Mercurial > hg > octave-lojdl > gnulib-hg
comparison regex.c @ 939:ace17b6e9d29
(PTR_TO_OFFSET): New macro.
(POS_AS_IN_BUFFER): New macro.
(SYNTAX_ENTRY_VIA_PROPERTY): Set to take `syntax-table' text
property into account when doing SYNTAX (c).
(re_compile_fastmap): disable fastmap if any of wordbound
notwordbound wordbeg wordend notsyntaxspec syntaxspec are seen.
(re_search_2): SETUP_SYNTAX_TABLE_FOR_OBJECT at the start.
(re_match_object): New variable.
(re_match_2): SETUP_SYNTAX_TABLE_FOR_OBJECT at the start.
(re_match_2_internal): For any of wordbound notwordbound wordbeg
wordend notsyntaxspec syntaxspec call UPDATE_SYNTAX_TABLE before
doing SYNTAX (c).
[emacs]: Include charset.h and category.h
[!emacs] (BASE_LEADING_CODE_P, WORD_BOUNDARY_P, CHAR_HEAD_P,
SINGLE_BYTE_CHAR_P, SAME_CHARSET_P, MULTIBYTE_FORM_LENGTH,
STRING_CHAR_AND_LENGTH, GET_CHAR_AFTER_2, GET_CHAR_BEFORE_2):
New dummy macros.
(enum re_opcode_t): New member categoryspec and notcategoryspec.
(STORE_CHARACTER_AND_INCR, EXTRACT_CHARACTER,
CHARSET_LOOKUP_RANGE_TABLE_WITH_COUNT,
CHARSET_LOOKUP_RANGE_TABLE, CHARSET_BITMAP_SIZE,
CHARSET_RANGE_TABLE_EXISTS_P, CHARSET_RANGE_TABLE
CHARSET_PAST_RANGE_TABLE): New macros.
(TRANSLATE): Cast return value to unsigned char, not char.
(struct range_table_work_area): New structure.
(EXTEND_RANGE_TABLE_WORK_AREA, SET_RANGE_TABLE_WORK_AREA,
FREE_RANGE_TABLE_WORK_AREA, CLEAR_RANGE_TABLE_WORK_USED,
RANGE_TABLE_WORK_USED, RANGE_TABLE_WORK_ELT): New macros.
(FREE_STACK_RETURN): Call FREE_RANGE_TABLE_WORK_AREA.
(regex_compile): Declare `c' and `c1' as int to store multibyte characters.
Declare range_table_work and initialize it.
Initialize bufp->multibyte to 0 if not emacs.
For case '[' and `default', code re-written to handle multibyte characters.
Add code for case 'c' and 'C' to handle category spec.
(re_compile_fastmap): New local variables k, simple_char_max,
and match_any_multibyte_characters.
Use macro CHARSET_BITMAP_SIZE.
Handle multibyte characters in cases charset, charset_not,
wordchar, notwordchar, anychar, syntaxspec, notsyntaxspec,
categoryspec, notcategoryspec.
(STOP_ADDR_VSTRING, POS_ADDR_VSTRING): New macros.
(re_search_2): Code re-written to handle multibyte characters.
(AT_WORD_BOUNDARY): Macro disabled.
(re_match_2_internal): New local variable multibyte. `d' is
incremented while paying attention to multibyte characters if necessary.
For case charset, charsetnot, wordbound, notwordbound,
wordbeg, wordend, matchsyntax, and matchnotsyntax, code
re-written to handle multibyte characters.
Add code for case categoryspec and notcategoryspec.
Declare c, c1 as unsigned int, not unsigned char.
author | Richard Stallman <rms@gnu.org> |
---|---|
date | Sun, 15 Jun 1997 19:00:12 +0000 |
parents | c9e346539fc6 |
children | a6403bc27be4 |
comparison
equal
deleted
inserted
replaced
938:28d73bdb3f50 | 939:ace17b6e9d29 |
---|---|
1 /* Extended regular expression matching and search library, version | 1 /* Extended regular expression matching and search library, version |
2 0.12. (Implements POSIX draft P10003.2/D11.2, except for | 2 0.12. (Implements POSIX draft P10003.2/D11.2, except for |
3 internationalization features.) | 3 internationalization features.) |
4 | 4 |
5 Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc. | 5 Copyright (C) 1993, 1994, 1995, 1996, 1997 Free Software Foundation, Inc. |
6 | 6 |
7 This program is free software; you can redistribute it and/or modify | 7 This program is free software; you can redistribute it and/or modify |
8 it under the terms of the GNU General Public License as published by | 8 it under the terms of the GNU General Public License as published by |
9 the Free Software Foundation; either version 2, or (at your option) | 9 the Free Software Foundation; either version 2, or (at your option) |
10 any later version. | 10 any later version. |
11 | 11 |
12 This program is distributed in the hope that it will be useful, | 12 This program is distributed in the hope that it will be useful, |
13 but WITHOUT ANY WARRANTY; without even the implied warranty of | 13 but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 GNU General Public License for more details. | 15 GNU General Public License for more details. |
16 | 16 |
17 You should have received a copy of the GNU General Public License | 17 You should have received a copy of the GNU General Public License |
18 along with this program; if not, write to the Free Software | 18 along with this program; if not, write to the Free Software |
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, | 19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, |
20 USA. */ | 20 USA. */ |
21 | 21 |
22 /* AIX requires this to be the first thing in the file. */ | 22 /* AIX requires this to be the first thing in the file. */ |
23 #if defined (_AIX) && !defined (REGEX_MALLOC) | 23 #if defined (_AIX) && !defined (REGEX_MALLOC) |
24 #pragma alloca | 24 #pragma alloca |
25 #endif | 25 #endif |
26 | 26 |
27 #undef _GNU_SOURCE | 27 #undef _GNU_SOURCE |
28 #define _GNU_SOURCE | 28 #define _GNU_SOURCE |
29 | 29 |
30 /* Converts the pointer to the char to BEG-based offset from the start. */ | |
31 #define PTR_TO_OFFSET(d) \ | |
32 POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING \ | |
33 ? (d) - string1 : (d) - (string2 - size1)) | |
34 #define POS_AS_IN_BUFFER(p) ((p) + 1) | |
35 | |
30 #ifdef HAVE_CONFIG_H | 36 #ifdef HAVE_CONFIG_H |
31 #include <config.h> | 37 #include <config.h> |
32 #endif | 38 #endif |
33 | 39 |
34 /* We need this for `regex.h', and perhaps for the Emacs include files. */ | 40 /* We need this for `regex.h', and perhaps for the Emacs include files. */ |
35 #include <sys/types.h> | 41 #include <sys/types.h> |
36 | 42 |
37 /* This is for other GNU distributions with internationalized messages. */ | 43 /* This is for other GNU distributions with internationalized messages. */ |
38 #if HAVE_LIBINTL_H || defined (_LIBC) | 44 #if HAVE_LIBINTL_H || defined (_LIBC) |
39 # include <libintl.h> | 45 # include <libintl.h> |
40 #else | 46 #else |
41 # define gettext(msgid) (msgid) | 47 # define gettext(msgid) (msgid) |
42 #endif | 48 #endif |
51 that make sense only in Emacs. */ | 57 that make sense only in Emacs. */ |
52 #ifdef emacs | 58 #ifdef emacs |
53 | 59 |
54 #include "lisp.h" | 60 #include "lisp.h" |
55 #include "buffer.h" | 61 #include "buffer.h" |
62 | |
63 /* Make syntax table lookup grant data in gl_state. */ | |
64 #define SYNTAX_ENTRY_VIA_PROPERTY | |
65 | |
56 #include "syntax.h" | 66 #include "syntax.h" |
67 #include "charset.h" | |
68 #include "category.h" | |
57 | 69 |
58 #define malloc xmalloc | 70 #define malloc xmalloc |
59 #define free xfree | 71 #define free xfree |
60 | 72 |
61 #else /* not emacs */ | 73 #else /* not emacs */ |
71 char *malloc (); | 83 char *malloc (); |
72 char *realloc (); | 84 char *realloc (); |
73 #endif | 85 #endif |
74 | 86 |
75 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. | 87 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. |
76 If nothing else has been done, use the method below. */ | 88 If nothing else has been done, use the method below. */ |
77 #ifdef INHIBIT_STRING_HEADER | 89 #ifdef INHIBIT_STRING_HEADER |
78 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) | 90 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) |
79 #if !defined (bzero) && !defined (bcopy) | 91 #if !defined (bzero) && !defined (bcopy) |
80 #undef INHIBIT_STRING_HEADER | 92 #undef INHIBIT_STRING_HEADER |
81 #endif | 93 #endif |
154 | 166 |
155 #endif /* not SYNTAX_TABLE */ | 167 #endif /* not SYNTAX_TABLE */ |
156 | 168 |
157 #define SYNTAX(c) re_syntax_table[c] | 169 #define SYNTAX(c) re_syntax_table[c] |
158 | 170 |
171 /* Dummy macro for non emacs environments. */ | |
172 #define BASE_LEADING_CODE_P(c) (0) | |
173 #define WORD_BOUNDARY_P(c1, c2) (0) | |
174 #define CHAR_HEAD_P(p) (1) | |
175 #define SINGLE_BYTE_CHAR_P(c) (1) | |
176 #define SAME_CHARSET_P(c1, c2) (1) | |
177 #define MULTIBYTE_FORM_LENGTH(p, s) (1) | |
178 #define STRING_CHAR(p, s) (*(p)) | |
179 #define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p)) | |
180 #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2) \ | |
181 (c = ((p) == (end1) ? *(str2) : *(p))) | |
182 #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \ | |
183 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1))) | |
159 #endif /* not emacs */ | 184 #endif /* not emacs */ |
160 | 185 |
161 /* Get the interface, including the syntax bits. */ | 186 /* Get the interface, including the syntax bits. */ |
162 #include "regex.h" | 187 #include "regex.h" |
163 | 188 |
167 /* Jim Meyering writes: | 192 /* Jim Meyering writes: |
168 | 193 |
169 "... Some ctype macros are valid only for character codes that | 194 "... Some ctype macros are valid only for character codes that |
170 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | 195 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when |
171 using /bin/cc or gcc but without giving an ansi option). So, all | 196 using /bin/cc or gcc but without giving an ansi option). So, all |
172 ctype uses should be through macros like ISPRINT... If | 197 ctype uses should be through macros like ISPRINT... If |
173 STDC_HEADERS is defined, then autoconf has verified that the ctype | 198 STDC_HEADERS is defined, then autoconf has verified that the ctype |
174 macros don't need to be guarded with references to isascii. ... | 199 macros don't need to be guarded with references to isascii. ... |
175 Defining isascii to 1 should let any compiler worth its salt | 200 Defining isascii to 1 should let any compiler worth its salt |
176 eliminate the && through constant folding." */ | 201 eliminate the && through constant folding." */ |
177 | 202 |
178 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) | 203 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) |
179 #define ISASCII(c) 1 | 204 #define ISASCII(c) 1 |
180 #else | 205 #else |
181 #define ISASCII(c) isascii(c) | 206 #define ISASCII(c) isascii(c) |
208 #endif | 233 #endif |
209 | 234 |
210 /* We remove any previous definition of `SIGN_EXTEND_CHAR', | 235 /* We remove any previous definition of `SIGN_EXTEND_CHAR', |
211 since ours (we hope) works properly with all combinations of | 236 since ours (we hope) works properly with all combinations of |
212 machines, compilers, `char' and `unsigned char' argument types. | 237 machines, compilers, `char' and `unsigned char' argument types. |
213 (Per Bothner suggested the basic approach.) */ | 238 (Per Bothner suggested the basic approach.) */ |
214 #undef SIGN_EXTEND_CHAR | 239 #undef SIGN_EXTEND_CHAR |
215 #if __STDC__ | 240 #if __STDC__ |
216 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | 241 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) |
217 #else /* not __STDC__ */ | 242 #else /* not __STDC__ */ |
218 /* As in Harbison and Steele. */ | 243 /* As in Harbison and Steele. */ |
246 #else /* not __GNUC__ */ | 271 #else /* not __GNUC__ */ |
247 #if HAVE_ALLOCA_H | 272 #if HAVE_ALLOCA_H |
248 #include <alloca.h> | 273 #include <alloca.h> |
249 #else /* not __GNUC__ or HAVE_ALLOCA_H */ | 274 #else /* not __GNUC__ or HAVE_ALLOCA_H */ |
250 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */ | 275 #if 0 /* It is a bad idea to declare alloca. We always cast the result. */ |
251 #ifndef _AIX /* Already did AIX, up at the top. */ | 276 #ifndef _AIX /* Already did AIX, up at the top. */ |
252 char *alloca (); | 277 char *alloca (); |
253 #endif /* not _AIX */ | 278 #endif /* not _AIX */ |
254 #endif | 279 #endif |
255 #endif /* not HAVE_ALLOCA_H */ | 280 #endif /* not HAVE_ALLOCA_H */ |
256 #endif /* not __GNUC__ */ | 281 #endif /* not __GNUC__ */ |
293 | 318 |
294 #define REGEX_ALLOCATE_STACK alloca | 319 #define REGEX_ALLOCATE_STACK alloca |
295 | 320 |
296 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | 321 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ |
297 REGEX_REALLOCATE (source, osize, nsize) | 322 REGEX_REALLOCATE (source, osize, nsize) |
298 /* No need to explicitly free anything. */ | 323 /* No need to explicitly free anything. */ |
299 #define REGEX_FREE_STACK(arg) | 324 #define REGEX_FREE_STACK(arg) |
300 | 325 |
301 #endif /* not REGEX_MALLOC */ | 326 #endif /* not REGEX_MALLOC */ |
302 #endif /* not using relocating allocator */ | 327 #endif /* not using relocating allocator */ |
303 | 328 |
304 | 329 |
305 /* True if `size1' is non-NULL and PTR is pointing anywhere inside | 330 /* True if `size1' is non-NULL and PTR is pointing anywhere inside |
306 `string1' or just past its end. This works if PTR is NULL, which is | 331 `string1' or just past its end. This works if PTR is NULL, which is |
307 a good thing. */ | 332 a good thing. */ |
308 #define FIRST_STRING_P(ptr) \ | 333 #define FIRST_STRING_P(ptr) \ |
309 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | 334 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) |
310 | 335 |
311 /* (Re)Allocate N items of type T using malloc, or fail. */ | 336 /* (Re)Allocate N items of type T using malloc, or fail. */ |
312 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) | 337 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) |
313 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | 338 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) |
314 #define RETALLOC_IF(addr, n, t) \ | 339 #define RETALLOC_IF(addr, n, t) \ |
315 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) | 340 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) |
316 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) | 341 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
317 | 342 |
318 #define BYTEWIDTH 8 /* In bits. */ | 343 #define BYTEWIDTH 8 /* In bits. */ |
319 | 344 |
320 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) | 345 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) |
321 | 346 |
322 #undef MAX | 347 #undef MAX |
323 #undef MIN | 348 #undef MIN |
329 #define true 1 | 354 #define true 1 |
330 | 355 |
331 static int re_match_2_internal (); | 356 static int re_match_2_internal (); |
332 | 357 |
333 /* These are the command codes that appear in compiled regular | 358 /* These are the command codes that appear in compiled regular |
334 expressions. Some opcodes are followed by argument bytes. A | 359 expressions. Some opcodes are followed by argument bytes. A |
335 command code can specify any interpretation whatsoever for its | 360 command code can specify any interpretation whatsoever for its |
