ((!MATCHED_SOMETHING (reg_info[*p]) | 4165 if ((!MATCHED_SOMETHING (reg_info[*p]) |
4167 || just_past_start_mem == p - 1) | 4166 || just_past_start_mem == p - 1) |
4168 && (p + 2) < pend) | 4167 && (p + 2) < pend) |
4169 { | 4168 { |
4170 boolean is_a_jump_n = false; | 4169 boolean is_a_jump_n = false; |
4171 | 4170 |
4172 p1 = p + 2; | 4171 p1 = p + 2; |
4173 mcnt = 0; | 4172 mcnt = 0; |
4174 switch ((re_opcode_t) *p1++) | 4173 switch ((re_opcode_t) *p1++) |
4175 { | 4174 { |
4176 case jump_n: | 4175 case jump_n: |
4177 is_a_jump_n = true; | 4176 is_a_jump_n = true; |
4178 case pop_failure_jump: | 4177 case pop_failure_jump: |
4179 case maybe_pop_jump: | 4178 case maybe_pop_jump: |
4180 case jump: | 4179 case jump: |
4181 case dummy_failure_jump: | 4180 case dummy_failure_jump: |
4182 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 4181 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4183 if (is_a_jump_n) | 4182 if (is_a_jump_n) |
4184 p1 += 2; | 4183 p1 += 2; |
4185 break; | 4184 break; |
4186 | 4185 |
4187 default: | 4186 default: |
4188 /* do nothing */ ; | 4187 /* do nothing */ ; |
4189 } | 4188 } |
4190 p1 += mcnt; | 4189 p1 += mcnt; |
4191 | 4190 |
4192 /* If the next operation is a jump backwards in the pattern | 4191 /* If the next operation is a jump backwards in the pattern |
4193 to an on_failure_jump right before the start_memory | 4192 to an on_failure_jump right before the start_memory |
4194 corresponding to this stop_memory, exit from the loop | 4193 corresponding to this stop_memory, exit from the loop |
4195 by forcing a failure after pushing on the stack the | 4194 by forcing a failure after pushing on the stack the |
4196 on_failure_jump's jump in the pattern, and d. */ | 4195 on_failure_jump's jump in the pattern, and d. */ |
4197 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | 4196 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump |
4198 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | 4197 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) |
4199 { | 4198 { |
4200 /* If this group ever matched anything, then restore | 4199 /* If this group ever matched anything, then restore |
4201 what its registers were before trying this last | 4200 what its registers were before trying this last |
4202 failed match, e.g., with `(a*)*b' against `ab' for | 4201 failed match, e.g., with `(a*)*b' against `ab' for |
4203 regstart[1], and, e.g., with `((a*)*(b*)*)*' | 4202 regstart[1], and, e.g., with `((a*)*(b*)*)*' |
4204 against `aba' for regend[3]. | 4203 against `aba' for regend[3]. |
4205 | 4204 |
4206 Also restore the registers for inner groups for, | 4205 Also restore the registers for inner groups for, |
4207 e.g., `((a*)(b*))*' against `aba' (register 3 would | 4206 e.g., `((a*)(b*))*' against `aba' (register 3 would |
4208 otherwise get trashed). */ | 4207 otherwise get trashed). */ |
4209 | 4208 |
4210 if (EVER_MATCHED_SOMETHING (reg_info[*p])) | 4209 if (EVER_MATCHED_SOMETHING (reg_info[*p])) |
4211 { | 4210 { |
4212 unsigned r; | 4211 unsigned r; |
4213 | 4212 |
4214 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | 4213 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; |
4215 | 4214 |
4216 /* Restore this and inner groups' (if any) registers. */ | 4215 /* Restore this and inner groups' (if any) registers. */ |
4217 for (r = *p; r < *p + *(p + 1); r++) | 4216 for (r = *p; r < *p + *(p + 1); r++) |
4218 { | 4217 { |
4219 regstart[r] = old_regstart[r]; | 4218 regstart[r] = old_regstart[r]; |
4220 | 4219 |
4221 /* xx why this test? */ | 4220 /* xx why this test? */ |
4222 if (old_regend[r] >= regstart[r]) | 4221 if (old_regend[r] >= regstart[r]) |
4223 regend[r] = old_regend[r]; | 4222 regend[r] = old_regend[r]; |
4224 } | 4223 } |
4225 } | 4224 } |
4226 p1++; | 4225 p1++; |
4227 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 4226 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4228 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | 4227 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); |
4229 | 4228 |
4230 goto fail; | 4229 goto fail; |
4231 } | 4230 } |
4232 } | 4231 } |
4233 | 4232 |
4234 /* Move past the register number and the inner group count. */ | 4233 /* Move past the register number and the inner group count. */ |
4235 p += 2; | 4234 p += 2; |
4236 break; | 4235 break; |
4237 | 4236 |
4238 | 4237 |
4239 /* \<digit> has been turned into a `duplicate' command which is | 4238 /* \<digit> has been turned into a `duplicate' command which is |
4240 followed by the numeric value of <digit> as the register number. */ | 4239 followed by the numeric value of <digit> as the register number. */ |
4241 case duplicate: | 4240 case duplicate: |
4242 { | 4241 { |
4243 register const char *d2, *dend2; | 4242 register const char *d2, *dend2; |
4244 int regno = *p++; /* Get which register to match against. */ | 4243 int regno = *p++; /* Get which register to match against. */ |
4245 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | 4244 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
4246 | 4245 |
4247 /* Can't back reference a group which we've never matched. */ | 4246 /* Can't back reference a group which we've never matched. */ |
4248 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | 4247 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) |
4249 goto fail; | 4248 goto fail; |
4250 | 4249 |
4251 /* Where in input to try to start matching. */ | 4250 /* Where in input to try to start matching. */ |
4252 d2 = regstart[regno]; | 4251 d2 = regstart[regno]; |
4253 | 4252 |
4254 /* Where to stop matching; if both the place to start and | 4253 /* Where to stop matching; if both the place to start and |
4255 the place to stop matching are in the same string, then | 4254 the place to stop matching are in the same string, then |
4256 set to the place to stop, otherwise, for now have to use | 4255 set to the place to stop, otherwise, for now have to use |
4257 the end of the first string. */ | 4256 the end of the first string. */ |
4258 | 4257 |
4259 dend2 = ((FIRST_STRING_P (regstart[regno]) | 4258 dend2 = ((FIRST_STRING_P (regstart[regno]) |
4260 == FIRST_STRING_P (regend[regno])) | 4259 == FIRST_STRING_P (regend[regno])) |
4261 ? regend[regno] : end_match_1); | 4260 ? regend[regno] : end_match_1); |
4262 for (;;) | 4261 for (;;) |
4263 { | 4262 { |
4264 /* If necessary, advance to next segment in register | 4263 /* If necessary, advance to next segment in register |
4265 contents. */ | 4264 contents. */ |
4266 while (d2 == dend2) | 4265 while (d2 == dend2) |
4267 { | 4266 { |
4268 if (dend2 == end_match_2) break; | 4267 if (dend2 == end_match_2) break; |
4269 if (dend2 == regend[regno]) break; | 4268 if (dend2 == regend[regno]) break; |
4270 | 4269 |
4271 /* End of string1 => advance to string2. */ | 4270 /* End of string1 => advance to string2. */ |
4272 d2 = string2; | 4271 d2 = string2; |
4273 dend2 = regend[regno]; | 4272 dend2 = regend[regno]; |
4274 } | 4273 } |
4275 /* At end of register contents => success */ | 4274 /* At end of register contents => success */ |
4276 if (d2 == dend2) break; | 4275 if (d2 == dend2) break; |
4277 | 4276 |
4278 /* If necessary, advance to next segment in data. */ | 4277 /* If necessary, advance to next segment in data. */ |
4280 | 4279 |
4281 /* How many characters left in this segment to match. */ | 4280 /* How many characters left in this segment to match. */ |
4282 mcnt = dend - d; | 4281 mcnt = dend - d; |
4283 | 4282 |
4284 /* Want how many consecutive characters we can match in | 4283 /* Want how many consecutive characters we can match in |
4285 one shot, so, if necessary, adjust the count. */ | 4284 one shot, so, if necessary, adjust the count. */ |
4286 if (mcnt > dend2 - d2) | 4285 if (mcnt > dend2 - d2) |
4287 mcnt = dend2 - d2; | 4286 mcnt = dend2 - d2; |
4288 | 4287 |
4289 /* Compare that many; failure if mismatch, else move | 4288 /* Compare that many; failure if mismatch, else move |
4290 past them. */ | 4289 past them. */ |
4291 if (translate | 4290 if (translate |
4292 ? bcmp_translate (d, d2, mcnt, translate) | 4291 ? bcmp_translate (d, d2, mcnt, translate) |
4293 : bcmp (d, d2, mcnt)) | 4292 : bcmp (d, d2, mcnt)) |
4294 goto fail; | 4293 goto fail; |
4295 d += mcnt, d2 += mcnt; | 4294 d += mcnt, d2 += mcnt; |
4296 | 4295 |