336 arguments. Zero bytes may appear in the compiled regular expression. */ | 361 arguments. Zero bytes may appear in the compiled regular expression. */ |
337 | 362 |
338 typedef enum | 363 typedef enum |
339 { | 364 { |
340 no_op = 0, | 365 no_op = 0, |
341 | 366 |
342 /* Succeed right away--no more backtracking. */ | 367 /* Succeed right away--no more backtracking. */ |
343 succeed, | 368 succeed, |
344 | 369 |
345 /* Followed by one byte giving n, then by n literal bytes. */ | 370 /* Followed by one byte giving n, then by n literal bytes. */ |
346 exactn, | 371 exactn, |
347 | 372 |
348 /* Matches any (more or less) character. */ | 373 /* Matches any (more or less) character. */ |
349 anychar, | 374 anychar, |
350 | 375 |
351 /* Matches any one char belonging to specified set. First | 376 /* Matches any one char belonging to specified set. First |
352 following byte is number of bitmap bytes. Then come bytes | 377 following byte is number of bitmap bytes. Then come bytes |
353 for a bitmap saying which chars are in. Bits in each byte | 378 for a bitmap saying which chars are in. Bits in each byte |
354 are ordered low-bit-first. A character is in the set if its | 379 are ordered low-bit-first. A character is in the set if its |
355 bit is 1. A character too large to have a bit in the map is | 380 bit is 1. A character too large to have a bit in the map is |
356 automatically not in the set. */ | 381 automatically not in the set. */ |
357 charset, | 382 charset, |
358 | 383 |
359 /* Same parameters as charset, but match any character that is | 384 /* Same parameters as charset, but match any character that is |
360 not one of those specified. */ | 385 not one of those specified. */ |
361 charset_not, | 386 charset_not, |
362 | 387 |
363 /* Start remembering the text that is matched, for storing in a | 388 /* Start remembering the text that is matched, for storing in a |
364 register. Followed by one byte with the register number, in | 389 register. Followed by one byte with the register number, in |
365 the range 0 to one less than the pattern buffer's re_nsub | 390 the range 0 to one less than the pattern buffer's re_nsub |
366 field. Then followed by one byte with the number of groups | 391 field. Then followed by one byte with the number of groups |
367 inner to this one. (This last has to be part of the | 392 inner to this one. (This last has to be part of the |
368 start_memory only because we need it in the on_failure_jump | 393 start_memory only because we need it in the on_failure_jump |
369 of re_match_2.) */ | 394 of re_match_2.) */ |
370 start_memory, | 395 start_memory, |
371 | 396 |
372 /* Stop remembering the text that is matched and store it in a | 397 /* Stop remembering the text that is matched and store it in a |
373 memory register. Followed by one byte with the register | 398 memory register. Followed by one byte with the register |
374 number, in the range 0 to one less than `re_nsub' in the | 399 number, in the range 0 to one less than `re_nsub' in the |
375 pattern buffer, and one byte with the number of inner groups, | 400 pattern buffer, and one byte with the number of inner groups, |
376 just like `start_memory'. (We need the number of inner | 401 just like `start_memory'. (We need the number of inner |
377 groups here because we don't have any easy way of finding the | 402 groups here because we don't have any easy way of finding the |
378 corresponding start_memory when we're at a stop_memory.) */ | 403 corresponding start_memory when we're at a stop_memory.) */ |
379 stop_memory, | 404 stop_memory, |
380 | 405 |
381 /* Match a duplicate of something remembered. Followed by one | 406 /* Match a duplicate of something remembered. Followed by one |
382 byte containing the register number. */ | 407 byte containing the register number. */ |
383 duplicate, | 408 duplicate, |
384 | 409 |
385 /* Fail unless at beginning of line. */ | 410 /* Fail unless at beginning of line. */ |
386 begline, | 411 begline, |
387 | 412 |
388 /* Fail unless at end of line. */ | 413 /* Fail unless at end of line. */ |
389 endline, | 414 endline, |
390 | 415 |
391 /* Succeeds if at beginning of buffer (if emacs) or at beginning | 416 /* Succeeds if at beginning of buffer (if emacs) or at beginning |
392 of string to be matched (if not). */ | 417 of string to be matched (if not). */ |
393 begbuf, | 418 begbuf, |
394 | 419 |
395 /* Analogously, for end of buffer/string. */ | 420 /* Analogously, for end of buffer/string. */ |
396 endbuf, | 421 endbuf, |
397 | 422 |
398 /* Followed by two byte relative address to which to jump. */ | 423 /* Followed by two byte relative address to which to jump. */ |
399 jump, | 424 jump, |
400 | 425 |
401 /* Same as jump, but marks the end of an alternative. */ | 426 /* Same as jump, but marks the end of an alternative. */ |
402 jump_past_alt, | 427 jump_past_alt, |
403 | 428 |
404 /* Followed by two-byte relative address of place to resume at | 429 /* Followed by two-byte relative address of place to resume at |
405 in case of failure. */ | 430 in case of failure. */ |
406 on_failure_jump, | 431 on_failure_jump, |
407 | 432 |
408 /* Like on_failure_jump, but pushes a placeholder instead of the | 433 /* Like on_failure_jump, but pushes a placeholder instead of the |
409 current string position when executed. */ | 434 current string position when executed. */ |
410 on_failure_keep_string_jump, | 435 on_failure_keep_string_jump, |
411 | 436 |
412 /* Throw away latest failure point and then jump to following | 437 /* Throw away latest failure point and then jump to following |
413 two-byte relative address. */ | 438 two-byte relative address. */ |
414 pop_failure_jump, | 439 pop_failure_jump, |
415 | 440 |
416 /* Change to pop_failure_jump if know won't have to backtrack to | 441 /* Change to pop_failure_jump if know won't have to backtrack to |
417 match; otherwise change to jump. This is used to jump | 442 match; otherwise change to jump. This is used to jump |
418 back to the beginning of a repeat. If what follows this jump | 443 back to the beginning of a repeat. If what follows this jump |
419 clearly won't match what the repeat does, such that we can be | 444 clearly won't match what the repeat does, such that we can be |
420 sure that there is no use backtracking out of repetitions | 445 sure that there is no use backtracking out of repetitions |
421 already matched, then we change it to a pop_failure_jump. | 446 already matched, then we change it to a pop_failure_jump. |
422 Followed by two-byte address. */ | 447 Followed by two-byte address. */ |
423 maybe_pop_jump, | 448 maybe_pop_jump, |
424 | 449 |
425 /* Jump to following two-byte address, and push a dummy failure | 450 /* Jump to following two-byte address, and push a dummy failure |
426 point. This failure point will be thrown away if an attempt | 451 point. This failure point will be thrown away if an attempt |
427 is made to use it for a failure. A `+' construct makes this | 452 is made to use it for a failure. A `+' construct makes this |
428 before the first repeat. Also used as an intermediary kind | 453 before the first repeat. Also used as an intermediary kind |
429 of jump when compiling an alternative. */ | 454 of jump when compiling an alternative. */ |
430 dummy_failure_jump, | 455 dummy_failure_jump, |
431 | 456 |
432 /* Push a dummy failure point and continue. Used at the end of | 457 /* Push a dummy failure point and continue. Used at the end of |
433 alternatives. */ | 458 alternatives. */ |
434 push_dummy_failure, | 459 push_dummy_failure, |
435 | 460 |
436 /* Followed by two-byte relative address and two-byte number n. | 461 /* Followed by two-byte relative address and two-byte number n. |
437 After matching N times, jump to the address upon failure. */ | 462 After matching N times, jump to the address upon failure. */ |
438 succeed_n, | 463 succeed_n, |
439 | 464 |
440 /* Followed by two-byte relative address, and two-byte number n. | 465 /* Followed by two-byte relative address, and two-byte number n. |
441 Jump to the address N times, then fail. */ | 466 Jump to the address N times, then fail. */ |
442 jump_n, | 467 jump_n, |
443 | 468 |
444 /* Set the following two-byte relative address to the | 469 /* Set the following two-byte relative address to the |
445 subsequent two-byte number. The address *includes* the two | 470 subsequent two-byte number. The address *includes* the two |
446 bytes of number. */ | 471 bytes of number. */ |
447 set_number_at, | 472 set_number_at, |
448 | 473 |
449 wordchar, /* Matches any word-constituent character. */ | 474 wordchar, /* Matches any word-constituent character. */ |
450 notwordchar, /* Matches any char that is not a word-constituent. */ | 475 notwordchar, /* Matches any char that is not a word-constituent. */ |
451 | 476 |
452 wordbeg, /* Succeeds if at word beginning. */ | 477 wordbeg, /* Succeeds if at word beginning. */ |
453 wordend, /* Succeeds if at word end. */ | 478 wordend, /* Succeeds if at word end. */ |
454 | 479 |
455 wordbound, /* Succeeds if at a word boundary. */ | 480 wordbound, /* Succeeds if at a word boundary. */ |
456 notwordbound /* Succeeds if not at a word boundary. */ | 481 notwordbound /* Succeeds if not at a word boundary. */ |
457 | 482 |
458 #ifdef emacs | 483 #ifdef emacs |
459 ,before_dot, /* Succeeds if before point. */ | 484 ,before_dot, /* Succeeds if before point. */ |
460 at_dot, /* Succeeds if at point. */ | 485 at_dot, /* Succeeds if at point. */ |
461 after_dot, /* Succeeds if after point. */ | 486 after_dot, /* Succeeds if after point. */ |
462 | 487 |
463 /* Matches any character whose syntax is specified. Followed by | 488 /* Matches any character whose syntax is specified. Followed by |
464 a byte which contains a syntax code, e.g., Sword. */ | 489 a byte which contains a syntax code, e.g., Sword. */ |
465 syntaxspec, | 490 syntaxspec, |
466 | 491 |
467 /* Matches any character whose syntax is not that specified. */ | 492 /* Matches any character whose syntax is not that specified. */ |
468 notsyntaxspec | 493 notsyntaxspec, |
494 | |
495 /* Matches any character whose category-set contains the specified | |
496 category. The operator is followed by a byte which contains a | |
497 category code (mnemonic ASCII character). */ | |
498 categoryspec, | |
499 | |
500 /* Matches any character whose category-set does not contain the | |
501 specified category. The operator is followed by a byte which | |
502 contains the category code (mnemonic ASCII character). */ | |
503 notcategoryspec | |
469 #endif /* emacs */ | 504 #endif /* emacs */ |
470 } re_opcode_t; | 505 } re_opcode_t; |
471 | 506 |
472 /* Common operations on the compiled pattern. */ | 507 /* Common operations on the compiled pattern. */ |
473 | 508 |
507 int temp = SIGN_EXTEND_CHAR (*(source + 1)); | 542 int temp = SIGN_EXTEND_CHAR (*(source + 1)); |
508 *dest = *source & 0377; | 543 *dest = *source & 0377; |
509 *dest += temp << 8; | 544 *dest += temp << 8; |
510 } | 545 } |
511 | 546 |
512 #ifndef EXTRACT_MACROS /* To debug the macros. */ | 547 #ifndef EXTRACT_MACROS /* To debug the macros. */ |
513 #undef EXTRACT_NUMBER | 548 #undef EXTRACT_NUMBER |
514 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | 549 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) |
515 #endif /* not EXTRACT_MACROS */ | 550 #endif /* not EXTRACT_MACROS */ |
516 | 551 |
517 #endif /* DEBUG */ | 552 #endif /* DEBUG */ |
520 SOURCE must be an lvalue. */ | 555 SOURCE must be an lvalue. */ |
521 | 556 |
522 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | 557 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ |
523 do { \ | 558 do { \ |
524 EXTRACT_NUMBER (destination, source); \ | 559 EXTRACT_NUMBER (destination, source); \ |
525 (source) += 2; \ | 560 (source) += 2; \ |
526 } while (0) | 561 } while (0) |
527 | 562 |
528 #ifdef DEBUG | 563 #ifdef DEBUG |
529 static void | 564 static void |
530 extract_number_and_incr (destination, source) | 565 extract_number_and_incr (destination, source) |
541 extract_number_and_incr (&dest, &src) | 576 extract_number_and_incr (&dest, &src) |
542 #endif /* not EXTRACT_MACROS */ | 577 #endif /* not EXTRACT_MACROS */ |
543 | 578 |
544 #endif /* DEBUG */ | 579 #endif /* DEBUG */ |
545 | 580 |
581 /* Store a multibyte character in three contiguous bytes starting | |
582 DESTINATION, and increment DESTINATION to the byte after where the | |
583 character is stored. Therefore, DESTINATION must be an lvalue. */ | |
584 | |
585 #define STORE_CHARACTER_AND_INCR(destination, character) \ | |
586 do { \ | |
587 (destination)[0] = (character) & 0377; \ | |
588 (destination)[1] = ((character) >> 8) & 0377; \ | |
589 (destination)[2] = (character) >> 16; \ | |
590 (destination) += 3; \ | |
591 } while (0) | |
592 | |
593 /* Put into DESTINATION a character stored in three contiguous bytes | |
594 starting at SOURCE. */ | |
595 | |
596 #define EXTRACT_CHARACTER(destination, source) \ | |
597 do { \ | |
598 (destination) = ((source)[0] \ | |
599 | ((source)[1] << 8) \ | |
600 | ((source)[2] << 16)); \ | |
601 } while (0) | |
602 | |
603 | |
604 /* Macros for charset. */ | |
605 | |
606 /* Size of bitmap of charset P in bytes. P is a start of charset, | |
607 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */ | |
608 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F) | |
609 | |
610 /* Nonzero if charset P has range table. */ | |
611 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80) | |
612 | |
613 /* Return the address of range table of charset P. But not the start | |
614 of table itself, but the before where the number of ranges is | |
615 stored. `2 +' means to skip re_opcode_t and size of bitmap. */ | |
616 #define CHARSET_RANGE_TABLE(p) (&(p)[2 + CHARSET_BITMAP_SIZE (p)]) | |
617 | |
618 /* Test if C is listed in the bitmap of charset P. */ | |
619 #define CHARSET_LOOKUP_BITMAP(p, c) \ | |
620 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \ | |
621 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH))) | |
622 | |
623 /* Return the address of end of RANGE_TABLE. COUNT is number of | |
624 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2' | |
625 is start of range and end of range. `* 3' is size of each start | |
626 and end. */ | |
627 #define CHARSET_RANGE_TABLE_END(range_table, count) \ | |
628 ((range_table) + (count) * 2 * 3) | |
629 | |
630 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in. | |
631 COUNT is number of ranges in RANGE_TABLE. */ | |
632 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \ | |
633 do \ | |
634 { \ | |
635 int range_start, range_end; \ | |
636 unsigned char *p; \ | |
637 unsigned char *range_table_end \ | |
638 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \ | |
639 \ | |
640 for (p = (range_table); p < range_table_end; p += 2 * 3) \ | |
641 { \ | |
642 EXTRACT_CHARACTER (range_start, p); \ | |
643 EXTRACT_CHARACTER (range_end, p + 3); \ | |
644 \ | |
645 if (range_start <= (c) && (c) <= range_end) \ | |
646 { \ | |
647 (not) = !(not); \ | |
648 break; \ | |
649 } \ | |
650 } \ | |
651 } \ | |
652 while (0) | |
653 | |
654 /* Test if C is in range table of CHARSET. The flag NOT is negated if | |
655 C is listed in it. */ | |
656 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \ | |
657 do \ | |
658 { \ | |
659 /* Number of ranges in range table. */ \ | |
660 int count; \ | |
661 unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \ | |
662 \ | |
663 EXTRACT_NUMBER_AND_INCR (count, range_table); \ | |
664 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \ | |
665 } \ | |
666 while (0) | |
667 | |
546 /* If DEBUG is defined, Regex prints many voluminous messages about what | 668 /* If DEBUG is defined, Regex prints many voluminous messages about what |
547 it is doing (if the variable `debug' is nonzero). If linked with the | 669 it is doing (if the variable `debug' is nonzero). If linked with the |
548 main program in `iregex.c', you can enter patterns and strings | 670 main program in `iregex.c', you can enter patterns and strings |
549 interactively. And if linked with the main program in `main.c' and | 671 interactively. And if linked with the main program in `main.c' and |
550 the other test files, you can run the already-written tests. */ | 672 the other test files, you can run the already-written tests. */ |
551 | 673 |
552 #ifdef DEBUG | 674 #ifdef DEBUG |
553 | 675 |
554 /* We use standard I/O for debugging. */ | 676 /* We use standard I/O for debugging. */ |
555 #include <stdio.h> | 677 #include <stdio.h> |
562 #define DEBUG_STATEMENT(e) e | 684 #define DEBUG_STATEMENT(e) e |
563 #define DEBUG_PRINT1(x) if (debug) printf (x) | 685 #define DEBUG_PRINT1(x) if (debug) printf (x) |
564 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | 686 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) |
565 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | 687 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) |
566 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | 688 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) |
567 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | 689 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
568 if (debug) print_partial_compiled_pattern (s, e) | 690 if (debug) print_partial_compiled_pattern (s, e) |
569 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | 691 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ |
570 if (debug) print_double_string (w, s1, sz1, s2, sz2) | 692 if (debug) print_double_string (w, s1, sz1, s2, sz2) |
571 | 693 |
572 | 694 |
582 while (i < (1 << BYTEWIDTH)) | 704 while (i < (1 << BYTEWIDTH)) |
583 { | 705 { |
584 if (fastmap[i++]) | 706 if (fastmap[i++]) |
585 { | 707 { |
586 was_a_range = 0; | 708 was_a_range = 0; |
587 putchar (i - 1); | 709 putchar (i - 1); |
588 while (i < (1 << BYTEWIDTH) && fastmap[i]) | 710 while (i < (1 << BYTEWIDTH) && fastmap[i]) |
589 { | 711 { |
590 was_a_range = 1; | 712 was_a_range = 1; |
591 i++; | 713 i++; |
592 } | 714 } |
593 if (was_a_range) | 715 if (was_a_range) |
594 { | 716 { |
595 printf ("-"); | 717 printf ("-"); |
596 putchar (i - 1); | 718 putchar (i - 1); |
597 } | 719 } |
598 } | 720 } |
599 } | 721 } |
600 putchar ('\n'); | 722 putchar ('\n'); |
601 } | 723 } |
602 | 724 |
603 | 725 |
624 { | 746 { |
625 printf ("%d:\t", p - start); | 747 printf ("%d:\t", p - start); |
626 | 748 |
627 switch ((re_opcode_t) *p++) | 749 switch ((re_opcode_t) *p++) |
628 { | 750 { |
629 case no_op: | 751 case no_op: |
630 printf ("/no_op"); | 752 printf ("/no_op"); |
631 break; | 753 break; |
632 | 754 |
633 case exactn: | 755 case exactn: |
634 mcnt = *p++; | 756 mcnt = *p++; |
635 printf ("/exactn/%d", mcnt); | 757 printf ("/exactn/%d", mcnt); |
636 do | 758 do |
637 { | 759 { |
638 putchar ('/'); | 760 putchar ('/'); |
639 putchar (*p++); | 761 putchar (*p++); |
640 } | 762 } |
641 while (--mcnt); | 763 while (--mcnt); |
642 break; | 764 break; |
643 | 765 |
644 case start_memory: | 766 case start_memory: |
645 mcnt = *p++; | 767 mcnt = *p++; |
646 printf ("/start_memory/%d/%d", mcnt, *p++); | 768 printf ("/start_memory/%d/%d", mcnt, *p++); |
647 break; | 769 break; |
648 | 770 |
649 case stop_memory: | 771 case stop_memory: |
650 mcnt = *p++; | 772 mcnt = *p++; |
651 printf ("/stop_memory/%d/%d", mcnt, *p++); | 773 printf ("/stop_memory/%d/%d", mcnt, *p++); |
652 break; | 774 break; |
653 | 775 |
654 case duplicate: | 776 case duplicate: |
655 printf ("/duplicate/%d", *p++); | 777 printf ("/duplicate/%d", *p++); |
656 break; | 778 break; |
657 | 779 |
658 case anychar: | 780 case anychar: |
659 printf ("/anychar"); | 781 printf ("/anychar"); |
660 break; | 782 break; |
661 | 783 |
662 case charset: | 784 case charset: |
663 case charset_not: | 785 case charset_not: |
664 { | 786 { |
665 register int c, last = -100; | 787 register int c, last = -100; |
666 register int in_range = 0; | 788 register int in_range = 0; |
667 | 789 |
668 printf ("/charset [%s", | 790 printf ("/charset [%s", |
669 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | 791 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); |
670 | 792 |
671 assert (p + *p < pend); | 793 assert (p + *p < pend); |
672 | 794 |
673 for (c = 0; c < 256; c++) | 795 for (c = 0; c < 256; c++) |
674 if (c / 8 < *p | 796 if (c / 8 < *p |
675 && (p[1 + (c/8)] & (1 << (c % 8)))) | 797 && (p[1 + (c/8)] & (1 << (c % 8)))) |
676 { | 798 { |
677 /* Are we starting a range? */ | 799 /* Are we starting a range? */ |
678 if (last + 1 == c && ! in_range) | 800 if (last + 1 == c && ! in_range) |
680 putchar ('-'); | 802 putchar ('-'); |
681 in_range = 1; | 803 in_range = 1; |
682 } | 804 } |
683 /* Have we broken a range? */ | 805 /* Have we broken a range? */ |
684 else if (last + 1 != c && in_range) | 806 else if (last + 1 != c && in_range) |
685 { | 807 { |
686 putchar (last); | 808 putchar (last); |
687 in_range = 0; | 809 in_range = 0; |
688 } | 810 } |
689 | 811 |
690 if (! in_range) | 812 if (! in_range) |
691 putchar (c); | 813 putchar (c); |
692 | 814 |
693 last = c; | 815 last = c; |
694 } | 816 } |
695 | 817 |
696 if (in_range) | 818 if (in_range) |
697 putchar (last); | 819 putchar (last); |
698 | 820 |
699 putchar (']'); | 821 putchar (']'); |
702 } | 824 } |
703 break; | 825 break; |
704 | 826 |
705 case begline: | 827 case begline: |
706 printf ("/begline"); | 828 printf ("/begline"); |
829 break; | |
830 | |
831 case endline: | |
832 printf ("/endline"); | |
833 break; | |
834 | |
835 case on_failure_jump: | |
836 extract_number_and_incr (&mcnt, &p); | |
837 printf ("/on_failure_jump to %d", p + mcnt - start); | |
838 break; | |
839 | |
840 case on_failure_keep_string_jump: | |
841 extract_number_and_incr (&mcnt, &p); | |
842 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); | |
843 break; | |
844 | |
845 case dummy_failure_jump: | |
846 extract_number_and_incr (&mcnt, &p); | |
847 printf ("/dummy_failure_jump to %d", p + mcnt - start); | |
848 break; | |
849 | |
850 case push_dummy_failure: | |
851 printf ("/push_dummy_failure"); | |
852 break; | |
853 | |
854 case maybe_pop_jump: | |
855 extract_number_and_incr (&mcnt, &p); | |
856 printf ("/maybe_pop_jump to %d", p + mcnt - start); | |
707 break; | 857 break; |
708 | 858 |
709 case endline: | 859 case pop_failure_jump: |
710 printf ("/endline"); | 860 extract_number_and_incr (&mcnt, &p); |
861 printf ("/pop_failure_jump to %d", p + mcnt - start); | |
711 break; | 862 break; |
712 | 863 |
713 case on_failure_jump: | 864 case jump_past_alt: |
714 extract_number_and_incr (&mcnt, &p); | 865 extract_number_and_incr (&mcnt, &p); |
715 printf ("/on_failure_jump to %d", p + mcnt - start); | 866 printf ("/jump_past_alt to %d", p + mcnt - start); |
716 break; | 867 break; |
717 | 868 |
718 case on_failure_keep_string_jump: | 869 case jump: |
719 extract_number_and_incr (&mcnt, &p); | 870 extract_number_and_incr (&mcnt, &p); |
720 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); | 871 printf ("/jump to %d", p + mcnt - start); |
721 break; | 872 break; |
722 | 873 |
723 case dummy_failure_jump: | 874 case succeed_n: |
724 extract_number_and_incr (&mcnt, &p); | 875 extract_number_and_incr (&mcnt, &p); |
725 printf ("/dummy_failure_jump to %d", p + mcnt - start); | 876 extract_number_and_incr (&mcnt2, &p); |
726 break; | |
727 | |
728 case push_dummy_failure: | |
729 printf ("/push_dummy_failure"); | |
730 break; | |
731 | |
732 case maybe_pop_jump: | |
733 extract_number_and_incr (&mcnt, &p); | |
734 printf ("/maybe_pop_jump to %d", p + mcnt - start); | |
735 break; | |
736 | |
737 case pop_failure_jump: | |
738 extract_number_and_incr (&mcnt, &p); | |
739 printf ("/pop_failure_jump to %d", p + mcnt - start); | |
740 break; | |
741 | |
742 case jump_past_alt: | |
743 extract_number_and_incr (&mcnt, &p); | |
744 printf ("/jump_past_alt to %d", p + mcnt - start); | |
745 break; | |
746 | |
747 case jump: | |
748 extract_number_and_incr (&mcnt, &p); | |
749 printf ("/jump to %d", p + mcnt - start); | |
750 break; | |
751 | |
752 case succeed_n: | |
753 extract_number_and_incr (&mcnt, &p); | |
754 extract_number_and_incr (&mcnt2, &p); | |
755 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); | 877 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); |
756 break; | 878 break; |
757 | 879 |
758 case jump_n: | 880 case jump_n: |
759 extract_number_and_incr (&mcnt, &p); | 881 extract_number_and_incr (&mcnt, &p); |
760 extract_number_and_incr (&mcnt2, &p); | 882 extract_number_and_incr (&mcnt2, &p); |
761 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); | 883 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); |
762 break; | 884 break; |
763 | 885 |
764 case set_number_at: | 886 case set_number_at: |
765 extract_number_and_incr (&mcnt, &p); | 887 extract_number_and_incr (&mcnt, &p); |
766 extract_number_and_incr (&mcnt2, &p); | 888 extract_number_and_incr (&mcnt2, &p); |
767 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); | 889 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); |
768 break; | 890 break; |
769 | 891 |
770 case wordbound: | 892 case wordbound: |
771 printf ("/wordbound"); | 893 printf ("/wordbound"); |
772 break; | 894 break; |
773 | 895 |
774 case notwordbound: | 896 case notwordbound: |
775 printf ("/notwordbound"); | 897 printf ("/notwordbound"); |
776 break; | 898 break; |
777 | 899 |
778 case wordbeg: | 900 case wordbeg: |
779 printf ("/wordbeg"); | 901 printf ("/wordbeg"); |
780 break; | 902 break; |
781 | 903 |
783 printf ("/wordend"); | 905 printf ("/wordend"); |
784 | 906 |
785 #ifdef emacs | 907 #ifdef emacs |
786 case before_dot: | 908 case before_dot: |
787 printf ("/before_dot"); | 909 printf ("/before_dot"); |
788 break; | 910 break; |
789 | 911 |
790 case at_dot: | 912 case at_dot: |
791 printf ("/at_dot"); | 913 printf ("/at_dot"); |
792 break; | 914 break; |
793 | 915 |
794 case after_dot: | 916 case after_dot: |
795 printf ("/after_dot"); | 917 printf ("/after_dot"); |
796 break; | 918 break; |
797 | 919 |
798 case syntaxspec: | 920 case syntaxspec: |
799 printf ("/syntaxspec"); | 921 printf ("/syntaxspec"); |
800 mcnt = *p++; | 922 mcnt = *p++; |
801 printf ("/%d", mcnt); | 923 printf ("/%d", mcnt); |
802 break; | 924 break; |
803 | 925 |
804 case notsyntaxspec: | 926 case notsyntaxspec: |
805 printf ("/notsyntaxspec"); | 927 printf ("/notsyntaxspec"); |
806 mcnt = *p++; | 928 mcnt = *p++; |
807 printf ("/%d", mcnt); | 929 printf ("/%d", mcnt); |
808 break; | 930 break; |
809 #endif /* emacs */ | 931 #endif /* emacs */ |
810 | 932 |
811 case wordchar: | 933 case wordchar: |
812 printf ("/wordchar"); | 934 printf ("/wordchar"); |
813 break; | 935 break; |
814 | 936 |
815 case notwordchar: | 937 case notwordchar: |
816 printf ("/notwordchar"); | 938 printf ("/notwordchar"); |
817 break; | 939 break; |
818 | 940 |
819 case begbuf: | 941 case begbuf: |
820 printf ("/begbuf"); | 942 printf ("/begbuf"); |
821 break; | 943 break; |
822 | 944 |
823 case endbuf: | 945 case endbuf: |
824 printf ("/endbuf"); | 946 printf ("/endbuf"); |
825 break; | 947 break; |
826 | 948 |
827 default: | 949 default: |
828 printf ("?%d", *(p-1)); | 950 printf ("?%d", *(p-1)); |
829 } | 951 } |
830 | 952 |
831 putchar ('\n'); | 953 putchar ('\n'); |
832 } | 954 } |
833 | 955 |
875 if (where == NULL) | 997 if (where == NULL) |
876 printf ("(null)"); | 998 printf ("(null)"); |
877 else | 999 else |
878 { | 1000 { |
879 if (FIRST_STRING_P (where)) | 1001 if (FIRST_STRING_P (where)) |
880 { | 1002 { |
881 for (this_char = where - string1; this_char < size1; this_char++) | 1003 for (this_char = where - string1; this_char < size1; this_char++) |
882 putchar (string1[this_char]); | 1004 putchar (string1[this_char]); |
883 | 1005 |
884 where = string2; | 1006 where = string2; |
885 } | 1007 } |
886 | 1008 |
887 for (this_char = where - string2; this_char < size2; this_char++) | 1009 for (this_char = where - string2; this_char < size2; this_char++) |
888 putchar (string2[this_char]); | 1010 putchar (string2[this_char]); |
889 } | 1011 } |
890 } | 1012 } |
891 | 1013 |
892 #else /* not DEBUG */ | 1014 #else /* not DEBUG */ |
893 | 1015 |
915 /* Specify the precise syntax of regexps for compilation. This provides | 1037 /* Specify the precise syntax of regexps for compilation. This provides |
916 for compatibility for various utilities which historically have | 1038 for compatibility for various utilities which historically have |
917 different, incompatible syntaxes. | 1039 different, incompatible syntaxes. |
918 | 1040 |
919 The argument SYNTAX is a bit mask comprised of the various bits | 1041 The argument SYNTAX is a bit mask comprised of the various bits |
920 defined in regex.h. We return the old syntax. */ | 1042 defined in regex.h. We return the old syntax. */ |
921 | 1043 |
922 reg_syntax_t | 1044 reg_syntax_t |
923 re_set_syntax (syntax) | 1045 re_set_syntax (syntax) |
924 reg_syntax_t syntax; | 1046 reg_syntax_t syntax; |
925 { | 1047 { |
928 re_syntax_options = syntax; | 1050 re_syntax_options = syntax; |
929 return ret; | 1051 return ret; |
930 } | 1052 } |
931 | 1053 |
932 /* This table gives an error message for each of the error codes listed | 1054 /* This table gives an error message for each of the error codes listed |
933 in regex.h. Obviously the order here has to be same as there. | 1055 in regex.h. Obviously the order here has to be same as there. |
934 POSIX doesn't require that we do anything for REG_NOERROR, | 1056 POSIX doesn't require that we do anything for REG_NOERROR, |
935 but why not be nice? */ | 1057 but why not be nice? */ |
936 | 1058 |
937 static const char *re_error_msgid[] = | 1059 static const char *re_error_msgid[] = |
938 { | 1060 { |
939 gettext_noop ("Success"), /* REG_NOERROR */ | 1061 gettext_noop ("Success"), /* REG_NOERROR */ |
940 gettext_noop ("No match"), /* REG_NOMATCH */ | 1062 gettext_noop ("No match"), /* REG_NOMATCH */ |
953 gettext_noop ("Premature end of regular expression"), /* REG_EEND */ | 1075 gettext_noop ("Premature end of regular expression"), /* REG_EEND */ |
954 gettext_noop ("Regular expression too big"), /* REG_ESIZE */ | 1076 gettext_noop ("Regular expression too big"), /* REG_ESIZE */ |
955 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ | 1077 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ |
956 }; | 1078 }; |
957 | 1079 |
958 /* Avoiding alloca during matching, to placate r_alloc. */ | 1080 /* Avoiding alloca during matching, to placate r_alloc. */ |
959 | 1081 |
960 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the | 1082 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
961 searching and matching functions should not call alloca. On some | 1083 searching and matching functions should not call alloca. On some |
962 systems, alloca is implemented in terms of malloc, and if we're | 1084 systems, alloca is implemented in terms of malloc, and if we're |
963 using the relocating allocator routines, then malloc could cause a | 1085 using the relocating allocator routines, then malloc could cause a |
985 | 1107 |
986 /* The match routines may not allocate if (1) they would do it with malloc | 1108 /* The match routines may not allocate if (1) they would do it with malloc |
987 and (2) it's not safe for them to use malloc. | 1109 and (2) it's not safe for them to use malloc. |
988 Note that if REL_ALLOC is defined, matching would not use malloc for the | 1110 Note that if REL_ALLOC is defined, matching would not use malloc for the |
989 failure stack, but we would still use it for the register vectors; | 1111 failure stack, but we would still use it for the register vectors; |
990 so REL_ALLOC should not affect this. */ | 1112 so REL_ALLOC should not affect this. */ |
991 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) | 1113 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) |
992 #undef MATCH_MAY_ALLOCATE | 1114 #undef MATCH_MAY_ALLOCATE |
993 #endif | 1115 #endif |
994 | 1116 |
995 | 1117 |
1006 #endif | 1128 #endif |
1007 | 1129 |
1008 /* Roughly the maximum number of failure points on the stack. Would be | 1130 /* Roughly the maximum number of failure points on the stack. Would be |
1009 exactly that if always used MAX_FAILURE_ITEMS items each time we failed. | 1131 exactly that if always used MAX_FAILURE_ITEMS items each time we failed. |
1010 This is a variable only so users of regex can assign to it; we never | 1132 This is a variable only so users of regex can assign to it; we never |
1011 change it ourselves. */ | 1133 change it ourselves. */ |
1012 #if defined (MATCH_MAY_ALLOCATE) | 1134 #if defined (MATCH_MAY_ALLOCATE) |
1013 /* 4400 was enough to cause a crash on Alpha OSF/1, | 1135 /* 4400 was enough to cause a crash on Alpha OSF/1, |
1014 whose default stack limit is 2mb. */ | 1136 whose default stack limit is 2mb. */ |
1015 int re_max_failures = 20000; | 1137 int re_max_failures = 20000; |
1016 #else | 1138 #else |
1067 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | 1189 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. |
1068 | 1190 |
1069 Return 1 if succeeds, and 0 if either ran out of memory | 1191 Return 1 if succeeds, and 0 if either ran out of memory |
1070 allocating space for it or it was already too large. | 1192 allocating space for it or it was already too large. |
1071 | 1193 |
1072 REGEX_REALLOCATE_STACK requires `destination' be declared. */ | 1194 REGEX_REALLOCATE_STACK requires `destination' be declared. */ |
1073 | 1195 |
1074 #define DOUBLE_FAIL_STACK(fail_stack) \ | 1196 #define DOUBLE_FAIL_STACK(fail_stack) \ |
1075 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | 1197 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ |
1076 ? 0 \ | 1198 ? 0 \ |
1077 : ((fail_stack).stack = (fail_stack_elt_t *) \ | 1199 : ((fail_stack).stack = (fail_stack_elt_t *) \ |
1078 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ | 1200 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ |
1079 (fail_stack).size * sizeof (fail_stack_elt_t), \ | 1201 (fail_stack).size * sizeof (fail_stack_elt_t), \ |
1080 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | 1202 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ |
1081 \ | 1203 \ |
1082 (fail_stack).stack == NULL \ | 1204 (fail_stack).stack == NULL \ |
1083 ? 0 \ | 1205 ? 0 \ |
1084 : ((fail_stack).size <<= 1, \ | 1206 : ((fail_stack).size <<= 1, \ |
1085 1))) | 1207 1))) |
1086 | 1208 |
1087 | 1209 |
1088 /* Push pointer POINTER on FAIL_STACK. | 1210 /* Push pointer POINTER on FAIL_STACK. |
1089 Return 1 if was able to do so and 0 if ran out of memory allocating | 1211 Return 1 if was able to do so and 0 if ran out of memory allocating |
1090 space to do so. */ | 1212 space to do so. */ |
1095 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ | 1217 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ |
1096 1)) | 1218 1)) |
1097 | 1219 |
1098 /* Push a pointer value onto the failure stack. | 1220 /* Push a pointer value onto the failure stack. |
1099 Assumes the variable `fail_stack'. Probably should only | 1221 Assumes the variable `fail_stack'. Probably should only |
1100 be called from within `PUSH_FAILURE_POINT'. */ | 1222 be called from within `PUSH_FAILURE_POINT'. */ |
1101 #define PUSH_FAILURE_POINTER(item) \ | 1223 #define PUSH_FAILURE_POINTER(item) \ |
1102 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) | 1224 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) |
1103 | 1225 |
1104 /* This pushes an integer-valued item onto the failure stack. | 1226 /* This pushes an integer-valued item onto the failure stack. |
1105 Assumes the variable `fail_stack'. Probably should only | 1227 Assumes the variable `fail_stack'. Probably should only |
1106 be called from within `PUSH_FAILURE_POINT'. */ | 1228 be called from within `PUSH_FAILURE_POINT'. */ |
1107 #define PUSH_FAILURE_INT(item) \ | 1229 #define PUSH_FAILURE_INT(item) \ |
1108 fail_stack.stack[fail_stack.avail++].integer = (item) | 1230 fail_stack.stack[fail_stack.avail++].integer = (item) |
1109 | 1231 |
1110 /* Push a fail_stack_elt_t value onto the failure stack. | 1232 /* Push a fail_stack_elt_t value onto the failure stack. |
1111 Assumes the variable `fail_stack'. Probably should only | 1233 Assumes the variable `fail_stack'. Probably should only |
1112 be called from within `PUSH_FAILURE_POINT'. */ | 1234 be called from within `PUSH_FAILURE_POINT'. */ |
1113 #define PUSH_FAILURE_ELT(item) \ | 1235 #define PUSH_FAILURE_ELT(item) \ |
1114 fail_stack.stack[fail_stack.avail++] = (item) | 1236 fail_stack.stack[fail_stack.avail++] = (item) |
1115 | 1237 |
1116 /* These three POP... operations complement the three PUSH... operations. | 1238 /* These three POP... operations complement the three PUSH... operations. |
1117 All assume that `fail_stack' is nonempty. */ | 1239 All assume that `fail_stack' is nonempty. */ |
1142 do { \ | 1264 do { \ |
1143 char *destination; \ | 1265 char *destination; \ |
1144 /* Must be int, so when we don't save any registers, the arithmetic \ | 1266 /* Must be int, so when we don't save any registers, the arithmetic \ |
1145 of 0 + -1 isn't done as unsigned. */ \ | 1267 of 0 + -1 isn't done as unsigned. */ \ |
1146 int this_reg; \ | 1268 int this_reg; \ |
1147 \ | 1269 \ |
1148 DEBUG_STATEMENT (failure_id++); \ | 1270 DEBUG_STATEMENT (failure_id++); \ |
1149 DEBUG_STATEMENT (nfailure_points_pushed++); \ | 1271 DEBUG_STATEMENT (nfailure_points_pushed++); \ |
1150 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | 1272 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ |
1151 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | 1273 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ |
1152 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | 1274 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ |
1153 \ | 1275 \ |
1154 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | 1276 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ |
1155 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | 1277 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ |
1156 \ | 1278 \ |
1157 /* Ensure we have enough space allocated for what we will push. */ \ | 1279 /* Ensure we have enough space allocated for what we will push. */ \ |
1158 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | 1280 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ |
1159 { \ | 1281 { \ |
1160 if (!DOUBLE_FAIL_STACK (fail_stack)) \ | 1282 if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
1161 return failure_code; \ | 1283 return failure_code; \ |
1162 \ | 1284 \ |
1163 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | 1285 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ |
1164 (fail_stack).size); \ | 1286 (fail_stack).size); \ |
1165 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | 1287 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ |
1166 } \ | 1288 } \ |
1167 \ | 1289 \ |
1168 /* Push the info, starting with the registers. */ \ | 1290 /* Push the info, starting with the registers. */ \ |
1169 DEBUG_PRINT1 ("\n"); \ | 1291 DEBUG_PRINT1 ("\n"); \ |
1170 \ | 1292 \ |
1202 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | 1324 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ |
1203 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | 1325 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ |
1204 PUSH_FAILURE_POINTER (pattern_place); \ | 1326 PUSH_FAILURE_POINTER (pattern_place); \ |
1205 \ | 1327 \ |
1206 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | 1328 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ |
1207 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | 1329 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ |
1208 size2); \ | 1330 size2); \ |
1209 DEBUG_PRINT1 ("'\n"); \ | 1331 DEBUG_PRINT1 ("'\n"); \ |
1210 PUSH_FAILURE_POINTER (string_place); \ | 1332 PUSH_FAILURE_POINTER (string_place); \ |
1211 \ | 1333 \ |
1212 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | 1334 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ |
1249 LOW_REG, HIGH_REG -- the highest and lowest active registers. | 1371 LOW_REG, HIGH_REG -- the highest and lowest active registers. |
1250 REGSTART, REGEND -- arrays of string positions. | 1372 REGSTART, REGEND -- arrays of string positions. |
1251 REG_INFO -- array of information about each subexpression. | 1373 REG_INFO -- array of information about each subexpression. |
1252 | 1374 |
1253 Also assumes the variables `fail_stack' and (if debugging), `bufp', | 1375 Also assumes the variables `fail_stack' and (if debugging), `bufp', |
1254 `pend', `string1', `size1', `string2', and `size2'. */ | 1376 `pend', `string1', `size1', `string2', and `size2'. */ |
1255 | 1377 |
1256 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ | 1378 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ |
1257 { \ | 1379 { \ |
1258 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | 1380 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ |
1259 int this_reg; \ | 1381 int this_reg; \ |
1262 assert (!FAIL_STACK_EMPTY ()); \ | 1384 assert (!FAIL_STACK_EMPTY ()); \ |
1263 \ | 1385 \ |
1264 /* Remove failure points and point to how many regs pushed. */ \ | 1386 /* Remove failure points and point to how many regs pushed. */ \ |
1265 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | 1387 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ |
1266 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | 1388 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ |
1267 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | 1389 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ |
1268 \ | 1390 \ |
1269 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | 1391 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ |
1270 \ | 1392 \ |
1271 DEBUG_POP (&failure_id); \ | 1393 DEBUG_POP (&failure_id); \ |
1272 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | 1394 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ |
1294 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ | 1416 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ |
1295 \ | 1417 \ |
1296 if (1) \ | 1418 if (1) \ |
1297 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | 1419 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ |
1298 { \ | 1420 { \ |
1299 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | 1421 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ |
1300 \ | 1422 \ |
1301 reg_info[this_reg].word = POP_FAILURE_ELT (); \ | 1423 reg_info[this_reg].word = POP_FAILURE_ELT (); \ |
1302 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ | 1424 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ |
1303 \ | 1425 \ |
1304 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ | 1426 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
1305 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | 1427 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ |
1306 \ | 1428 \ |
1307 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ | 1429 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
1308 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | 1430 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ |
1309 } \ | 1431 } \ |
1310 else \ | 1432 else \ |
1311 { \ | 1433 { \ |
1312 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ | 1434 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ |
1313 { \ | 1435 { \ |
1339 { | 1461 { |
1340 fail_stack_elt_t word; | 1462 fail_stack_elt_t word; |
1341 struct | 1463 struct |
1342 { | 1464 { |
1343 /* This field is one if this group can match the empty string, | 1465 /* This field is one if this group can match the empty string, |