4297 /* Do this because we've match some characters. */ | 4296 /* Do this because we've match some characters. */ |
4298 SET_REGS_MATCHED (); | 4297 SET_REGS_MATCHED (); |
4299 } | 4298 } |
4300 } | 4299 } |
4301 break; | 4300 break; |
4302 | 4301 |
4303 | 4302 |
4304 /* begline matches the empty string at the beginning of the string | 4303 /* begline matches the empty string at the beginning of the string |
4305 (unless `not_bol' is set in `bufp'), and, if | 4304 (unless `not_bol' is set in `bufp'), and, if |
4306 `newline_anchor' is set, after newlines. */ | 4305 `newline_anchor' is set, after newlines. */ |
4307 case begline: | 4306 case begline: |
4308 DEBUG_PRINT1 ("EXECUTING begline.\n"); | 4307 DEBUG_PRINT1 ("EXECUTING begline.\n"); |
4309 | 4308 |
4310 if (AT_STRINGS_BEG (d)) | 4309 if (AT_STRINGS_BEG (d)) |
4311 { | 4310 { |
4312 if (!bufp->not_bol) break; | 4311 if (!bufp->not_bol) break; |
4313 } | 4312 } |
4314 else if (d[-1] == '\n' && bufp->newline_anchor) | 4313 else if (d[-1] == '\n' && bufp->newline_anchor) |
4315 { | 4314 { |
4316 break; | 4315 break; |
4317 } | 4316 } |
4318 /* In all other cases, we fail. */ | 4317 /* In all other cases, we fail. */ |
4319 goto fail; | 4318 goto fail; |
4320 | 4319 |
4321 | 4320 |
4322 /* endline is the dual of begline. */ | 4321 /* endline is the dual of begline. */ |
4323 case endline: | 4322 case endline: |
4324 DEBUG_PRINT1 ("EXECUTING endline.\n"); | 4323 DEBUG_PRINT1 ("EXECUTING endline.\n"); |
4325 | 4324 |
4326 if (AT_STRINGS_END (d)) | 4325 if (AT_STRINGS_END (d)) |
4327 { | 4326 { |
4328 if (!bufp->not_eol) break; | 4327 if (!bufp->not_eol) break; |
4329 } | 4328 } |
4330 | 4329 |
4331 /* We have to ``prefetch'' the next character. */ | 4330 /* We have to ``prefetch'' the next character. */ |
4332 else if ((d == end1 ? *string2 : *d) == '\n' | 4331 else if ((d == end1 ? *string2 : *d) == '\n' |
4333 && bufp->newline_anchor) | 4332 && bufp->newline_anchor) |
4334 { | 4333 { |
4335 break; | 4334 break; |
4336 } | 4335 } |
4337 goto fail; | 4336 goto fail; |
4338 | 4337 |
4339 | 4338 |
4340 /* Match at the very beginning of the data. */ | 4339 /* Match at the very beginning of the data. */ |
4341 case begbuf: | 4340 case begbuf: |
4342 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | 4341 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); |
4343 if (AT_STRINGS_BEG (d)) | 4342 if (AT_STRINGS_BEG (d)) |
4344 break; | 4343 break; |
4345 goto fail; | 4344 goto fail; |
4346 | 4345 |
4347 | 4346 |
4348 /* Match at the very end of the data. */ | 4347 /* Match at the very end of the data. */ |
4349 case endbuf: | 4348 case endbuf: |
4350 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | 4349 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); |
4351 if (AT_STRINGS_END (d)) | 4350 if (AT_STRINGS_END (d)) |
4352 break; | 4351 break; |
4353 goto fail; | 4352 goto fail; |
4354 | 4353 |
4355 | 4354 |
4356 /* on_failure_keep_string_jump is used to optimize `.*\n'. It | 4355 /* on_failure_keep_string_jump is used to optimize `.*\n'. It |
4357 pushes NULL as the value for the string on the stack. Then | 4356 pushes NULL as the value for the string on the stack. Then |
4358 `pop_failure_point' will keep the current value for the | 4357 `pop_failure_point' will keep the current value for the |
4359 string, instead of restoring it. To see why, consider | 4358 string, instead of restoring it. To see why, consider |
4360 matching `foo\nbar' against `.*\n'. The .* matches the foo; | 4359 matching `foo\nbar' against `.*\n'. The .* matches the foo; |
4361 then the . fails against the \n. But the next thing we want | 4360 then the . fails against the \n. But the next thing we want |
4362 to do is match the \n against the \n; if we restored the | 4361 to do is match the \n against the \n; if we restored the |
4363 string value, we would be back at the foo. | 4362 string value, we would be back at the foo. |
4364 | 4363 |
4365 Because this is used only in specific cases, we don't need to | 4364 Because this is used only in specific cases, we don't need to |
4366 check all the things that `on_failure_jump' does, to make | 4365 check all the things that `on_failure_jump' does, to make |
4367 sure the right things get saved on the stack. Hence we don't | 4366 sure the right things get saved on the stack. Hence we don't |
4368 share its code. The only reason to push anything on the | 4367 share its code. The only reason to push anything on the |
4369 stack at all is that otherwise we would have to change | 4368 stack at all is that otherwise we would have to change |
4370 `anychar's code to do something besides goto fail in this | 4369 `anychar's code to do something besides goto fail in this |
4371 case; that seems worse than this. */ | 4370 case; that seems worse than this. */ |
4372 case on_failure_keep_string_jump: | 4371 case on_failure_keep_string_jump: |
4373 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | 4372 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); |
4374 | 4373 |
4375 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4374 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4376 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | 4375 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); |
4377 | 4376 |
4378 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); | 4377 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); |
4379 break; | 4378 break; |
4380 | 4379 |
4381 | 4380 |
4382 /* Uses of on_failure_jump: | 4381 /* Uses of on_failure_jump: |
4383 | 4382 |
4384 Each alternative starts with an on_failure_jump that points | 4383 Each alternative starts with an on_failure_jump that points |
4385 to the beginning of the next alternative. Each alternative | 4384 to the beginning of the next alternative. Each alternative |
4386 except the last ends with a jump that in effect jumps past | 4385 except the last ends with a jump that in effect jumps past |
4387 the rest of the alternatives. (They really jump to the | 4386 the rest of the alternatives. (They really jump to the |
4388 ending jump of the following alternative, because tensioning | 4387 ending jump of the following alternative, because tensioning |
4389 these jumps is a hassle.) | 4388 these jumps is a hassle.) |
4390 | 4389 |
4391 Repeats start with an on_failure_jump that points past both | 4390 Repeats start with an on_failure_jump that points past both |
4392 the repetition text and either the following jump or | 4391 the repetition text and either the following jump or |
4393 pop_failure_jump back to this on_failure_jump. */ | 4392 pop_failure_jump back to this on_failure_jump. */ |
4394 case on_failure_jump: | 4393 case on_failure_jump: |
4395 on_failure: | 4394 on_failure: |
4396 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | 4395 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); |
4397 | 4396 |
4398 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4397 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4399 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | 4398 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); |
4400 | 4399 |
4401 /* If this on_failure_jump comes right before a group (i.e., | 4400 /* If this on_failure_jump comes right before a group (i.e., |
4402 the original * applied to a group), save the information | 4401 the original * applied to a group), save the information |
4403 for that group and all inner ones, so that if we fail back | 4402 for that group and all inner ones, so that if we fail back |
4404 to this point, the group's information will be correct. | 4403 to this point, the group's information will be correct. |
4405 For example, in \(a*\)*\1, we need the preceding group, | 4404 For example, in \(a*\)*\1, we need the preceding group, |
4406 and in \(zz\(a*\)b*\)\2, we need the inner group. */ | 4405 and in \(zz\(a*\)b*\)\2, we need the inner group. */ |
4407 | 4406 |
4408 /* We can't use `p' to check ahead because we push | 4407 /* We can't use `p' to check ahead because we push |
4409 a failure point to `p + mcnt' after we do this. */ | 4408 a failure point to `p + mcnt' after we do this. */ |
4410 p1 = p; | 4409 p1 = p; |
4411 | 4410 |
4412 /* We need to skip no_op's before we look for the | 4411 /* We need to skip no_op's before we look for the |
4413 start_memory in case this on_failure_jump is happening as | 4412 start_memory in case this on_failure_jump is happening as |
4414 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | 4413 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 |
4415 against aba. */ | 4414 against aba. */ |
4416 while (p1 < pend && (re_opcode_t) *p1 == no_op) | 4415 while (p1 < pend && (re_opcode_t) *p1 == no_op) |
4417 p1++; | 4416 p1++; |
4418 | 4417 |
4419 if (p1 < pend && (re_opcode_t) *p1 == start_memory) | 4418 if (p1 < pend && (re_opcode_t) *p1 == start_memory) |
4420 { | 4419 { |
4421 /* We have a new highest active register now. This will | 4420 /* We have a new highest active register now. This will |
4422 get reset at the start_memory we are about to get to, | 4421 get reset at the start_memory we are about to get to, |
4423 but we will have saved all the registers relevant to | 4422 but we will have saved all the registers relevant to |
4424 this repetition op, as described above. */ | 4423 this repetition op, as described above. */ |
4425 highest_active_reg = *(p1 + 1) + *(p1 + 2); | 4424 highest_active_reg = *(p1 + 1) + *(p1 + 2); |
4426 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | 4425 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
4427 lowest_active_reg = *(p1 + 1); | 4426 lowest_active_reg = *(p1 + 1); |
4428 } | 4427 } |
4429 | 4428 |
4430 DEBUG_PRINT1 (":\n"); | 4429 DEBUG_PRINT1 (":\n"); |
4431 PUSH_FAILURE_POINT (p + mcnt, d, -2); | 4430 PUSH_FAILURE_POINT (p + mcnt, d, -2); |
4432 break; | 4431 break; |
4433 | 4432 |
4434 | 4433 |
4435 /* A smart repeat ends with `maybe_pop_jump'. | 4434 /* A smart repeat ends with `maybe_pop_jump'. |
4436 We change it to either `pop_failure_jump' or `jump'. */ | 4435 We change it to either `pop_failure_jump' or `jump'. */ |
4437 case maybe_pop_jump: | 4436 case maybe_pop_jump: |
4438 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4437 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4439 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | 4438 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); |
4440 { | 4439 { |
4441 register unsigned char *p2 = p; | 4440 register unsigned char *p2 = p; |
4442 | 4441 |
4443 /* Compare the beginning of the repeat with what in the | 4442 /* Compare the beginning of the repeat with what in the |
4444 pattern follows its end. If we can establish that there | 4443 pattern follows its end. If we can establish that there |
4445 is nothing that they would both match, i.e., that we | 4444 is nothing that they would both match, i.e., that we |
4446 would have to backtrack because of (as in, e.g., `a*a') | 4445 would have to backtrack because of (as in, e.g., `a*a') |
4447 then we can change to pop_failure_jump, because we'll | 4446 then we can change to pop_failure_jump, because we'll |
4448 never have to backtrack. | 4447 never have to backtrack. |
4449 | 4448 |
4450 This is not true in the case of alternatives: in | 4449 This is not true in the case of alternatives: in |
4451 `(a|ab)*' we do need to backtrack to the `ab' alternative | 4450 `(a|ab)*' we do need to backtrack to the `ab' alternative |
4452 (e.g., if the string was `ab'). But instead of trying to | 4451 (e.g., if the string was `ab'). But instead of trying to |
4453 detect that here, the alternative has put on a dummy | 4452 detect that here, the alternative has put on a dummy |
4454 failure point which is what we will end up popping. */ | 4453 failure point which is what we will end up popping. */ |
4455 | 4454 |
4456 /* Skip over open/close-group commands. | 4455 /* Skip over open/close-group commands. |
4457 If what follows this loop is a ...+ construct, | 4456 If what follows this loop is a ...+ construct, |
4458 look at what begins its body, since we will have to | 4457 look at what begins its body, since we will have to |
4459 match at least one of that. */ | 4458 match at least one of that. */ |
4471 } | 4470 } |
4472 | 4471 |
4473 p1 = p + mcnt; | 4472 p1 = p + mcnt; |
4474 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | 4473 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding |
4475 to the `maybe_finalize_jump' of this case. Examine what | 4474 to the `maybe_finalize_jump' of this case. Examine what |
4476 follows. */ | 4475 follows. */ |
4477 | 4476 |
4478 /* If we're at the end of the pattern, we can change. */ | 4477 /* If we're at the end of the pattern, we can change. */ |
4479 if (p2 == pend) | 4478 if (p2 == pend) |
4480 { | 4479 { |
4481 /* Consider what happens when matching ":\(.*\)" | 4480 /* Consider what happens when matching ":\(.*\)" |
4482 against ":/". I don't really understand this code | 4481 against ":/". I don't really understand this code |
4483 yet. */ | 4482 yet. */ |
4484 p[-3] = (unsigned char) pop_failure_jump; | 4483 p[-3] = (unsigned char) pop_failure_jump; |
4485 DEBUG_PRINT1 | 4484 DEBUG_PRINT1 |
4486 (" End of pattern: change to `pop_failure_jump'.\n"); | 4485 (" End of pattern: change to `pop_failure_jump'.\n"); |
4487 } | 4486 } |
4488 | 4487 |
4489 else if ((re_opcode_t) *p2 == exactn | 4488 else if ((re_opcode_t) *p2 == exactn |
4490 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | 4489 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) |
4491 { | 4490 { |
4492 register unsigned char c | 4491 register unsigned char c |
4493 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | 4492 = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
4494 | 4493 |
4495 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) | 4494 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) |
4496 { | 4495 { |
4497 p[-3] = (unsigned char) pop_failure_jump; | 4496 p[-3] = (unsigned char) pop_failure_jump; |
4498 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | 4497 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
4499 c, p1[5]); | 4498 c, p1[5]); |
4500 } | 4499 } |
4501 | 4500 |
4502 else if ((re_opcode_t) p1[3] == charset | 4501 else if ((re_opcode_t) p1[3] == charset |
4503 || (re_opcode_t) p1[3] == charset_not) | 4502 || (re_opcode_t) p1[3] == charset_not) |
4504 { | 4503 { |
4505 int not = (re_opcode_t) p1[3] == charset_not; | 4504 int not = (re_opcode_t) p1[3] == charset_not; |
4506 | 4505 |
4507 if (c < (unsigned char) (p1[4] * BYTEWIDTH) | 4506 if (c < (unsigned char) (p1[4] * BYTEWIDTH) |
4508 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | 4507 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
4509 not = !not; | 4508 not = !not; |
4510 | 4509 |
4511 /* `not' is equal to 1 if c would match, which means | 4510 /* `not' is equal to 1 if c would match, which means |
4512 that we can't change to pop_failure_jump. */ | 4511 that we can't change to pop_failure_jump. */ |
4513 if (!not) | 4512 if (!not) |
4514 { | 4513 { |
4515 p[-3] = (unsigned char) pop_failure_jump; | 4514 p[-3] = (unsigned char) pop_failure_jump; |
4516 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | 4515 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
4517 } | 4516 } |
4518 } | 4517 } |
4519 } | 4518 } |
4520 else if ((re_opcode_t) *p2 == charset) | 4519 else if ((re_opcode_t) *p2 == charset) |
4521 { | 4520 { |
4522 #ifdef DEBUG | 4521 #ifdef DEBUG |
4523 register unsigned char c | 4522 register unsigned char c |
4524 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | 4523 = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
4525 #endif | 4524 #endif |
4526 | 4525 |
4527 if ((re_opcode_t) p1[3] == exactn | 4526 if ((re_opcode_t) p1[3] == exactn |
4528 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] | 4527 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] |
4529 && (p2[2 + p1[5] / BYTEWIDTH] | 4528 && (p2[2 + p1[5] / BYTEWIDTH] |
4530 & (1 << (p1[5] % BYTEWIDTH))))) | 4529 & (1 << (p1[5] % BYTEWIDTH))))) |
4531 { | 4530 { |
4532 p[-3] = (unsigned char) pop_failure_jump; | 4531 p[-3] = (unsigned char) pop_failure_jump; |
4533 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | 4532 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
4534 c, p1[5]); | 4533 c, p1[5]); |
4535 } | 4534 } |
4536 | 4535 |
4537 else if ((re_opcode_t) p1[3] == charset_not) | 4536 else if ((re_opcode_t) p1[3] == charset_not) |
4538 { | 4537 { |
4539 int idx; | 4538 int idx; |
4540 /* We win if the charset_not inside the loop | 4539 /* We win if the charset_not inside the loop |
4544 || (idx < (int) p1[4] | 4543 || (idx < (int) p1[4] |