1344 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | 1466 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ |
1345 #define MATCH_NULL_UNSET_VALUE 3 | 1467 #define MATCH_NULL_UNSET_VALUE 3 |
1346 unsigned match_null_string_p : 2; | 1468 unsigned match_null_string_p : 2; |
1347 unsigned is_active : 1; | 1469 unsigned is_active : 1; |
1348 unsigned matched_something : 1; | 1470 unsigned matched_something : 1; |
1349 unsigned ever_matched_something : 1; | 1471 unsigned ever_matched_something : 1; |
1400 if (translate) c = (unsigned char) translate[c]; \ | 1522 if (translate) c = (unsigned char) translate[c]; \ |
1401 } while (0) | 1523 } while (0) |
1402 #endif | 1524 #endif |
1403 | 1525 |
1404 /* Fetch the next character in the uncompiled pattern, with no | 1526 /* Fetch the next character in the uncompiled pattern, with no |
1405 translation. */ | 1527 translation. */ |
1406 #define PATFETCH_RAW(c) \ | 1528 #define PATFETCH_RAW(c) \ |
1407 do {if (p == pend) return REG_EEND; \ | 1529 do {if (p == pend) return REG_EEND; \ |
1408 c = (unsigned char) *p++; \ | 1530 c = (unsigned char) *p++; \ |
1409 } while (0) | 1531 } while (0) |
1410 | 1532 |
1411 /* Go backwards one character in the pattern. */ | 1533 /* Go backwards one character in the pattern. */ |
1412 #define PATUNFETCH p-- | 1534 #define PATUNFETCH p-- |
1413 | 1535 |
1416 cast the subscript to translate because some data is declared as | 1538 cast the subscript to translate because some data is declared as |
1417 `char *', to avoid warnings when a string constant is passed. But | 1539 `char *', to avoid warnings when a string constant is passed. But |
1418 when we use a character as a subscript we must make it unsigned. */ | 1540 when we use a character as a subscript we must make it unsigned. */ |
1419 #ifndef TRANSLATE | 1541 #ifndef TRANSLATE |
1420 #define TRANSLATE(d) \ | 1542 #define TRANSLATE(d) \ |
1421 (translate ? (char) translate[(unsigned char) (d)] : (d)) | 1543 (translate ? (unsigned char) translate[(unsigned char) (d)] : (d)) |
1422 #endif | 1544 #endif |
1423 | 1545 |
1424 | 1546 |
1425 /* Macros for outputting the compiled pattern into `buffer'. */ | 1547 /* Macros for outputting the compiled pattern into `buffer'. */ |
1426 | 1548 |
1427 /* If the buffer isn't allocated when it comes in, use this. */ | 1549 /* If the buffer isn't allocated when it comes in, use this. */ |
1428 #define INIT_BUF_SIZE 32 | 1550 #define INIT_BUF_SIZE 32 |
1429 | 1551 |
1430 /* Make sure we have at least N more bytes of space in buffer. */ | 1552 /* Make sure we have at least N more bytes of space in buffer. */ |
1431 #define GET_BUFFER_SPACE(n) \ | 1553 #define GET_BUFFER_SPACE(n) \ |
1432 while (b - bufp->buffer + (n) > bufp->allocated) \ | 1554 while (b - bufp->buffer + (n) > bufp->allocated) \ |
1433 EXTEND_BUFFER () | 1555 EXTEND_BUFFER () |
1434 | 1556 |
1435 /* Make sure we have one more byte of buffer space and then add C to it. */ | 1557 /* Make sure we have one more byte of buffer space and then add C to it. */ |
1447 *b++ = (unsigned char) (c1); \ | 1569 *b++ = (unsigned char) (c1); \ |
1448 *b++ = (unsigned char) (c2); \ | 1570 *b++ = (unsigned char) (c2); \ |
1449 } while (0) | 1571 } while (0) |
1450 | 1572 |
1451 | 1573 |
1452 /* As with BUF_PUSH_2, except for three bytes. */ | 1574 /* As with BUF_PUSH_2, except for three bytes. */ |
1453 #define BUF_PUSH_3(c1, c2, c3) \ | 1575 #define BUF_PUSH_3(c1, c2, c3) \ |
1454 do { \ | 1576 do { \ |
1455 GET_BUFFER_SPACE (3); \ | 1577 GET_BUFFER_SPACE (3); \ |
1456 *b++ = (unsigned char) (c1); \ | 1578 *b++ = (unsigned char) (c1); \ |
1457 *b++ = (unsigned char) (c2); \ | 1579 *b++ = (unsigned char) (c2); \ |
1458 *b++ = (unsigned char) (c3); \ | 1580 *b++ = (unsigned char) (c3); \ |
1459 } while (0) | 1581 } while (0) |
1460 | 1582 |
1461 | 1583 |
1462 /* Store a jump with opcode OP at LOC to location TO. We store a | 1584 /* Store a jump with opcode OP at LOC to location TO. We store a |
1463 relative address offset by the three bytes the jump itself occupies. */ | 1585 relative address offset by the three bytes the jump itself occupies. */ |
1464 #define STORE_JUMP(op, loc, to) \ | 1586 #define STORE_JUMP(op, loc, to) \ |
1465 store_op1 (op, loc, (to) - (loc) - 3) | 1587 store_op1 (op, loc, (to) - (loc) - 3) |
1466 | 1588 |
1467 /* Likewise, for a two-argument jump. */ | 1589 /* Likewise, for a two-argument jump. */ |
1468 #define STORE_JUMP2(op, loc, to, arg) \ | 1590 #define STORE_JUMP2(op, loc, to, arg) \ |
1469 store_op2 (op, loc, (to) - (loc) - 3, arg) | 1591 store_op2 (op, loc, (to) - (loc) - 3, arg) |
1470 | 1592 |
1471 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | 1593 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ |
1472 #define INSERT_JUMP(op, loc, to) \ | 1594 #define INSERT_JUMP(op, loc, to) \ |
1473 insert_op1 (op, loc, (to) - (loc) - 3, b) | 1595 insert_op1 (op, loc, (to) - (loc) - 3, b) |
1474 | 1596 |
1475 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | 1597 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ |
1476 #define INSERT_JUMP2(op, loc, to, arg) \ | 1598 #define INSERT_JUMP2(op, loc, to, arg) \ |
1477 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | 1599 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) |
1478 | 1600 |
1479 | 1601 |
1480 /* This is not an arbitrary limit: the arguments which represent offsets | 1602 /* This is not an arbitrary limit: the arguments which represent offsets |
1481 into the pattern are two bytes long. So if 2^16 bytes turns out to | 1603 into the pattern are two bytes long. So if 2^16 bytes turns out to |
1482 be too small, many things would have to change. */ | 1604 be too small, many things would have to change. */ |
1483 #define MAX_BUF_SIZE (1L << 16) | 1605 #define MAX_BUF_SIZE (1L << 16) |
1484 | 1606 |
1485 | 1607 |
1486 /* Extend the buffer by twice its current size via realloc and | 1608 /* Extend the buffer by twice its current size via realloc and |
1487 reset the pointers that pointed into the old block to point to the | 1609 reset the pointers that pointed into the old block to point to the |
1488 correct places in the new one. If extending the buffer results in it | 1610 correct places in the new one. If extending the buffer results in it |
1489 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | 1611 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ |
1490 #define EXTEND_BUFFER() \ | 1612 #define EXTEND_BUFFER() \ |
1491 do { \ | 1613 do { \ |
1492 unsigned char *old_buffer = bufp->buffer; \ | 1614 unsigned char *old_buffer = bufp->buffer; \ |
1493 if (bufp->allocated == MAX_BUF_SIZE) \ | 1615 if (bufp->allocated == MAX_BUF_SIZE) \ |
1494 return REG_ESIZE; \ | 1616 return REG_ESIZE; \ |
1495 bufp->allocated <<= 1; \ | 1617 bufp->allocated <<= 1; \ |
1496 if (bufp->allocated > MAX_BUF_SIZE) \ | 1618 if (bufp->allocated > MAX_BUF_SIZE) \ |
1497 bufp->allocated = MAX_BUF_SIZE; \ | 1619 bufp->allocated = MAX_BUF_SIZE; \ |
1498 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | 1620 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ |
1499 if (bufp->buffer == NULL) \ | 1621 if (bufp->buffer == NULL) \ |
1500 return REG_ESPACE; \ | 1622 return REG_ESPACE; \ |
1501 /* If the buffer moved, move all the pointers into it. */ \ | 1623 /* If the buffer moved, move all the pointers into it. */ \ |
1502 if (old_buffer != bufp->buffer) \ | 1624 if (old_buffer != bufp->buffer) \ |
1503 { \ | 1625 { \ |
1504 b = (b - old_buffer) + bufp->buffer; \ | 1626 b = (b - old_buffer) + bufp->buffer; \ |
1505 begalt = (begalt - old_buffer) + bufp->buffer; \ | 1627 begalt = (begalt - old_buffer) + bufp->buffer; \ |
1506 if (fixup_alt_jump) \ | 1628 if (fixup_alt_jump) \ |
1507 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | 1629 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ |
1508 if (laststart) \ | 1630 if (laststart) \ |
1509 laststart = (laststart - old_buffer) + bufp->buffer; \ | 1631 laststart = (laststart - old_buffer) + bufp->buffer; \ |
1510 if (pending_exact) \ | 1632 if (pending_exact) \ |
1511 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | 1633 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ |
1512 } \ | 1634 } \ |
1513 } while (0) | 1635 } while (0) |
1514 | 1636 |
1515 | 1637 |
1516 /* Since we have one byte reserved for the register number argument to | 1638 /* Since we have one byte reserved for the register number argument to |
1524 | 1646 |
1525 | 1647 |
1526 /* Macros for the compile stack. */ | 1648 /* Macros for the compile stack. */ |
1527 | 1649 |
1528 /* Since offsets can go either forwards or backwards, this type needs to | 1650 /* Since offsets can go either forwards or backwards, this type needs to |
1529 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | 1651 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ |
1530 typedef int pattern_offset_t; | 1652 typedef int pattern_offset_t; |
1531 | 1653 |
1532 typedef struct | 1654 typedef struct |
1533 { | 1655 { |
1534 pattern_offset_t begalt_offset; | 1656 pattern_offset_t begalt_offset; |
1550 #define INIT_COMPILE_STACK_SIZE 32 | 1672 #define INIT_COMPILE_STACK_SIZE 32 |
1551 | 1673 |
1552 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | 1674 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) |
1553 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | 1675 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) |
1554 | 1676 |
1555 /* The next available element. */ | 1677 /* The next available element. */ |
1556 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | 1678 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) |
1557 | 1679 |
1558 | 1680 |
1681 /* Structure to manage work area for range table. */ | |
1682 struct range_table_work_area | |
1683 { | |
1684 int *table; /* actual work area. */ | |
1685 int allocated; /* allocated size for work area in bytes. */ | |
1686 int used; /* actually used size in words. */ | |
1687 }; | |
1688 | |
1689 /* Make sure that WORK_AREA can hold more N multibyte characters. */ | |
1690 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \ | |
1691 do { \ | |
1692 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \ | |
1693 { \ | |
1694 (work_area).allocated += 16 * sizeof (int); \ | |
1695 if ((work_area).table) \ | |
1696 (work_area).table \ | |
1697 = (int *) realloc ((work_area).table, (work_area).allocated); \ | |
1698 else \ | |
1699 (work_area).table \ | |
1700 = (int *) malloc ((work_area).allocated); \ | |
1701 if ((work_area).table == 0) \ | |
1702 FREE_STACK_RETURN (REG_ESPACE); \ | |
1703 } \ | |
1704 } while (0) | |
1705 | |
1706 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */ | |
1707 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \ | |
1708 do { \ | |
1709 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \ | |
1710 (work_area).table[(work_area).used++] = (range_start); \ | |
1711 (work_area).table[(work_area).used++] = (range_end); \ | |
1712 } while (0) | |
1713 | |
1714 /* Free allocated memory for WORK_AREA. */ | |
1715 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \ | |
1716 do { \ | |
1717 if ((work_area).table) \ | |
1718 free ((work_area).table); \ | |
1719 } while (0) | |
1720 | |
1721 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0) | |
1722 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used) | |
1723 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i]) | |
1724 | |
1725 | |
1559 /* Set the bit for character C in a list. */ | 1726 /* Set the bit for character C in a list. */ |
1560 #define SET_LIST_BIT(c) \ | 1727 #define SET_LIST_BIT(c) \ |
1561 (b[((unsigned char) (c)) / BYTEWIDTH] \ | 1728 (b[((unsigned char) (c)) / BYTEWIDTH] \ |
1562 |= 1 << (((unsigned char) c) % BYTEWIDTH)) | 1729 |= 1 << (((unsigned char) c) % BYTEWIDTH)) |
1563 | 1730 |
1564 | 1731 |
1565 /* Get the next unsigned number in the uncompiled pattern. */ | 1732 /* Get the next unsigned number in the uncompiled pattern. */ |
1566 #define GET_UNSIGNED_NUMBER(num) \ | 1733 #define GET_UNSIGNED_NUMBER(num) \ |
1567 { if (p != pend) \ | 1734 { if (p != pend) \ |
1568 { \ | 1735 { \ |
1569 PATFETCH (c); \ | 1736 PATFETCH (c); \ |
1570 while (ISDIGIT (c)) \ | 1737 while (ISDIGIT (c)) \ |
1571 { \ | 1738 { \ |
1572 if (num < 0) \ | 1739 if (num < 0) \ |
1573 num = 0; \ | 1740 num = 0; \ |
1574 num = num * 10 + c - '0'; \ | 1741 num = num * 10 + c - '0'; \ |
1575 if (p == pend) \ | 1742 if (p == pend) \ |
1576 break; \ | 1743 break; \ |
1577 PATFETCH (c); \ | 1744 PATFETCH (c); \ |
1578 } \ | 1745 } \ |
1579 } \ | 1746 } \ |
1580 } | 1747 } |
1581 | 1748 |
1582 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | 1749 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ |
1583 | 1750 |
1584 #define IS_CHAR_CLASS(string) \ | 1751 #define IS_CHAR_CLASS(string) \ |
1600 | 1767 |
1601 static fail_stack_type fail_stack; | 1768 static fail_stack_type fail_stack; |
1602 | 1769 |
1603 /* Size with which the following vectors are currently allocated. | 1770 /* Size with which the following vectors are currently allocated. |
1604 That is so we can make them bigger as needed, | 1771 That is so we can make them bigger as needed, |
1605 but never make them smaller. */ | 1772 but never make them smaller. */ |
1606 static int regs_allocated_size; | 1773 static int regs_allocated_size; |
1607 | 1774 |
1608 static const char ** regstart, ** regend; | 1775 static const char ** regstart, ** regend; |
1609 static const char ** old_regstart, ** old_regend; | 1776 static const char ** old_regstart, ** old_regend; |
1610 static const char **best_regstart, **best_regend; | 1777 static const char **best_regstart, **best_regend; |
1611 static register_info_type *reg_info; | 1778 static register_info_type *reg_info; |
1612 static const char **reg_dummy; | 1779 static const char **reg_dummy; |
1613 static register_info_type *reg_info_dummy; | 1780 static register_info_type *reg_info_dummy; |
1614 | 1781 |
1615 /* Make the register vectors big enough for NUM_REGS registers, | 1782 /* Make the register vectors big enough for NUM_REGS registers, |
1616 but don't make them smaller. */ | 1783 but don't make them smaller. */ |
1617 | 1784 |
1618 static | 1785 static |
1619 regex_grow_registers (num_regs) | 1786 regex_grow_registers (num_regs) |
1620 int num_regs; | 1787 int num_regs; |
1621 { | 1788 { |
1655 The `fastmap' and `newline_anchor' fields are neither | 1822 The `fastmap' and `newline_anchor' fields are neither |
1656 examined nor set. */ | 1823 examined nor set. */ |