4545 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | 4544 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) |
4546 break; | 4545 break; |
4547 | 4546 |
4548 if (idx == p2[1]) | 4547 if (idx == p2[1]) |
4549 { | 4548 { |
4550 p[-3] = (unsigned char) pop_failure_jump; | 4549 p[-3] = (unsigned char) pop_failure_jump; |
4551 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | 4550 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
4552 } | 4551 } |
4553 } | 4552 } |
4554 else if ((re_opcode_t) p1[3] == charset) | 4553 else if ((re_opcode_t) p1[3] == charset) |
4555 { | 4554 { |
4556 int idx; | 4555 int idx; |
4557 /* We win if the charset inside the loop | 4556 /* We win if the charset inside the loop |
4561 idx++) | 4560 idx++) |
4562 if ((p2[2 + idx] & p1[5 + idx]) != 0) | 4561 if ((p2[2 + idx] & p1[5 + idx]) != 0) |
4563 break; | 4562 break; |
4564 | 4563 |
4565 if (idx == p2[1] || idx == p1[4]) | 4564 if (idx == p2[1] || idx == p1[4]) |
4566 { | 4565 { |
4567 p[-3] = (unsigned char) pop_failure_jump; | 4566 p[-3] = (unsigned char) pop_failure_jump; |
4568 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | 4567 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
4569 } | 4568 } |
4570 } | 4569 } |
4571 } | 4570 } |
4572 } | 4571 } |
4573 p -= 2; /* Point at relative address again. */ | 4572 p -= 2; /* Point at relative address again. */ |
4574 if ((re_opcode_t) p[-1] != pop_failure_jump) | 4573 if ((re_opcode_t) p[-1] != pop_failure_jump) |
4575 { | 4574 { |
4576 p[-1] = (unsigned char) jump; | 4575 p[-1] = (unsigned char) jump; |
4577 DEBUG_PRINT1 (" Match => jump.\n"); | 4576 DEBUG_PRINT1 (" Match => jump.\n"); |
4578 goto unconditional_jump; | 4577 goto unconditional_jump; |
4579 } | 4578 } |
4580 /* Note fall through. */ | 4579 /* Note fall through. */ |
4581 | 4580 |
4582 | 4581 |
4583 /* The end of a simple repeat has a pop_failure_jump back to | 4582 /* The end of a simple repeat has a pop_failure_jump back to |
4584 its matching on_failure_jump, where the latter will push a | 4583 its matching on_failure_jump, where the latter will push a |
4585 failure point. The pop_failure_jump takes off failure | 4584 failure point. The pop_failure_jump takes off failure |
4586 points put on by this pop_failure_jump's matching | 4585 points put on by this pop_failure_jump's matching |
4587 on_failure_jump; we got through the pattern to here from the | 4586 on_failure_jump; we got through the pattern to here from the |
4588 matching on_failure_jump, so didn't fail. */ | 4587 matching on_failure_jump, so didn't fail. */ |
4589 case pop_failure_jump: | 4588 case pop_failure_jump: |
4590 { | 4589 { |
4591 /* We need to pass separate storage for the lowest and | 4590 /* We need to pass separate storage for the lowest and |
4592 highest registers, even though we don't care about the | 4591 highest registers, even though we don't care about the |
4593 actual values. Otherwise, we will restore only one | 4592 actual values. Otherwise, we will restore only one |
4594 register from the stack, since lowest will == highest in | 4593 register from the stack, since lowest will == highest in |
4595 `pop_failure_point'. */ | 4594 `pop_failure_point'. */ |
4596 unsigned dummy_low_reg, dummy_high_reg; | 4595 unsigned dummy_low_reg, dummy_high_reg; |
4597 unsigned char *pdummy; | 4596 unsigned char *pdummy; |
4598 const char *sdummy; | 4597 const char *sdummy; |
4599 | 4598 |
4600 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | 4599 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); |
4601 POP_FAILURE_POINT (sdummy, pdummy, | 4600 POP_FAILURE_POINT (sdummy, pdummy, |
4602 dummy_low_reg, dummy_high_reg, | 4601 dummy_low_reg, dummy_high_reg, |
4603 reg_dummy, reg_dummy, reg_info_dummy); | 4602 reg_dummy, reg_dummy, reg_info_dummy); |
4604 } | 4603 } |
4605 /* Note fall through. */ | 4604 /* Note fall through. */ |
4606 | 4605 |
4607 | 4606 |
4608 /* Unconditionally jump (without popping any failure points). */ | 4607 /* Unconditionally jump (without popping any failure points). */ |
4609 case jump: | 4608 case jump: |
4610 unconditional_jump: | 4609 unconditional_jump: |
4611 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | 4610 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ |
4612 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | 4611 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); |
4613 p += mcnt; /* Do the jump. */ | 4612 p += mcnt; /* Do the jump. */ |
4614 DEBUG_PRINT2 ("(to 0x%x).\n", p); | 4613 DEBUG_PRINT2 ("(to 0x%x).\n", p); |
4615 break; | 4614 break; |
4616 | 4615 |
4617 | 4616 |
4618 /* We need this opcode so we can detect where alternatives end | 4617 /* We need this opcode so we can detect where alternatives end |
4619 in `group_match_null_string_p' et al. */ | 4618 in `group_match_null_string_p' et al. */ |
4620 case jump_past_alt: | 4619 case jump_past_alt: |
4621 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | 4620 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); |
4622 goto unconditional_jump; | 4621 goto unconditional_jump; |
4623 | 4622 |
4624 | 4623 |
4625 /* Normally, the on_failure_jump pushes a failure point, which | 4624 /* Normally, the on_failure_jump pushes a failure point, which |
4626 then gets popped at pop_failure_jump. We will end up at | 4625 then gets popped at pop_failure_jump. We will end up at |
4627 pop_failure_jump, also, and with a pattern of, say, `a+', we | 4626 pop_failure_jump, also, and with a pattern of, say, `a+', we |
4628 are skipping over the on_failure_jump, so we have to push | 4627 are skipping over the on_failure_jump, so we have to push |
4629 something meaningless for pop_failure_jump to pop. */ | 4628 something meaningless for pop_failure_jump to pop. */ |
4630 case dummy_failure_jump: | 4629 case dummy_failure_jump: |
4631 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | 4630 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); |
4632 /* It doesn't matter what we push for the string here. What | 4631 /* It doesn't matter what we push for the string here. What |
4633 the code at `fail' tests is the value for the pattern. */ | 4632 the code at `fail' tests is the value for the pattern. */ |
4634 PUSH_FAILURE_POINT (0, 0, -2); | 4633 PUSH_FAILURE_POINT (0, 0, -2); |
4635 goto unconditional_jump; | 4634 goto unconditional_jump; |
4636 | 4635 |
4637 | 4636 |
4638 /* At the end of an alternative, we need to push a dummy failure | 4637 /* At the end of an alternative, we need to push a dummy failure |
4639 point in case we are followed by a `pop_failure_jump', because | 4638 point in case we are followed by a `pop_failure_jump', because |
4640 we don't want the failure point for the alternative to be | 4639 we don't want the failure point for the alternative to be |
4641 popped. For example, matching `(a|ab)*' against `aab' | 4640 popped. For example, matching `(a|ab)*' against `aab' |
4642 requires that we match the `ab' alternative. */ | 4641 requires that we match the `ab' alternative. */ |
4643 case push_dummy_failure: | 4642 case push_dummy_failure: |
4644 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | 4643 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); |
4645 /* See comments just above at `dummy_failure_jump' about the | 4644 /* See comments just above at `dummy_failure_jump' about the |
4646 two zeroes. */ | 4645 two zeroes. */ |
4647 PUSH_FAILURE_POINT (0, 0, -2); | 4646 PUSH_FAILURE_POINT (0, 0, -2); |
4648 break; | 4647 break; |
4649 | 4648 |
4650 /* Have to succeed matching what follows at least n times. | 4649 /* Have to succeed matching what follows at least n times. |
4651 After that, handle like `on_failure_jump'. */ | 4650 After that, handle like `on_failure_jump'. */ |
4652 case succeed_n: | 4651 case succeed_n: |
4653 EXTRACT_NUMBER (mcnt, p + 2); | 4652 EXTRACT_NUMBER (mcnt, p + 2); |
4654 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | 4653 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); |
4655 | 4654 |
4656 assert (mcnt >= 0); | 4655 assert (mcnt >= 0); |
4657 /* Originally, this is how many times we HAVE to succeed. */ | 4656 /* Originally, this is how many times we HAVE to succeed. */ |
4658 if (mcnt > 0) | 4657 if (mcnt > 0) |
4659 { | 4658 { |
4660 mcnt--; | 4659 mcnt--; |
4661 p += 2; | 4660 p += 2; |
4662 STORE_NUMBER_AND_INCR (p, mcnt); | 4661 STORE_NUMBER_AND_INCR (p, mcnt); |
4663 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | 4662 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); |
4664 } | 4663 } |
4665 else if (mcnt == 0) | 4664 else if (mcnt == 0) |
4666 { | 4665 { |
4667 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | 4666 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); |
4668 p[2] = (unsigned char) no_op; | 4667 p[2] = (unsigned char) no_op; |
4669 p[3] = (unsigned char) no_op; | 4668 p[3] = (unsigned char) no_op; |
4670 goto on_failure; | 4669 goto on_failure; |
4671 } | 4670 } |
4672 break; | 4671 break; |
4673 | 4672 |
4674 case jump_n: | 4673 case jump_n: |
4675 EXTRACT_NUMBER (mcnt, p + 2); | 4674 EXTRACT_NUMBER (mcnt, p + 2); |
4676 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | 4675 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); |
4677 | 4676 |
4678 /* Originally, this is how many times we CAN jump. */ | 4677 /* Originally, this is how many times we CAN jump. */ |
4679 if (mcnt) | 4678 if (mcnt) |
4680 { | 4679 { |
4681 mcnt--; | 4680 mcnt--; |
4682 STORE_NUMBER (p + 2, mcnt); | 4681 STORE_NUMBER (p + 2, mcnt); |
4683 goto unconditional_jump; | 4682 goto unconditional_jump; |
4684 } | 4683 } |
4685 /* If don't have to jump any more, skip over the rest of command. */ | 4684 /* If don't have to jump any more, skip over the rest of command. */ |
4686 else | 4685 else |
4687 p += 4; | 4686 p += 4; |
4688 break; | 4687 break; |
4689 | 4688 |
4690 case set_number_at: | 4689 case set_number_at: |
4691 { | 4690 { |
4692 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | 4691 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); |
4693 | 4692 |
4694 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4693 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4695 p1 = p + mcnt; | 4694 p1 = p + mcnt; |
4696 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4695 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4697 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | 4696 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); |
4698 STORE_NUMBER (p1, mcnt); | 4697 STORE_NUMBER (p1, mcnt); |
4699 break; | 4698 break; |
4700 } | 4699 } |
4701 | 4700 |
4702 #if 0 | 4701 #if 0 |
4703 /* The DEC Alpha C compiler 3.x generates incorrect code for the | 4702 /* The DEC Alpha C compiler 3.x generates incorrect code for the |
4704 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of | 4703 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of |
4705 AT_WORD_BOUNDARY, so this code is disabled. Expanding the | 4704 AT_WORD_BOUNDARY, so this code is disabled. Expanding the |
4706 macro and introducing temporary variables works around the bug. */ | 4705 macro and introducing temporary variables works around the bug. */ |
4707 | 4706 |
4708 case wordbound: | 4707 case wordbound: |
4709 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | 4708 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); |
4710 if (AT_WORD_BOUNDARY (d)) | 4709 if (AT_WORD_BOUNDARY (d)) |
4747 break; | 4746 break; |
4748 } | 4747 } |
4749 #endif | 4748 #endif |
4750 | 4749 |
4751 case wordbeg: | 4750 case wordbeg: |
4752 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | 4751 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); |
4753 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | 4752 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) |
4754 break; | 4753 break; |
4755 goto fail; | 4754 goto fail; |
4756 | 4755 |
4757 case wordend: | 4756 case wordend: |
4758 DEBUG_PRINT1 ("EXECUTING wordend.\n"); | 4757 DEBUG_PRINT1 ("EXECUTING wordend.\n"); |
4759 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | 4758 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) |
4760 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) | 4759 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) |
4761 break; | 4760 break; |
4762 goto fail; | 4761 goto fail; |
4763 | 4762 |
4764 #ifdef emacs | 4763 #ifdef emacs |
4765 case before_dot: | 4764 case before_dot: |
4766 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | 4765 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); |
4767 if (PTR_CHAR_POS ((unsigned char *) d) >= point) | 4766 if (PTR_CHAR_POS ((unsigned char *) d) >= point) |
4768 goto fail; | 4767 goto fail; |
4769 break; | 4768 break; |
4770 | 4769 |
4771 case at_dot: | 4770 case at_dot: |
4772 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | 4771 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
4773 if (PTR_CHAR_POS ((unsigned char *) d) != point) | 4772 if (PTR_CHAR_POS ((unsigned char *) d) != point) |
4774 goto fail; | 4773 goto fail; |
4775 break; | 4774 break; |
4776 | 4775 |
4777 case after_dot: | 4776 case after_dot: |
4778 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | 4777 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); |
4779 if (PTR_CHAR_POS ((unsigned char *) d) <= point) | 4778 if (PTR_CHAR_POS ((unsigned char *) d) <= point) |
4780 goto fail; | 4779 goto fail; |
4781 break; | 4780 break; |
4782 | 4781 |
4783 case syntaxspec: | 4782 case syntaxspec: |
4784 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | 4783 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); |
4785 mcnt = *p++; | 4784 mcnt = *p++; |
4786 goto matchsyntax; | 4785 goto matchsyntax; |
4787 | 4786 |
4788 case wordchar: | 4787 case wordchar: |
4789 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | 4788 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
4790 mcnt = (int) Sword; | 4789 mcnt = (int) Sword; |
4791 matchsyntax: | 4790 matchsyntax: |
4792 PREFETCH (); | 4791 PREFETCH (); |
4793 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ | 4792 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
4794 d++; | 4793 d++; |
4795 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) | 4794 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) |
4796 goto fail; | 4795 goto fail; |
4797 SET_REGS_MATCHED (); | 4796 SET_REGS_MATCHED (); |
4798 break; | 4797 break; |
4799 | 4798 |
4800 case notsyntaxspec: | 4799 case notsyntaxspec: |
4801 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | 4800 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); |
4802 mcnt = *p++; | 4801 mcnt = *p++; |
4803 goto matchnotsyntax; | 4802 goto matchnotsyntax; |
4804 | 4803 |
4805 case notwordchar: | 4804 case notwordchar: |
4806 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | 4805 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); |
4807 mcnt = (int) Sword; | 4806 mcnt = (int) Sword; |
4808 matchnotsyntax: | 4807 matchnotsyntax: |
4809 PREFETCH (); | 4808 PREFETCH (); |
4810 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ | 4809 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
4811 d++; | 4810 d++; |
4812 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) | 4811 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) |
4813 goto fail; | 4812 goto fail; |
4814 SET_REGS_MATCHED (); | 4813 SET_REGS_MATCHED (); |
4815 break; | 4814 break; |
4816 | 4815 |
4817 #else /* not emacs */ | 4816 #else /* not emacs */ |
4818 case wordchar: | 4817 case wordchar: |
4819 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | 4818 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); |
4820 PREFETCH (); | 4819 PREFETCH (); |
4821 if (!WORDCHAR_P (d)) | 4820 if (!WORDCHAR_P (d)) |
4822 goto fail; | 4821 goto fail; |
4823 SET_REGS_MATCHED (); | 4822 SET_REGS_MATCHED (); |
4824 d++; | 4823 d++; |
4825 break; | 4824 break; |
4826 | 4825 |
4827 case notwordchar: | 4826 case notwordchar: |
4828 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | 4827 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); |
4829 PREFETCH (); | 4828 PREFETCH (); |
4830 if (WORDCHAR_P (d)) | 4829 if (WORDCHAR_P (d)) |
4831 goto fail; | 4830 goto fail; |
4832 SET_REGS_MATCHED (); | 4831 SET_REGS_MATCHED (); |
4833 d++; | 4832 d++; |
4834 break; | 4833 break; |
4835 #endif /* not emacs */ | 4834 #endif /* not emacs */ |
4836 | 4835 |
4837 default: | 4836 default: |
4838 abort (); | 4837 abort (); |
4839 } | 4838 } |
4840 continue; /* Successfully executed one pattern command; keep going. */ | 4839 continue; /* Successfully executed one pattern command; keep going. */ |
4841 | 4840 |
4842 | 4841 |
4843 /* We goto here if a matching operation fails. */ | 4842 /* We goto here if a matching operation fails. */ |