1657 | 1824 |
1658 /* Return, freeing storage we allocated. */ | 1825 /* Return, freeing storage we allocated. */ |
1659 #define FREE_STACK_RETURN(value) \ | 1826 #define FREE_STACK_RETURN(value) \ |
1660 return (free (compile_stack.stack), value) | 1827 do { \ |
1828 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \ | |
1829 free (compile_stack.stack); \ | |
1830 return value; \ | |
1831 } while (0) | |
1661 | 1832 |
1662 static reg_errcode_t | 1833 static reg_errcode_t |
1663 regex_compile (pattern, size, syntax, bufp) | 1834 regex_compile (pattern, size, syntax, bufp) |
1664 const char *pattern; | 1835 const char *pattern; |
1665 int size; | 1836 int size; |
1667 struct re_pattern_buffer *bufp; | 1838 struct re_pattern_buffer *bufp; |
1668 { | 1839 { |
1669 /* We fetch characters from PATTERN here. Even though PATTERN is | 1840 /* We fetch characters from PATTERN here. Even though PATTERN is |
1670 `char *' (i.e., signed), we declare these variables as unsigned, so | 1841 `char *' (i.e., signed), we declare these variables as unsigned, so |
1671 they can be reliably used as array indices. */ | 1842 they can be reliably used as array indices. */ |
1672 register unsigned char c, c1; | 1843 register unsigned int c, c1; |
1673 | 1844 |
1674 /* A random temporary spot in PATTERN. */ | 1845 /* A random temporary spot in PATTERN. */ |
1675 const char *p1; | 1846 const char *p1; |
1676 | 1847 |
1677 /* Points to the end of the buffer, where we should append. */ | 1848 /* Points to the end of the buffer, where we should append. */ |
1704 /* Place in the uncompiled pattern (i.e., the {) to | 1875 /* Place in the uncompiled pattern (i.e., the {) to |
1705 which to go back if the interval is invalid. */ | 1876 which to go back if the interval is invalid. */ |
1706 const char *beg_interval; | 1877 const char *beg_interval; |
1707 | 1878 |
1708 /* Address of the place where a forward jump should go to the end of | 1879 /* Address of the place where a forward jump should go to the end of |
1709 the containing expression. Each alternative of an `or' -- except the | 1880 the containing expression. Each alternative of an `or' -- except the |
1710 last -- ends with a forward jump of this sort. */ | 1881 last -- ends with a forward jump of this sort. */ |
1711 unsigned char *fixup_alt_jump = 0; | 1882 unsigned char *fixup_alt_jump = 0; |
1712 | 1883 |
1713 /* Counts open-groups as they are encountered. Remembered for the | 1884 /* Counts open-groups as they are encountered. Remembered for the |
1714 matching close-group on the compile stack, so the same register | 1885 matching close-group on the compile stack, so the same register |
1715 number is put in the stop_memory as the start_memory. */ | 1886 number is put in the stop_memory as the start_memory. */ |
1716 regnum_t regnum = 0; | 1887 regnum_t regnum = 0; |
1888 | |
1889 /* Work area for range table of charset. */ | |
1890 struct range_table_work_area range_table_work; | |
1717 | 1891 |
1718 #ifdef DEBUG | 1892 #ifdef DEBUG |
1719 DEBUG_PRINT1 ("\nCompiling pattern: "); | 1893 DEBUG_PRINT1 ("\nCompiling pattern: "); |
1720 if (debug) | 1894 if (debug) |
1721 { | 1895 { |
1722 unsigned debug_count; | 1896 unsigned debug_count; |
1723 | 1897 |
1724 for (debug_count = 0; debug_count < size; debug_count++) | 1898 for (debug_count = 0; debug_count < size; debug_count++) |
1725 putchar (pattern[debug_count]); | 1899 putchar (pattern[debug_count]); |
1726 putchar ('\n'); | 1900 putchar ('\n'); |
1727 } | 1901 } |
1728 #endif /* DEBUG */ | 1902 #endif /* DEBUG */ |
1729 | 1903 |
1730 /* Initialize the compile stack. */ | 1904 /* Initialize the compile stack. */ |
1733 return REG_ESPACE; | 1907 return REG_ESPACE; |
1734 | 1908 |
1735 compile_stack.size = INIT_COMPILE_STACK_SIZE; | 1909 compile_stack.size = INIT_COMPILE_STACK_SIZE; |
1736 compile_stack.avail = 0; | 1910 compile_stack.avail = 0; |
1737 | 1911 |
1912 range_table_work.table = 0; | |
1913 range_table_work.allocated = 0; | |
1914 | |
1738 /* Initialize the pattern buffer. */ | 1915 /* Initialize the pattern buffer. */ |
1739 bufp->syntax = syntax; | 1916 bufp->syntax = syntax; |
1740 bufp->fastmap_accurate = 0; | 1917 bufp->fastmap_accurate = 0; |
1741 bufp->not_bol = bufp->not_eol = 0; | 1918 bufp->not_bol = bufp->not_eol = 0; |
1742 | 1919 |
1746 bufp->used = 0; | 1923 bufp->used = 0; |
1747 | 1924 |
1748 /* Always count groups, whether or not bufp->no_sub is set. */ | 1925 /* Always count groups, whether or not bufp->no_sub is set. */ |
1749 bufp->re_nsub = 0; | 1926 bufp->re_nsub = 0; |
1750 | 1927 |
1928 #ifdef emacs | |
1929 /* bufp->multibyte is set before regex_compile is called, so don't alter | |
1930 it. */ | |
1931 #else /* not emacs */ | |
1932 /* Nothing is recognized as a multibyte character. */ | |
1933 bufp->multibyte = 0; | |
1934 #endif | |
1935 | |
1751 #if !defined (emacs) && !defined (SYNTAX_TABLE) | 1936 #if !defined (emacs) && !defined (SYNTAX_TABLE) |
1752 /* Initialize the syntax table. */ | 1937 /* Initialize the syntax table. */ |
1753 init_syntax_once (); | 1938 init_syntax_once (); |
1754 #endif | 1939 #endif |
1755 | 1940 |
1756 if (bufp->allocated == 0) | 1941 if (bufp->allocated == 0) |
1757 { | 1942 { |
1758 if (bufp->buffer) | 1943 if (bufp->buffer) |
1759 { /* If zero allocated, but buffer is non-null, try to realloc | 1944 { /* If zero allocated, but buffer is non-null, try to realloc |
1760 enough space. This loses if buffer's address is bogus, but | 1945 enough space. This loses if buffer's address is bogus, but |
1761 that is the user's responsibility. */ | 1946 that is the user's responsibility. */ |
1762 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | 1947 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); |
1763 } | 1948 } |
1764 else | 1949 else |
1765 { /* Caller did not allocate a buffer. Do it for them. */ | 1950 { /* Caller did not allocate a buffer. Do it for them. */ |
1766 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | 1951 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); |
1767 } | 1952 } |
1768 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); | 1953 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); |
1769 | 1954 |
1770 bufp->allocated = INIT_BUF_SIZE; | 1955 bufp->allocated = INIT_BUF_SIZE; |
1771 } | 1956 } |
1772 | 1957 |
1776 while (p != pend) | 1961 while (p != pend) |
1777 { | 1962 { |
1778 PATFETCH (c); | 1963 PATFETCH (c); |
1779 | 1964 |
1780 switch (c) | 1965 switch (c) |
1781 { | 1966 { |
1782 case '^': | 1967 case '^': |
1783 { | 1968 { |
1784 if ( /* If at start of pattern, it's an operator. */ | 1969 if ( /* If at start of pattern, it's an operator. */ |
1785 p == pattern + 1 | 1970 p == pattern + 1 |
1786 /* If context independent, it's an operator. */ | 1971 /* If context independent, it's an operator. */ |
1787 || syntax & RE_CONTEXT_INDEP_ANCHORS | 1972 || syntax & RE_CONTEXT_INDEP_ANCHORS |
1788 /* Otherwise, depends on what's come before. */ | 1973 /* Otherwise, depends on what's come before. */ |
1789 || at_begline_loc_p (pattern, p, syntax)) | 1974 || at_begline_loc_p (pattern, p, syntax)) |
1790 BUF_PUSH (begline); | 1975 BUF_PUSH (begline); |
1791 else | 1976 else |
1792 goto normal_char; | 1977 goto normal_char; |
1793 } | 1978 } |
1979 break; | |
1980 | |
1981 | |
1982 case '$': | |
1983 { | |
1984 if ( /* If at end of pattern, it's an operator. */ | |
1985 p == pend | |
1986 /* If context independent, it's an operator. */ | |
1987 || syntax & RE_CONTEXT_INDEP_ANCHORS | |
1988 /* Otherwise, depends on what's next. */ | |
1989 || at_endline_loc_p (p, pend, syntax)) | |
1990 BUF_PUSH (endline); | |
1991 else | |
1992 goto normal_char; | |
1993 } | |
1994 break; | |
1995 | |
1996 | |
1997 case '+': | |
1998 case '?': | |
1999 if ((syntax & RE_BK_PLUS_QM) | |
2000 || (syntax & RE_LIMITED_OPS)) | |
2001 goto normal_char; | |
2002 handle_plus: | |
2003 case '*': | |
2004 /* If there is no previous pattern... */ | |
2005 if (!laststart) | |
2006 { | |
2007 if (syntax & RE_CONTEXT_INVALID_OPS) | |
2008 FREE_STACK_RETURN (REG_BADRPT); | |
2009 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | |
2010 goto normal_char; | |
2011 } | |
2012 | |
2013 { | |
2014 /* Are we optimizing this jump? */ | |
2015 boolean keep_string_p = false; | |
2016 | |
2017 /* 1 means zero (many) matches is allowed. */ | |
2018 char zero_times_ok = 0, many_times_ok = 0; | |
2019 | |
2020 /* If there is a sequence of repetition chars, collapse it | |
2021 down to just one (the right one). We can't combine | |
2022 interval operators with these because of, e.g., `a{2}*', | |
2023 which should only match an even number of `a's. */ | |
2024 | |
2025 for (;;) | |
2026 { | |
2027 zero_times_ok |= c != '+'; | |
2028 many_times_ok |= c != '?'; | |
2029 | |
2030 if (p == pend) | |
2031 break; | |
2032 | |
2033 PATFETCH (c); | |
2034 | |
2035 if (c == '*' | |
2036 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | |
2037 ; | |
2038 | |
2039 else if (syntax & RE_BK_PLUS_QM && c == '\\') | |
2040 { | |
2041 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
2042 | |
2043 PATFETCH (c1); | |
2044 if (!(c1 == '+' || c1 == '?')) | |
2045 { | |
2046 PATUNFETCH; | |
2047 PATUNFETCH; | |
2048 break; | |
2049 } | |
2050 | |
2051 c = c1; | |
2052 } | |
2053 else | |
2054 { | |
2055 PATUNFETCH; | |
2056 break; | |
2057 } | |
2058 | |
2059 /* If we get here, we found another repeat character. */ | |
2060 } | |
2061 | |
2062 /* Star, etc. applied to an empty pattern is equivalent | |
2063 to an empty pattern. */ | |
2064 if (!laststart) | |
2065 break; | |
2066 | |
2067 /* Now we know whether or not zero matches is allowed | |
2068 and also whether or not two or more matches is allowed. */ | |
2069 if (many_times_ok) | |
2070 { /* More than one repetition is allowed, so put in at the | |
2071 end a backward relative jump from `b' to before the next | |
2072 jump we're going to put in below (which jumps from | |
2073 laststart to after this jump). | |
2074 | |
2075 But if we are at the `*' in the exact sequence `.*\n', | |
2076 insert an unconditional jump backwards to the ., | |
2077 instead of the beginning of the loop. This way we only | |
2078 push a failure point once, instead of every time | |
2079 through the loop. */ | |
2080 assert (p - 1 > pattern); | |
2081 | |
2082 /* Allocate the space for the jump. */ | |
2083 GET_BUFFER_SPACE (3); | |
2084 | |
2085 /* We know we are not at the first character of the pattern, | |
2086 because laststart was nonzero. And we've already | |
2087 incremented `p', by the way, to be the character after | |
2088 the `*'. Do we have to do something analogous here | |
2089 for null bytes, because of RE_DOT_NOT_NULL? */ | |
2090 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | |
2091 && zero_times_ok | |
2092 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') | |
2093 && !(syntax & RE_DOT_NEWLINE)) | |
2094 { /* We have .*\n. */ | |
2095 STORE_JUMP (jump, b, laststart); | |
2096 keep_string_p = true; | |
2097 } | |
2098 else | |
2099 /* Anything else. */ | |
2100 STORE_JUMP (maybe_pop_jump, b, laststart - 3); | |
2101 | |
2102 /* We've added more stuff to the buffer. */ | |
2103 b += 3; | |
2104 } | |
2105 | |
2106 /* On failure, jump from laststart to b + 3, which will be the | |
2107 end of the buffer after this jump is inserted. */ | |
2108 GET_BUFFER_SPACE (3); | |
2109 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | |
2110 : on_failure_jump, | |
2111 laststart, b + 3); | |
2112 pending_exact = 0; | |
2113 b += 3; | |
2114 | |
2115 if (!zero_times_ok) | |
2116 { | |
2117 /* At least one repetition is required, so insert a | |
2118 `dummy_failure_jump' before the initial | |
2119 `on_failure_jump' instruction of the loop. This | |
2120 effects a skip over that instruction the first time | |
2121 we hit that loop. */ | |
2122 GET_BUFFER_SPACE (3); | |
2123 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | |
2124 b += 3; | |
2125 } | |
2126 } | |
1794 break; | 2127 break; |
1795 | 2128 |
1796 | 2129 |
1797 case '$': | 2130 case '.': |
1798 { | 2131 laststart = b; |
1799 if ( /* If at end of pattern, it's an operator. */ | 2132 BUF_PUSH (anychar); |
1800 p == pend | 2133 break; |
1801 /* If context independent, it's an operator. */ | 2134 |
1802 || syntax & RE_CONTEXT_INDEP_ANCHORS | 2135 |
1803 /* Otherwise, depends on what's next. */ | 2136 case '[': |
1804 || at_endline_loc_p (p, pend, syntax)) | 2137 { |
1805 BUF_PUSH (endline); | 2138 CLEAR_RANGE_TABLE_WORK_USED (range_table_work); |
1806 else | 2139 |
1807 goto normal_char; | 2140 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
1808 } | 2141 |
1809 break; | 2142 /* Ensure that we have enough space to push a charset: the |
1810 | 2143 opcode, the length count, and the bitset; 34 bytes in all. */ |
1811 | 2144 GET_BUFFER_SPACE (34); |
1812 case '+': | 2145 |
1813 case '?': | 2146 laststart = b; |
1814 if ((syntax & RE_BK_PLUS_QM) | 2147 |
1815 || (syntax & RE_LIMITED_OPS)) | 2148 /* We test `*p == '^' twice, instead of using an if |
1816 goto normal_char; | 2149 statement, so we only need one BUF_PUSH. */ |
1817 handle_plus: | 2150 BUF_PUSH (*p == '^' ? charset_not : charset); |
1818 case '*': | 2151 if (*p == '^') |
1819 /* If there is no previous pattern... */ | 2152 p++; |
1820 if (!laststart) | 2153 |
1821 { | 2154 /* Remember the first position in the bracket expression. */ |
1822 if (syntax & RE_CONTEXT_INVALID_OPS) | 2155 p1 = p; |
1823 FREE_STACK_RETURN (REG_BADRPT); | 2156 |
1824 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | 2157 /* Push the number of bytes in the bitmap. */ |
1825 goto normal_char; | 2158 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); |
1826 } | 2159 |
1827 | 2160 /* Clear the whole map. */ |
1828 { | 2161 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); |
1829 /* Are we optimizing this jump? */ | 2162 |
1830 boolean keep_string_p = false; | 2163 /* charset_not matches newline according to a syntax bit. */ |
1831 | 2164 if ((re_opcode_t) b[-2] == charset_not |
1832 /* 1 means zero (many) matches is allowed. */ | 2165 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) |
1833 char zero_times_ok = 0, many_times_ok = 0; | 2166 SET_LIST_BIT ('\n'); |
1834 | 2167 |
1835 /* If there is a sequence of repetition chars, collapse it | 2168 /* Read in characters and ranges, setting map bits. */ |
1836 down to just one (the right one). We can't combine | 2169 for (;;) |
1837 interval operators with these because of, e.g., `a{2}*', | 2170 { |