4844 fail: | 4843 fail: |
4845 if (!FAIL_STACK_EMPTY ()) | 4844 if (!FAIL_STACK_EMPTY ()) |
4846 { /* A restart point is known. Restore to that state. */ | 4845 { /* A restart point is known. Restore to that state. */ |
4847 DEBUG_PRINT1 ("\nFAIL:\n"); | 4846 DEBUG_PRINT1 ("\nFAIL:\n"); |
4848 POP_FAILURE_POINT (d, p, | 4847 POP_FAILURE_POINT (d, p, |
4849 lowest_active_reg, highest_active_reg, | 4848 lowest_active_reg, highest_active_reg, |
4850 regstart, regend, reg_info); | 4849 regstart, regend, reg_info); |
4851 | 4850 |
4852 /* If this failure point is a dummy, try the next one. */ | 4851 /* If this failure point is a dummy, try the next one. */ |
4853 if (!p) | 4852 if (!p) |
4854 goto fail; | 4853 goto fail; |
4855 | 4854 |
4856 /* If we failed to the end of the pattern, don't examine *p. */ | 4855 /* If we failed to the end of the pattern, don't examine *p. */ |
4857 assert (p <= pend); | 4856 assert (p <= pend); |
4858 if (p < pend) | 4857 if (p < pend) |
4859 { | 4858 { |
4860 boolean is_a_jump_n = false; | 4859 boolean is_a_jump_n = false; |
4861 | 4860 |
4862 /* If failed to a backwards jump that's part of a repetition | 4861 /* If failed to a backwards jump that's part of a repetition |
4863 loop, need to pop this failure point and use the next one. */ | 4862 loop, need to pop this failure point and use the next one. */ |
4864 switch ((re_opcode_t) *p) | 4863 switch ((re_opcode_t) *p) |
4865 { | 4864 { |
4866 case jump_n: | 4865 case jump_n: |
4867 is_a_jump_n = true; | 4866 is_a_jump_n = true; |
4868 case maybe_pop_jump: | 4867 case maybe_pop_jump: |
4869 case pop_failure_jump: | 4868 case pop_failure_jump: |
4870 case jump: | 4869 case jump: |
4871 p1 = p + 1; | 4870 p1 = p + 1; |
4872 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 4871 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4873 p1 += mcnt; | 4872 p1 += mcnt; |
4874 | 4873 |
4875 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | 4874 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) |
4876 || (!is_a_jump_n | 4875 || (!is_a_jump_n |
4877 && (re_opcode_t) *p1 == on_failure_jump)) | 4876 && (re_opcode_t) *p1 == on_failure_jump)) |
4878 goto fail; | 4877 goto fail; |
4879 break; | 4878 break; |
4880 default: | 4879 default: |
4881 /* do nothing */ ; | 4880 /* do nothing */ ; |
4882 } | 4881 } |
4883 } | 4882 } |
4884 | 4883 |
4885 if (d >= string1 && d <= end1) | 4884 if (d >= string1 && d <= end1) |
4886 dend = end_match_1; | 4885 dend = end_match_1; |
4887 } | 4886 } |
4888 else | 4887 else |
4889 break; /* Matching at this starting point really fails. */ | 4888 break; /* Matching at this starting point really fails. */ |
4890 } /* for (;;) */ | 4889 } /* for (;;) */ |
4891 | 4890 |
4892 if (best_regs_set) | 4891 if (best_regs_set) |
4893 goto restore_best_regs; | 4892 goto restore_best_regs; |
4894 | 4893 |
4895 FREE_VARIABLES (); | 4894 FREE_VARIABLES (); |
4896 | 4895 |
4897 return -1; /* Failure to match. */ | 4896 return -1; /* Failure to match. */ |
4898 } /* re_match_2 */ | 4897 } /* re_match_2 */ |
4899 | 4898 |
4900 /* Subroutine definitions for re_match_2. */ | 4899 /* Subroutine definitions for re_match_2. */ |
4901 | 4900 |
4902 | 4901 |
4921 | 4920 |
4922 while (p1 < end) | 4921 while (p1 < end) |
4923 { | 4922 { |
4924 /* Skip over opcodes that can match nothing, and return true or | 4923 /* Skip over opcodes that can match nothing, and return true or |
4925 false, as appropriate, when we get to one that can't, or to the | 4924 false, as appropriate, when we get to one that can't, or to the |
4926 matching stop_memory. */ | 4925 matching stop_memory. */ |
4927 | 4926 |
4928 switch ((re_opcode_t) *p1) | 4927 switch ((re_opcode_t) *p1) |
4929 { | 4928 { |
4930 /* Could be either a loop or a series of alternatives. */ | 4929 /* Could be either a loop or a series of alternatives. */ |
4931 case on_failure_jump: | 4930 case on_failure_jump: |
4932 p1++; | 4931 p1++; |
4933 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 4932 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4934 | 4933 |
4935 /* If the next operation is not a jump backwards in the | 4934 /* If the next operation is not a jump backwards in the |
4936 pattern. */ | 4935 pattern. */ |
4937 | 4936 |
4938 if (mcnt >= 0) | 4937 if (mcnt >= 0) |
4939 { | 4938 { |
4940 /* Go through the on_failure_jumps of the alternatives, | 4939 /* Go through the on_failure_jumps of the alternatives, |
4941 seeing if any of the alternatives cannot match nothing. | 4940 seeing if any of the alternatives cannot match nothing. |
4942 The last alternative starts with only a jump, | 4941 The last alternative starts with only a jump, |
4943 whereas the rest start with on_failure_jump and end | 4942 whereas the rest start with on_failure_jump and end |
4944 with a jump, e.g., here is the pattern for `a|b|c': | 4943 with a jump, e.g., here is the pattern for `a|b|c': |
4945 | 4944 |
4946 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | 4945 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 |
4947 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | 4946 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 |
4948 /exactn/1/c | 4947 /exactn/1/c |
4949 | 4948 |
4950 So, we have to first go through the first (n-1) | 4949 So, we have to first go through the first (n-1) |
4951 alternatives and then deal with the last one separately. */ | 4950 alternatives and then deal with the last one separately. */ |
4952 | 4951 |
4953 | 4952 |
4954 /* Deal with the first (n-1) alternatives, which start | 4953 /* Deal with the first (n-1) alternatives, which start |
4955 with an on_failure_jump (see above) that jumps to right | 4954 with an on_failure_jump (see above) that jumps to right |
4956 past a jump_past_alt. */ | 4955 past a jump_past_alt. */ |
4957 | 4956 |
4958 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | 4957 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) |
4959 { | 4958 { |
4960 /* `mcnt' holds how many bytes long the alternative | 4959 /* `mcnt' holds how many bytes long the alternative |
4961 is, including the ending `jump_past_alt' and | 4960 is, including the ending `jump_past_alt' and |
4962 its number. */ | 4961 its number. */ |
4963 | 4962 |
4964 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | 4963 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, |
4965 reg_info)) | 4964 reg_info)) |
4966 return false; | 4965 return false; |
4967 | 4966 |
4968 /* Move to right after this alternative, including the | 4967 /* Move to right after this alternative, including the |
4969 jump_past_alt. */ | 4968 jump_past_alt. */ |
4970 p1 += mcnt; | 4969 p1 += mcnt; |
4971 | 4970 |
4972 /* Break if it's the beginning of an n-th alternative | 4971 /* Break if it's the beginning of an n-th alternative |
4973 that doesn't begin with an on_failure_jump. */ | 4972 that doesn't begin with an on_failure_jump. */ |
4974 if ((re_opcode_t) *p1 != on_failure_jump) | 4973 if ((re_opcode_t) *p1 != on_failure_jump) |
4975 break; | 4974 break; |
4976 | 4975 |
4977 /* Still have to check that it's not an n-th | 4976 /* Still have to check that it's not an n-th |
4978 alternative that starts with an on_failure_jump. */ | 4977 alternative that starts with an on_failure_jump. */ |
4979 p1++; | 4978 p1++; |
4980 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 4979 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4981 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | 4980 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) |
4982 { | 4981 { |
4983 /* Get to the beginning of the n-th alternative. */ | 4982 /* Get to the beginning of the n-th alternative. */ |
4984 p1 -= 3; | 4983 p1 -= 3; |
4985 break; | 4984 break; |
4986 } | 4985 } |
4987 } | 4986 } |
4988 | 4987 |
4989 /* Deal with the last alternative: go back and get number | 4988 /* Deal with the last alternative: go back and get number |
4990 of the `jump_past_alt' just before it. `mcnt' contains | 4989 of the `jump_past_alt' just before it. `mcnt' contains |
4991 the length of the alternative. */ | 4990 the length of the alternative. */ |
4992 EXTRACT_NUMBER (mcnt, p1 - 2); | 4991 EXTRACT_NUMBER (mcnt, p1 - 2); |
4993 | 4992 |
4994 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | 4993 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) |
4995 return false; | 4994 return false; |