1838 which should only match an even number of `a's. */ | 2171 int len; |
1839 | 2172 boolean escaped_char = false; |
1840 for (;;) | 2173 |
1841 { | 2174 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
1842 zero_times_ok |= c != '+'; | 2175 |
1843 many_times_ok |= c != '?'; | 2176 PATFETCH (c); |
1844 | 2177 |
1845 if (p == pend) | 2178 /* \ might escape characters inside [...] and [^...]. */ |
1846 break; | 2179 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') |
1847 | 2180 { |
1848 PATFETCH (c); | 2181 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
1849 | 2182 |
1850 if (c == '*' | 2183 PATFETCH (c); |
1851 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | 2184 escaped_char = true; |
1852 ; | 2185 } |
1853 | |
1854 else if (syntax & RE_BK_PLUS_QM && c == '\\') | |
1855 { | |
1856 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
1857 | |
1858 PATFETCH (c1); | |
1859 if (!(c1 == '+' || c1 == '?')) | |
1860 { | |
1861 PATUNFETCH; | |
1862 PATUNFETCH; | |
1863 break; | |
1864 } | |
1865 | |
1866 c = c1; | |
1867 } | |
1868 else | 2186 else |
1869 { | 2187 { |
2188 /* Could be the end of the bracket expression. If it's | |
2189 not (i.e., when the bracket expression is `[]' so | |
2190 far), the ']' character bit gets set way below. */ | |
2191 if (c == ']' && p != p1 + 1) | |
2192 break; | |
2193 } | |
2194 | |
2195 /* If C indicates start of multibyte char, get the | |
2196 actual character code in C, and set the pattern | |
2197 pointer P to the next character boundary. */ | |
2198 if (bufp->multibyte && BASE_LEADING_CODE_P (c)) | |
2199 { | |
1870 PATUNFETCH; | 2200 PATUNFETCH; |
1871 break; | 2201 c = STRING_CHAR_AND_LENGTH (p, pend - p, len); |
1872 } | 2202 p += len; |
1873 | 2203 } |
1874 /* If we get here, we found another repeat character. */ | 2204 /* What should we do for the character which is |
1875 } | 2205 greater than 0x7F, but not BASE_LEADING_CODE_P? |
1876 | 2206 XXX */ |
1877 /* Star, etc. applied to an empty pattern is equivalent | 2207 |
1878 to an empty pattern. */ | 2208 /* See if we're at the beginning of a possible character |
1879 if (!laststart) | 2209 class. */ |
1880 break; | 2210 |
1881 | 2211 else if (!escaped_char && |
1882 /* Now we know whether or not zero matches is allowed | 2212 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') |
1883 and also whether or not two or more matches is allowed. */ | 2213 { /* Leave room for the null. */ |
1884 if (many_times_ok) | 2214 char str[CHAR_CLASS_MAX_LENGTH + 1]; |
1885 { /* More than one repetition is allowed, so put in at the | 2215 |
1886 end a backward relative jump from `b' to before the next | 2216 PATFETCH (c); |
1887 jump we're going to put in below (which jumps from | 2217 c1 = 0; |
1888 laststart to after this jump). | 2218 |
1889 | 2219 /* If pattern is `[[:'. */ |
1890 But if we are at the `*' in the exact sequence `.*\n', | 2220 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
1891 insert an unconditional jump backwards to the ., | 2221 |
1892 instead of the beginning of the loop. This way we only | 2222 for (;;) |
1893 push a failure point once, instead of every time | 2223 { |
1894 through the loop. */ | 2224 PATFETCH (c); |
1895 assert (p - 1 > pattern); | 2225 if (c == ':' || c == ']' || p == pend |
1896 | 2226 || c1 == CHAR_CLASS_MAX_LENGTH) |
1897 /* Allocate the space for the jump. */ | 2227 break; |
1898 GET_BUFFER_SPACE (3); | 2228 str[c1++] = c; |
1899 | 2229 } |
1900 /* We know we are not at the first character of the pattern, | 2230 str[c1] = '\0'; |
1901 because laststart was nonzero. And we've already | 2231 |
1902 incremented `p', by the way, to be the character after | 2232 /* If isn't a word bracketed by `[:' and `:]': |
1903 the `*'. Do we have to do something analogous here | 2233 undo the ending character, the letters, and |
1904 for null bytes, because of RE_DOT_NOT_NULL? */ | 2234 leave the leading `:' and `[' (but set bits for |
1905 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | 2235 them). */ |
1906 && zero_times_ok | 2236 if (c == ':' && *p == ']') |
1907 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') | 2237 { |
1908 && !(syntax & RE_DOT_NEWLINE)) | 2238 int ch; |
1909 { /* We have .*\n. */ | 2239 boolean is_alnum = STREQ (str, "alnum"); |
1910 STORE_JUMP (jump, b, laststart); | 2240 boolean is_alpha = STREQ (str, "alpha"); |
1911 keep_string_p = true; | 2241 boolean is_blank = STREQ (str, "blank"); |
1912 } | 2242 boolean is_cntrl = STREQ (str, "cntrl"); |
1913 else | 2243 boolean is_digit = STREQ (str, "digit"); |
1914 /* Anything else. */ | 2244 boolean is_graph = STREQ (str, "graph"); |
1915 STORE_JUMP (maybe_pop_jump, b, laststart - 3); | 2245 boolean is_lower = STREQ (str, "lower"); |
1916 | 2246 boolean is_print = STREQ (str, "print"); |
1917 /* We've added more stuff to the buffer. */ | 2247 boolean is_punct = STREQ (str, "punct"); |
1918 b += 3; | 2248 boolean is_space = STREQ (str, "space"); |
1919 } | 2249 boolean is_upper = STREQ (str, "upper"); |
1920 | 2250 boolean is_xdigit = STREQ (str, "xdigit"); |
1921 /* On failure, jump from laststart to b + 3, which will be the | 2251 |
1922 end of the buffer after this jump is inserted. */ | 2252 if (!IS_CHAR_CLASS (str)) |
1923 GET_BUFFER_SPACE (3); | |
1924 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | |
1925 : on_failure_jump, | |
1926 laststart, b + 3); | |
1927 pending_exact = 0; | |
1928 b += 3; | |
1929 | |
1930 if (!zero_times_ok) | |
1931 { | |
1932 /* At least one repetition is required, so insert a | |
1933 `dummy_failure_jump' before the initial | |
1934 `on_failure_jump' instruction of the loop. This | |
1935 effects a skip over that instruction the first time | |
1936 we hit that loop. */ | |
1937 GET_BUFFER_SPACE (3); | |
1938 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | |
1939 b += 3; | |
1940 } | |
1941 } | |
1942 break; | |
1943 | |
1944 | |
1945 case '.': | |
1946 laststart = b; | |
1947 BUF_PUSH (anychar); | |
1948 break; | |
1949 | |
1950 | |
1951 case '[': | |
1952 { | |
1953 boolean had_char_class = false; | |
1954 | |
1955 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
1956 | |
1957 /* Ensure that we have enough space to push a charset: the | |
1958 opcode, the length count, and the bitset; 34 bytes in all. */ | |
1959 GET_BUFFER_SPACE (34); | |
1960 | |
1961 laststart = b; | |
1962 | |
1963 /* We test `*p == '^' twice, instead of using an if | |
1964 statement, so we only need one BUF_PUSH. */ | |
1965 BUF_PUSH (*p == '^' ? charset_not : charset); | |
1966 if (*p == '^') | |
1967 p++; | |
1968 | |
1969 /* Remember the first position in the bracket expression. */ | |
1970 p1 = p; | |
1971 | |
1972 /* Push the number of bytes in the bitmap. */ | |
1973 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | |
1974 | |
1975 /* Clear the whole map. */ | |
1976 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); | |
1977 | |
1978 /* charset_not matches newline according to a syntax bit. */ | |
1979 if ((re_opcode_t) b[-2] == charset_not | |
1980 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | |
1981 SET_LIST_BIT ('\n'); | |
1982 | |
1983 /* Read in characters and ranges, setting map bits. */ | |
1984 for (;;) | |
1985 { | |
1986 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
1987 | |
1988 PATFETCH (c); | |
1989 | |
1990 /* \ might escape characters inside [...] and [^...]. */ | |
1991 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | |
1992 { | |
1993 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | |
1994 | |
1995 PATFETCH (c1); | |
1996 SET_LIST_BIT (c1); | |
1997 continue; | |
1998 } | |
1999 | |
2000 /* Could be the end of the bracket expression. If it's | |
2001 not (i.e., when the bracket expression is `[]' so | |
2002 far), the ']' character bit gets set way below. */ | |
2003 if (c == ']' && p != p1 + 1) | |
2004 break; | |
2005 | |
2006 /* Look ahead to see if it's a range when the last thing | |
2007 was a character class. */ | |
2008 if (had_char_class && c == '-' && *p != ']') | |
2009 FREE_STACK_RETURN (REG_ERANGE); | |
2010 | |
2011 /* Look ahead to see if it's a range when the last thing | |
2012 was a character: if this is a hyphen not at the | |
2013 beginning or the end of a list, then it's the range | |
2014 operator. */ | |
2015 if (c == '-' | |
2016 && !(p - 2 >= pattern && p[-2] == '[') | |
2017 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | |
2018 && *p != ']') | |
2019 { | |
2020 reg_errcode_t ret | |
2021 = compile_range (&p, pend, translate, syntax, b); | |
2022 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | |
2023 } | |
2024 | |
2025 else if (p[0] == '-' && p[1] != ']') | |
2026 { /* This handles ranges made up of characters only. */ | |
2027 reg_errcode_t ret; | |
2028 | |
2029 /* Move past the `-'. */ | |
2030 PATFETCH (c1); | |
2031 | |
2032 ret = compile_range (&p, pend, translate, syntax, b); | |
2033 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); | |
2034 } | |
2035 | |
2036 /* See if we're at the beginning of a possible character | |
2037 class. */ | |
2038 | |
2039 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | |
2040 { /* Leave room for the null. */ | |
2041 char str[CHAR_CLASS_MAX_LENGTH + 1]; | |
2042 | |
2043 PATFETCH (c); | |
2044 c1 = 0; | |
2045 | |
2046 /* If pattern is `[[:'. */ | |
2047 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | |
2048 | |
2049 for (;;) | |
2050 { | |
2051 PATFETCH (c); | |
2052 if (c == ':' || c == ']' || p == pend | |
2053 || c1 == CHAR_CLASS_MAX_LENGTH) | |
2054 break; | |
2055 str[c1++] = c; | |
2056 } | |
2057 str[c1] = '\0'; | |
2058 | |
2059 /* If isn't a word bracketed by `[:' and:`]': | |
2060 undo the ending character, the letters, and leave | |
2061 the leading `:' and `[' (but set bits for them). */ | |
2062 if (c == ':' && *p == ']') | |
2063 { | |
2064 int ch; | |
2065 boolean is_alnum = STREQ (str, "alnum"); | |
2066 boolean is_alpha = STREQ (str, "alpha"); | |
2067 boolean is_blank = STREQ (str, "blank"); | |
2068 boolean is_cntrl = STREQ (str, "cntrl"); | |
2069 boolean is_digit = STREQ (str, "digit"); | |
2070 boolean is_graph = STREQ (str, "graph"); | |
2071 boolean is_lower = STREQ (str, "lower"); | |
2072 boolean is_print = STREQ (str, "print"); | |
2073 boolean is_punct = STREQ (str, "punct"); | |
2074 boolean is_space = STREQ (str, "space"); | |
2075 boolean is_upper = STREQ (str, "upper"); | |
2076 boolean is_xdigit = STREQ (str, "xdigit"); | |
2077 | |
2078 if (!IS_CHAR_CLASS (str)) | |
2079 FREE_STACK_RETURN (REG_ECTYPE); | 2253 FREE_STACK_RETURN (REG_ECTYPE); |
2080 | 2254 |
2081 /* Throw away the ] at the end of the character | 2255 /* Throw away the ] at the end of the character |
2082 class. */ | 2256 class. */ |
2083 PATFETCH (c); | 2257 PATFETCH (c); |
2084 | 2258 |
2085 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); | 2259 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
2086 | 2260 |
2087 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | 2261 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) |
2088 { | 2262 { |
2089 int translated = TRANSLATE (ch); | 2263 int translated = TRANSLATE (ch); |
2090 /* This was split into 3 if's to | 2264 /* This was split into 3 if's to |
2091 avoid an arbitrary limit in some compiler. */ | 2265 avoid an arbitrary limit in some compiler. */ |
2092 if ( (is_alnum && ISALNUM (ch)) | 2266 if ( (is_alnum && ISALNUM (ch)) |
2093 || (is_alpha && ISALPHA (ch)) | 2267 || (is_alpha && ISALPHA (ch)) |
2094 || (is_blank && ISBLANK (ch)) | 2268 || (is_blank && ISBLANK (ch)) |
2095 || (is_cntrl && ISCNTRL (ch))) | 2269 || (is_cntrl && ISCNTRL (ch))) |
2096 SET_LIST_BIT (translated); | 2270 SET_LIST_BIT (translated); |
2097 if ( (is_digit && ISDIGIT (ch)) | 2271 if ( (is_digit && ISDIGIT (ch)) |
2098 || (is_graph && ISGRAPH (ch)) | 2272 || (is_graph && ISGRAPH (ch)) |
2099 || (is_lower && ISLOWER (ch)) | 2273 || (is_lower && ISLOWER (ch)) |
2100 || (is_print && ISPRINT (ch))) | 2274 || (is_print && ISPRINT (ch))) |
2101 SET_LIST_BIT (translated); | 2275 SET_LIST_BIT (translated); |
2102 if ( (is_punct && ISPUNCT (ch)) | 2276 if ( (is_punct && ISPUNCT (ch)) |
2103 || (is_space && ISSPACE (ch)) | 2277 || (is_space && ISSPACE (ch)) |
2104 || (is_upper && ISUPPER (ch)) | 2278 || (is_upper && ISUPPER (ch)) |
2105 || (is_xdigit && ISXDIGIT (ch))) | 2279 || (is_xdigit && ISXDIGIT (ch))) |
2106 SET_LIST_BIT (translated); | 2280 SET_LIST_BIT (translated); |
2107 } | 2281 } |
2108 had_char_class = true; | 2282 |
2283 /* Repeat the loop. */ | |
2284 continue; | |
2285 } | |
2286 else | |
2287 { | |
2288 c1++; | |
2289 while (c1--) | |
2290 PATUNFETCH; | |
2291 SET_LIST_BIT ('['); | |
2292 | |
2293 /* Because the `:' may starts the range, we | |
2294 can't simply set bit and repeat the loop. | |
2295 Instead, just set it to C and handle below. */ | |
2296 c = ':'; | |
2297 } | |
2298 } | |
2299 | |
2300 if (p < pend && p[0] == '-' && p[1] != ']') | |
2301 { | |
2302 | |
2303 /* Discard the `-'. */ | |
2304 PATFETCH (c1); | |
2305 | |
2306 /* Fetch the character which ends the range. */ | |
2307 PATFETCH (c1); | |
2308 if (bufp->multibyte && BASE_LEADING_CODE_P (c1)) | |
2309 { | |
2310 PATUNFETCH; | |
2311 c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len); | |
2312 p += len; | |
2313 } | |
2314 | |
2315 if (!SAME_CHARSET_P (c, c1)) | |
2316 FREE_STACK_RETURN (REG_ERANGE); | |
2317 } | |
2318 else | |
2319 /* Range from C to C. */ | |
2320 c1 = c; | |
2321 | |
2322 /* Set the range ... */ | |
2323 if (SINGLE_BYTE_CHAR_P (c)) | |
2324 /* ... into bitmap. */ | |
2325 { | |
2326 unsigned this_char; | |
2327 int range_start = c, range_end = c1; | |
2328 | |
2329 /* If the start is after the end, the range is empty. */ | |
2330 if (range_start > range_end) | |
2331 { | |
2332 if (syntax & RE_NO_EMPTY_RANGES) | |
2333 FREE_STACK_RETURN (REG_ERANGE); | |
2334 /* Else, repeat the loop. */ | |
2109 } | 2335 } |
2110 else | 2336 else |
2111 { | 2337 { |
2112 c1++; | 2338 for (this_char = range_start; this_char <= range_end; |
2113 while (c1--) | 2339 this_char++) |
2114 PATUNFETCH; | 2340 SET_LIST_BIT (TRANSLATE (this_char)); |
2115 SET_LIST_BIT ('['); | 2341 } |
2116 SET_LIST_BIT (':'); | 2342 } |
2117 had_char_class = false; | |
2118 } | |
2119 } | |
2120 else | 2343 else |
2121 { | 2344 /* ... into range table. */ |
2122 had_char_class = false; | 2345 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1); |
2123 SET_LIST_BIT (c); | |
2124 } | |
2125 } | 2346 } |
2126 | 2347 |