4996 | 4995 |
4997 p1 += mcnt; /* Get past the n-th alternative. */ | 4996 p1 += mcnt; /* Get past the n-th alternative. */ |
4998 } /* if mcnt > 0 */ | 4997 } /* if mcnt > 0 */ |
4999 break; | 4998 break; |
5000 | 4999 |
5001 | 5000 |
5002 case stop_memory: | 5001 case stop_memory: |
5003 assert (p1[1] == **p); | 5002 assert (p1[1] == **p); |
5004 *p = p1 + 2; | 5003 *p = p1 + 2; |
5005 return true; | 5004 return true; |
5006 | 5005 |
5007 | 5006 |
5008 default: | 5007 default: |
5009 if (!common_op_match_null_string_p (&p1, end, reg_info)) | 5008 if (!common_op_match_null_string_p (&p1, end, reg_info)) |
5010 return false; | 5009 return false; |
5011 } | 5010 } |
5012 } /* while p1 < end */ | 5011 } /* while p1 < end */ |
5013 | 5012 |
5014 return false; | 5013 return false; |
5015 } /* group_match_null_string_p */ | 5014 } /* group_match_null_string_p */ |
5016 | 5015 |
5028 unsigned char *p1 = p; | 5027 unsigned char *p1 = p; |
5029 | 5028 |
5030 while (p1 < end) | 5029 while (p1 < end) |
5031 { | 5030 { |
5032 /* Skip over opcodes that can match nothing, and break when we get | 5031 /* Skip over opcodes that can match nothing, and break when we get |
5033 to one that can't. */ | 5032 to one that can't. */ |
5034 | 5033 |
5035 switch ((re_opcode_t) *p1) | 5034 switch ((re_opcode_t) *p1) |
5036 { | 5035 { |
5037 /* It's a loop. */ | 5036 /* It's a loop. */ |
5038 case on_failure_jump: | 5037 case on_failure_jump: |
5039 p1++; | 5038 p1++; |
5040 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5039 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5041 p1 += mcnt; | 5040 p1 += mcnt; |
5042 break; | 5041 break; |
5043 | 5042 |
5044 default: | 5043 default: |
5045 if (!common_op_match_null_string_p (&p1, end, reg_info)) | 5044 if (!common_op_match_null_string_p (&p1, end, reg_info)) |
5046 return false; | 5045 return false; |
5047 } | 5046 } |
5048 } /* while p1 < end */ | 5047 } /* while p1 < end */ |
5049 | 5048 |
5050 return true; | 5049 return true; |
5051 } /* alt_match_null_string_p */ | 5050 } /* alt_match_null_string_p */ |
5052 | 5051 |
5088 reg_no = *p1; | 5087 reg_no = *p1; |
5089 assert (reg_no > 0 && reg_no <= MAX_REGNUM); | 5088 assert (reg_no > 0 && reg_no <= MAX_REGNUM); |
5090 ret = group_match_null_string_p (&p1, end, reg_info); | 5089 ret = group_match_null_string_p (&p1, end, reg_info); |
5091 | 5090 |
5092 /* Have to set this here in case we're checking a group which | 5091 /* Have to set this here in case we're checking a group which |
5093 contains a group and a back reference to it. */ | 5092 contains a group and a back reference to it. */ |
5094 | 5093 |
5095 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | 5094 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) |
5096 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | 5095 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; |
5097 | 5096 |
5098 if (!ret) | 5097 if (!ret) |
5099 return false; | 5098 return false; |
5100 break; | 5099 break; |
5101 | 5100 |
5102 /* If this is an optimized succeed_n for zero times, make the jump. */ | 5101 /* If this is an optimized succeed_n for zero times, make the jump. */ |
5103 case jump: | 5102 case jump: |
5104 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5103 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5105 if (mcnt >= 0) | 5104 if (mcnt >= 0) |
5106 p1 += mcnt; | 5105 p1 += mcnt; |
5107 else | 5106 else |
5108 return false; | 5107 return false; |
5109 break; | 5108 break; |
5110 | 5109 |
5111 case succeed_n: | 5110 case succeed_n: |
5112 /* Get to the number of times to succeed. */ | 5111 /* Get to the number of times to succeed. */ |
5113 p1 += 2; | 5112 p1 += 2; |
5114 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5113 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5115 | 5114 |
5116 if (mcnt == 0) | 5115 if (mcnt == 0) |
5117 { | 5116 { |
5118 p1 -= 4; | 5117 p1 -= 4; |
5119 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5118 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5120 p1 += mcnt; | 5119 p1 += mcnt; |
5121 } | 5120 } |
5122 else | 5121 else |
5123 return false; | 5122 return false; |
5124 break; | 5123 break; |
5125 | 5124 |
5126 case duplicate: | 5125 case duplicate: |
5127 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | 5126 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) |
5128 return false; | 5127 return false; |
5129 break; | 5128 break; |
5130 | 5129 |
5131 case set_number_at: | 5130 case set_number_at: |
5132 p1 += 4; | 5131 p1 += 4; |
5133 | 5132 |
5166 Returns 0 if the pattern was valid, otherwise an error string. | 5165 Returns 0 if the pattern was valid, otherwise an error string. |
5167 | 5166 |
5168 Assumes the `allocated' (and perhaps `buffer') and `translate' fields | 5167 Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
5169 are set in BUFP on entry. | 5168 are set in BUFP on entry. |
5170 | 5169 |
5171 We call regex_compile to do the actual compilation. */ | 5170 We call regex_compile to do the actual compilation. */ |
5172 | 5171 |
5173 const char * | 5172 const char * |
5174 re_compile_pattern (pattern, length, bufp) | 5173 re_compile_pattern (pattern, length, bufp) |
5175 const char *pattern; | 5174 const char *pattern; |
5176 int length; | 5175 int length; |
5185 /* And GNU code determines whether or not to get register information | 5184 /* And GNU code determines whether or not to get register information |
5186 by passing null for the REGS argument to re_match, etc., not by | 5185 by passing null for the REGS argument to re_match, etc., not by |
5187 setting no_sub. */ | 5186 setting no_sub. */ |
5188 bufp->no_sub = 0; | 5187 bufp->no_sub = 0; |
5189 | 5188 |
5190 /* Match anchors at newline. */ | 5189 /* Match anchors at newline. */ |
5191 bufp->newline_anchor = 1; | 5190 bufp->newline_anchor = 1; |
5192 | 5191 |
5193 ret = regex_compile (pattern, length, re_syntax_options, bufp); | 5192 ret = regex_compile (pattern, length, re_syntax_options, bufp); |
5194 | 5193 |
5195 if (!ret) | 5194 if (!ret) |
5196 return NULL; | 5195 return NULL; |
5197 return gettext (re_error_msgid[(int) ret]); | 5196 return gettext (re_error_msgid[(int) ret]); |
5198 } | 5197 } |
5199 | 5198 |
5200 /* Entry points compatible with 4.2 BSD regex library. We don't define | 5199 /* Entry points compatible with 4.2 BSD regex library. We don't define |
5201 them unless specifically requested. */ | 5200 them unless specifically requested. */ |
5202 | 5201 |
5203 #if defined (_REGEX_RE_COMP) || defined (_LIBC) | 5202 #if defined (_REGEX_RE_COMP) || defined (_LIBC) |
5204 | 5203 |
5205 /* BSD has one and only one pattern buffer. */ | 5204 /* BSD has one and only one pattern buffer. */ |
5206 static struct re_pattern_buffer re_comp_buf; | 5205 static struct re_pattern_buffer re_comp_buf; |
5226 | 5225 |
5227 if (!re_comp_buf.buffer) | 5226 if (!re_comp_buf.buffer) |
5228 { | 5227 { |
5229 re_comp_buf.buffer = (unsigned char *) malloc (200); | 5228 re_comp_buf.buffer = (unsigned char *) malloc (200); |
5230 if (re_comp_buf.buffer == NULL) | 5229 if (re_comp_buf.buffer == NULL) |
5231 return gettext (re_error_msgid[(int) REG_ESPACE]); | 5230 return gettext (re_error_msgid[(int) REG_ESPACE]); |
5232 re_comp_buf.allocated = 200; | 5231 re_comp_buf.allocated = 200; |
5233 | 5232 |
5234 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); | 5233 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); |
5235 if (re_comp_buf.fastmap == NULL) | 5234 if (re_comp_buf.fastmap == NULL) |
5236 return gettext (re_error_msgid[(int) REG_ESPACE]); | 5235 return gettext (re_error_msgid[(int) REG_ESPACE]); |
5237 } | 5236 } |
5238 | 5237 |
5239 /* Since `re_exec' always passes NULL for the `regs' argument, we | 5238 /* Since `re_exec' always passes NULL for the `regs' argument, we |
5240 don't need to initialize the pattern buffer fields which affect it. */ | 5239 don't need to initialize the pattern buffer fields which affect it. */ |
5241 | 5240 |
5242 /* Match anchors at newlines. */ | 5241 /* Match anchors at newlines. */ |
5243 re_comp_buf.newline_anchor = 1; | 5242 re_comp_buf.newline_anchor = 1; |
5244 | 5243 |
5245 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | 5244 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); |
5246 | 5245 |
5247 if (!ret) | 5246 if (!ret) |
5269 | 5268 |
5270 #ifndef emacs | 5269 #ifndef emacs |
5271 | 5270 |
5272 /* regcomp takes a regular expression as a string and compiles it. | 5271 /* regcomp takes a regular expression as a string and compiles it. |
5273 | 5272 |
5274 PREG is a regex_t *. We do not expect any fields to be initialized, | 5273 PREG is a regex_t *. We do not expect any fields to be initialized, |
5275 since POSIX says we shouldn't. Thus, we set | 5274 since POSIX says we shouldn't. Thus, we set |
5276 | 5275 |
5277 `buffer' to the compiled pattern; | 5276 `buffer' to the compiled pattern; |
5278 `used' to the length of the compiled pattern; | 5277 `used' to the length of the compiled pattern; |
5279 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | 5278 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
5298 | 5297 |
5299 If REG_NOSUB is set, then when PREG is passed to regexec, that | 5298 If REG_NOSUB is set, then when PREG is passed to regexec, that |
5300 routine will report only success or failure, and nothing about the | 5299 routine will report only success or failure, and nothing about the |
5301 registers. | 5300 registers. |
5302 | 5301 |
5303 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | 5302 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
5304 the return codes and their meanings.) */ | 5303 the return codes and their meanings.) */ |
5305 | 5304 |
5306 int | 5305 int |
5307 regcomp (preg, pattern, cflags) | 5306 regcomp (preg, pattern, cflags) |
5308 regex_t *preg; | 5307 regex_t *preg; |
5331 | 5330 |
5332 preg->translate | 5331 preg->translate |
5333 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE | 5332 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE |
5334 * sizeof (*(RE_TRANSLATE_TYPE)0)); | 5333 * sizeof (*(RE_TRANSLATE_TYPE)0)); |
5335 if (preg->translate == NULL) | 5334 if (preg->translate == NULL) |
5336 return (int) REG_ESPACE; | 5335 return (int) REG_ESPACE; |
5337 | 5336 |
5338 /* Map uppercase characters to corresponding lowercase ones. */ | 5337 /* Map uppercase characters to corresponding lowercase ones. */ |
5339 for (i = 0; i < CHAR_SET_SIZE; i++) | 5338 for (i = 0; i < CHAR_SET_SIZE; i++) |
5340 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; | 5339 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; |
5341 } | 5340 } |
5342 else | 5341 else |
5343 preg->translate = NULL; | 5342 preg->translate = NULL; |
5344 | 5343 |
5345 /* If REG_NEWLINE is set, newlines are treated differently. */ | 5344 /* If REG_NEWLINE is set, newlines are treated differently. */ |
5346 if (cflags & REG_NEWLINE) | 5345 if (cflags & REG_NEWLINE) |
5347 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | 5346 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
5348 syntax &= ~RE_DOT_NEWLINE; | 5347 syntax &= ~RE_DOT_NEWLINE; |
5349 syntax |= RE_HAT_LISTS_NOT_NEWLINE; | 5348 syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
5350 /* It also changes the matching behavior. */ | 5349 /* It also changes the matching behavior. */ |
5351 preg->newline_anchor = 1; | 5350 preg->newline_anchor = 1; |
5352 } | 5351 } |
5353 else | 5352 else |
5354 preg->newline_anchor = 0; | 5353 preg->newline_anchor = 0; |
5355 | 5354 |
5369 | 5368 |
5370 /* regexec searches for a given pattern, specified by PREG, in the | 5369 /* regexec searches for a given pattern, specified by PREG, in the |
5371 string STRING. | 5370 string STRING. |
5372 | 5371 |
5373 If NMATCH is zero or REG_NOSUB was set in the cflags argument to | 5372 If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
5374 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | 5373 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
5375 least NMATCH elements, and we set them to the offsets of the | 5374 least NMATCH elements, and we set them to the offsets of the |
5376 corresponding matched substrings. | 5375 corresponding matched substrings. |
5377 | 5376 |
5378 EFLAGS specifies `execution flags' which affect matching: if | 5377 EFLAGS specifies `execution flags' which affect matching: if |
5379 REG_NOTBOL is set, then ^ does not match at the beginning of the | 5378 REG_NOTBOL is set, then ^ does not match at the beginning of the |
5400 private_preg.not_bol = !!(eflags & REG_NOTBOL); | 5399 private_preg.not_bol = !!(eflags & REG_NOTBOL); |
5401 private_preg.not_eol = !!(eflags & REG_NOTEOL); | 5400 private_preg.not_eol = !!(eflags & REG_NOTEOL); |
5402 | 5401 |
5403 /* The user has told us exactly how many registers to return | 5402 /* The user has told us exactly how many registers to return |
5404 information about, via `nmatch'. We have to pass that on to the | 5403 information about, via `nmatch'. We have to pass that on to the |
5405 matching routines. */ | 5404 matching routines. */ |
5406 private_preg.regs_allocated = REGS_FIXED; | 5405 private_preg.regs_allocated = REGS_FIXED; |
5407 | 5406 |
5408 if (want_reg_info) | 5407 if (want_reg_info) |
5409 { | 5408 { |
5410 regs.num_regs = nmatch; | 5409 regs.num_regs = nmatch; |
5411 regs.start = TALLOC (nmatch, regoff_t); | 5410 regs.start = TALLOC (nmatch, regoff_t); |
5412 regs.end = TALLOC (nmatch, regoff_t); | 5411 regs.end = TALLOC (nmatch, regoff_t); |
5413 if (regs.start == NULL || regs.end == NULL) | 5412 if (regs.start == NULL || regs.end == NULL) |
5414 return (int) REG_NOMATCH; | 5413 return (int) REG_NOMATCH; |
5415 } | 5414 } |
5416 | 5415 |
5417 /* Perform the searching operation. */ | 5416 /* Perform the searching operation. */ |
5418 ret = re_search (&private_preg, string, len, | 5417 ret = re_search (&private_preg, string, len, |
5419 /* start: */ 0, /* range: */ len, | 5418 /* start: */ 0, /* range: */ len, |
5420 want_reg_info ? ®s : (struct re_registers *) 0); | 5419 want_reg_info ? ®s : (struct re_registers *) 0); |
5421 | 5420 |
5422 /* Copy the register information to the POSIX structure. */ | 5421 /* Copy the register information to the POSIX structure. */ |
5423 if (want_reg_info) | 5422 if (want_reg_info) |
5424 { | 5423 { |
5425 if (ret >= 0) | 5424 if (ret >= 0) |
5426 { | 5425 { |
5427 unsigned r; | 5426 unsigned r; |
5428 | 5427 |
5429 for (r = 0; r < nmatch; r++) | 5428 for (r = 0; r < nmatch; r++) |
5430 { | 5429 { |
5431 pmatch[r].rm_so = regs.start[r]; | 5430 pmatch[r].rm_so = regs.start[r]; |
5432 pmatch[r].rm_eo = regs.end[r]; | 5431 pmatch[r].rm_eo = regs.end[r]; |
5433 } | 5432 } |
5434 } | 5433 } |
5435 | 5434 |
5436 /* If we needed the temporary register info, free the space now. */ | 5435 /* If we needed the temporary register info, free the space now. */ |
5437 free (regs.start); | 5436 free (regs.start); |
5438 free (regs.end); | 5437 free (regs.end); |
5439 } | 5438 } |
5440 | 5439 |
5441 /* We want zero return to mean success, unlike `re_search'. */ | 5440 /* We want zero return to mean success, unlike `re_search'. */ |
5457 size_t msg_size; | 5456 size_t msg_size; |
5458 | 5457 |
5459 if (errcode < 0 | 5458 if (errcode < 0 |
5460 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) | 5459 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) |
5461 /* Only error codes returned by the rest of the code should be passed | 5460 /* Only error codes returned by the rest of the code should be passed |
5462 to this routine. If we are given anything else, or if other regex | 5461 to this routine. If we are given anything else, or if other regex |
5463 code generates an invalid error code, then the program has a bug. | 5462 code generates an invalid error code, then the program has a bug. |
5464 Dump core so we can fix it. */ | 5463 Dump core so we can fix it. */ |
5465 abort (); | 5464 abort (); |
5466 | 5465 |
5467 msg = gettext (re_error_msgid[errcode]); | 5466 msg = gettext (re_error_msgid[errcode]); |
5469 msg_size = strlen (msg) + 1; /* Includes the null. */ | 5468 msg_size = strlen (msg) + 1; /* Includes the null. */ |
5470 | 5469 |
5471 if (errbuf_size != 0) | 5470 if (errbuf_size != 0) |
5472 { | 5471 { |
5473 if (msg_size > errbuf_size) | 5472 if (msg_size > errbuf_size) |
5474 { | 5473 { |
5475 strncpy (errbuf, msg, errbuf_size - 1); | 5474 strncpy (errbuf, msg, errbuf_size - 1); |
5476 errbuf[errbuf_size - 1] = 0; | 5475 errbuf[errbuf_size - 1] = 0; |
5477 } | 5476 } |
5478 else | 5477 else |
5479 strcpy (errbuf, msg); | 5478 strcpy (errbuf, msg); |
5480 } | 5479 } |
5481 | 5480 |
5482 return msg_size; | 5481 return msg_size; |
5483 } | 5482 } |
5484 | 5483 |