2127 /* Discard any (non)matching list bytes that are all 0 at the | 2348 /* Discard any (non)matching list bytes that are all 0 at the |
2128 end of the map. Decrease the map-length byte too. */ | 2349 end of the map. Decrease the map-length byte too. */ |
2129 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | 2350 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) |
2130 b[-1]--; | 2351 b[-1]--; |
2131 b += b[-1]; | 2352 b += b[-1]; |
2132 } | 2353 |
2133 break; | 2354 /* Build real range table from work area. */ |
2355 if (RANGE_TABLE_WORK_USED (range_table_work)) | |
2356 { | |
2357 int i; | |
2358 int used = RANGE_TABLE_WORK_USED (range_table_work); | |
2359 | |
2360 /* Allocate space for COUNT + RANGE_TABLE. Needs two | |
2361 bytes for COUNT and three bytes for each character. */ | |
2362 GET_BUFFER_SPACE (2 + used * 3); | |
2363 | |
2364 /* Indicate the existence of range table. */ | |
2365 laststart[1] |= 0x80; | |
2366 | |
2367 STORE_NUMBER_AND_INCR (b, used / 2); | |
2368 for (i = 0; i < used; i++) | |
2369 STORE_CHARACTER_AND_INCR | |
2370 (b, RANGE_TABLE_WORK_ELT (range_table_work, i)); | |
2371 } | |
2372 } | |
2373 break; | |
2134 | 2374 |
2135 | 2375 |
2136 case '(': | 2376 case '(': |
2137 if (syntax & RE_NO_BK_PARENS) | 2377 if (syntax & RE_NO_BK_PARENS) |
2138 goto handle_open; | 2378 goto handle_open; |
2139 else | 2379 else |
2140 goto normal_char; | 2380 goto normal_char; |
2141 | 2381 |
2142 | 2382 |
2143 case ')': | 2383 case ')': |
2144 if (syntax & RE_NO_BK_PARENS) | 2384 if (syntax & RE_NO_BK_PARENS) |
2145 goto handle_close; | 2385 goto handle_close; |
2146 else | 2386 else |
2147 goto normal_char; | 2387 goto normal_char; |
2148 | 2388 |
2149 | 2389 |
2150 case '\n': | 2390 case '\n': |
2151 if (syntax & RE_NEWLINE_ALT) | 2391 if (syntax & RE_NEWLINE_ALT) |
2152 goto handle_alt; | 2392 goto handle_alt; |
2153 else | 2393 else |
2154 goto normal_char; | 2394 goto normal_char; |
2155 | 2395 |
2156 | 2396 |
2157 case '|': | 2397 case '|': |
2158 if (syntax & RE_NO_BK_VBAR) | 2398 if (syntax & RE_NO_BK_VBAR) |
2159 goto handle_alt; | 2399 goto handle_alt; |
2160 else | 2400 else |
2161 goto normal_char; | 2401 goto normal_char; |
2162 | 2402 |
2163 | 2403 |
2164 case '{': | 2404 case '{': |
2165 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | 2405 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) |
2166 goto handle_interval; | 2406 goto handle_interval; |
2167 else | 2407 else |
2168 goto normal_char; | 2408 goto normal_char; |
2169 | 2409 |
2170 | 2410 |
2171 case '\\': | 2411 case '\\': |
2172 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); | 2412 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
2173 | 2413 |
2174 /* Do not translate the character after the \, so that we can | 2414 /* Do not translate the character after the \, so that we can |
2175 distinguish, e.g., \B from \b, even if we normally would | 2415 distinguish, e.g., \B from \b, even if we normally would |
2176 translate, e.g., B to b. */ | 2416 translate, e.g., B to b. */ |
2177 PATFETCH_RAW (c); | 2417 PATFETCH_RAW (c); |
2178 | 2418 |
2179 switch (c) | 2419 switch (c) |
2180 { | 2420 { |
2181 case '(': | 2421 case '(': |
2182 if (syntax & RE_NO_BK_PARENS) | 2422 if (syntax & RE_NO_BK_PARENS) |
2183 goto normal_backslash; | 2423 goto normal_backslash; |
2184 | 2424 |
2185 handle_open: | 2425 handle_open: |
2186 bufp->re_nsub++; | 2426 bufp->re_nsub++; |
2187 regnum++; | 2427 regnum++; |
2188 | 2428 |
2189 if (COMPILE_STACK_FULL) | 2429 if (COMPILE_STACK_FULL) |
2190 { | 2430 { |
2191 RETALLOC (compile_stack.stack, compile_stack.size << 1, | 2431 RETALLOC (compile_stack.stack, compile_stack.size << 1, |
2192 compile_stack_elt_t); | 2432 compile_stack_elt_t); |
2193 if (compile_stack.stack == NULL) return REG_ESPACE; | 2433 if (compile_stack.stack == NULL) return REG_ESPACE; |
2194 | 2434 |
2195 compile_stack.size <<= 1; | 2435 compile_stack.size <<= 1; |
2196 } | 2436 } |
2197 | 2437 |
2198 /* These are the values to restore when we hit end of this | 2438 /* These are the values to restore when we hit end of this |
2199 group. They are all relative offsets, so that if the | 2439 group. They are all relative offsets, so that if the |
2200 whole pattern moves because of realloc, they will still | 2440 whole pattern moves because of realloc, they will still |
2201 be valid. */ | 2441 be valid. */ |
2202 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | 2442 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; |
2203 COMPILE_STACK_TOP.fixup_alt_jump | 2443 COMPILE_STACK_TOP.fixup_alt_jump |
2204 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | 2444 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; |
2205 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; | 2445 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; |
2206 COMPILE_STACK_TOP.regnum = regnum; | 2446 COMPILE_STACK_TOP.regnum = regnum; |
2207 | 2447 |
2208 /* We will eventually replace the 0 with the number of | 2448 /* We will eventually replace the 0 with the number of |
2209 groups inner to this one. But do not push a | 2449 groups inner to this one. But do not push a |
2210 start_memory for groups beyond the last one we can | 2450 start_memory for groups beyond the last one we can |
2211 represent in the compiled pattern. */ | 2451 represent in the compiled pattern. */ |
2212 if (regnum <= MAX_REGNUM) | 2452 if (regnum <= MAX_REGNUM) |
2213 { | 2453 { |
2214 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; | 2454 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; |
2215 BUF_PUSH_3 (start_memory, regnum, 0); | 2455 BUF_PUSH_3 (start_memory, regnum, 0); |
2216 } | 2456 } |
2217 | 2457 |
2218 compile_stack.avail++; | 2458 compile_stack.avail++; |
2219 | 2459 |
2220 fixup_alt_jump = 0; | 2460 fixup_alt_jump = 0; |
2221 laststart = 0; | 2461 laststart = 0; |
2222 begalt = b; | 2462 begalt = b; |
2223 /* If we've reached MAX_REGNUM groups, then this open | 2463 /* If we've reached MAX_REGNUM groups, then this open |
2224 won't actually generate any code, so we'll have to | 2464 won't actually generate any code, so we'll have to |
2225 clear pending_exact explicitly. */ | 2465 clear pending_exact explicitly. */ |
2226 pending_exact = 0; | 2466 pending_exact = 0; |
2227 break; | 2467 break; |
2228 | 2468 |
2229 | 2469 |
2230 case ')': | 2470 case ')': |
2231 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | 2471 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; |
2232 | 2472 |
2233 if (COMPILE_STACK_EMPTY) | 2473 if (COMPILE_STACK_EMPTY) |
2234 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | 2474 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
2235 goto normal_backslash; | 2475 goto normal_backslash; |
2236 else | 2476 else |
2237 FREE_STACK_RETURN (REG_ERPAREN); | 2477 FREE_STACK_RETURN (REG_ERPAREN); |
2238 | 2478 |
2239 handle_close: | 2479 handle_close: |
2240 if (fixup_alt_jump) | 2480 if (fixup_alt_jump) |
2241 { /* Push a dummy failure point at the end of the | 2481 { /* Push a dummy failure point at the end of the |
2242 alternative for a possible future | 2482 alternative for a possible future |
2243 `pop_failure_jump' to pop. See comments at | 2483 `pop_failure_jump' to pop. See comments at |
2244 `push_dummy_failure' in `re_match_2'. */ | 2484 `push_dummy_failure' in `re_match_2'. */ |
2245 BUF_PUSH (push_dummy_failure); | 2485 BUF_PUSH (push_dummy_failure); |
2246 | 2486 |
2247 /* We allocated space for this jump when we assigned | 2487 /* We allocated space for this jump when we assigned |
2248 to `fixup_alt_jump', in the `handle_alt' case below. */ | 2488 to `fixup_alt_jump', in the `handle_alt' case below. */ |
2249 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); | 2489 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); |
2250 } | 2490 } |
2251 | 2491 |
2252 /* See similar code for backslashed left paren above. */ | 2492 /* See similar code for backslashed left paren above. */ |
2253 if (COMPILE_STACK_EMPTY) | 2493 if (COMPILE_STACK_EMPTY) |
2254 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | 2494 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) |
2255 goto normal_char; | 2495 goto normal_char; |
2256 else | 2496 else |
2257 FREE_STACK_RETURN (REG_ERPAREN); | 2497 FREE_STACK_RETURN (REG_ERPAREN); |
2258 | 2498 |
2259 /* Since we just checked for an empty stack above, this | 2499 /* Since we just checked for an empty stack above, this |
2260 ``can't happen''. */ | 2500 ``can't happen''. */ |
2261 assert (compile_stack.avail != 0); | 2501 assert (compile_stack.avail != 0); |
2262 { | 2502 { |
2263 /* We don't just want to restore into `regnum', because | 2503 /* We don't just want to restore into `regnum', because |
2264 later groups should continue to be numbered higher, | 2504 later groups should continue to be numbered higher, |
2265 as in `(ab)c(de)' -- the second group is #2. */ | 2505 as in `(ab)c(de)' -- the second group is #2. */ |
2266 regnum_t this_group_regnum; | 2506 regnum_t this_group_regnum; |
2267 | 2507 |
2268 compile_stack.avail--; | 2508 compile_stack.avail--; |
2269 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | 2509 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; |
2270 fixup_alt_jump | 2510 fixup_alt_jump |
2271 = COMPILE_STACK_TOP.fixup_alt_jump | 2511 = COMPILE_STACK_TOP.fixup_alt_jump |
2272 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | 2512 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 |
2273 : 0; | 2513 : 0; |
2274 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | 2514 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; |
2275 this_group_regnum = COMPILE_STACK_TOP.regnum; | 2515 this_group_regnum = COMPILE_STACK_TOP.regnum; |
2276 /* If we've reached MAX_REGNUM groups, then this open | 2516 /* If we've reached MAX_REGNUM groups, then this open |
2277 won't actually generate any code, so we'll have to | 2517 won't actually generate any code, so we'll have to |
2278 clear pending_exact explicitly. */ | 2518 clear pending_exact explicitly. */ |
2279 pending_exact = 0; | 2519 pending_exact = 0; |
2280 | 2520 |
2281 /* We're at the end of the group, so now we know how many | 2521 /* We're at the end of the group, so now we know how many |
2282 groups were inside this one. */ | 2522 groups were inside this one. */ |
2283 if (this_group_regnum <= MAX_REGNUM) | 2523 if (this_group_regnum <= MAX_REGNUM) |
2284 { | 2524 { |
2285 unsigned char *inner_group_loc | 2525 unsigned char *inner_group_loc |
2286 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | 2526 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; |
2287 | 2527 |
2288 *inner_group_loc = regnum - this_group_regnum; | 2528 *inner_group_loc = regnum - this_group_regnum; |
2289 BUF_PUSH_3 (stop_memory, this_group_regnum, | 2529 BUF_PUSH_3 (stop_memory, this_group_regnum, |
2290 regnum - this_group_regnum); | 2530 regnum - this_group_regnum); |
2291 } | 2531 } |
2292 } | 2532 } |
2533 break; | |
2534 | |
2535 | |
2536 case '|': /* `\|'. */ | |
2537 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | |
2538 goto normal_backslash; | |
2539 handle_alt: | |
2540 if (syntax & RE_LIMITED_OPS) | |
2541 goto normal_char; | |
2542 | |
2543 /* Insert before the previous alternative a jump which | |
2544 jumps to this alternative if the former fails. */ | |
2545 GET_BUFFER_SPACE (3); | |
2546 INSERT_JUMP (on_failure_jump, begalt, b + 6); | |
2547 pending_exact = 0; | |
2548 b += 3; | |
2549 | |
2550 /* The alternative before this one has a jump after it | |
2551 which gets executed if it gets matched. Adjust that | |
2552 jump so it will jump to this alternative's analogous | |
2553 jump (put in below, which in turn will jump to the next | |
2554 (if any) alternative's such jump, etc.). The last such | |
2555 jump jumps to the correct final destination. A picture: | |
2556 _____ _____ | |
2557 | | | | | |
2558 | v | v | |
2559 a | b | c | |
2560 | |
2561 If we are at `b', then fixup_alt_jump right now points to a | |
2562 three-byte space after `a'. We'll put in the jump, set | |
2563 fixup_alt_jump to right after `b', and leave behind three | |
2564 bytes which we'll fill in when we get to after `c'. */ | |
2565 | |
2566 if (fixup_alt_jump) | |
2567 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | |
2568 | |
2569 /* Mark and leave space for a jump after this alternative, | |
2570 to be filled in later either by next alternative or | |
2571 when know we're at the end of a series of alternatives. */ | |
2572 fixup_alt_jump = b; | |
2573 GET_BUFFER_SPACE (3); | |
2574 b += 3; | |
2575 | |
2576 laststart = 0; | |
2577 begalt = b; | |
2578 break; | |
2579 | |
2580 | |
2581 case '{': | |
2582 /* If \{ is a literal. */ | |
2583 if (!(syntax & RE_INTERVALS) | |
2584 /* If we're at `\{' and it's not the open-interval | |
2585 operator. */ | |
2586 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | |
2587 || (p - 2 == pattern && p == pend)) | |
2588 goto normal_backslash; | |
2589 | |
2590 handle_interval: | |
2591 { | |
2592 /* If got here, then the syntax allows intervals. */ | |
2593 | |
2594 /* At least (most) this many matches must be made. */ | |
2595 int lower_bound = -1, upper_bound = -1; | |
2596 | |
2597 beg_interval = p - 1; | |
2598 | |
2599 if (p == pend) | |
2600 { | |
2601 if (syntax & RE_NO_BK_BRACES) | |
2602 goto unfetch_interval; | |
2603 else | |
2604 FREE_STACK_RETURN (REG_EBRACE); | |
2605 } | |
2606 | |
2607 GET_UNSIGNED_NUMBER (lower_bound); | |
2608 | |
2609 if (c == ',') | |
2610 { | |
2611 GET_UNSIGNED_NUMBER (upper_bound); | |
2612 if (upper_bound < 0) upper_bound = RE_DUP_MAX; | |
2613 } | |
2614 else | |
2615 /* Interval such as `{1}' => match exactly once. */ | |
2616 upper_bound = lower_bound; | |
2617 | |
2618 if (lower_bound < 0 || upper_bound > RE_DUP_MAX | |
2619 || lower_bound > upper_bound) | |
2620 { | |
2621 if (syntax & RE_NO_BK_BRACES) | |
2622 goto unfetch_interval; | |
2623 else | |
2624 FREE_STACK_RETURN (REG_BADBR); | |
2625 } | |
2626 | |
2627 if (!(syntax & RE_NO_BK_BRACES)) | |
2628 { | |
2629 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); | |
2630 | |
2631 PATFETCH (c); | |
2632 } | |
2633 | |
2634 if (c != '}') | |
2635 { | |
2636 if (syntax & RE_NO_BK_BRACES) | |
2637 goto unfetch_interval; | |
2638 else | |
2639 FREE_STACK_RETURN (REG_BADBR); | |
2640 } | |
2641 | |
2642 /* We just parsed a valid interval. */ | |
2643 | |
2644 /* If it's invalid to have no preceding re. */ | |
2645 if (!laststart) | |
2646 { | |
2647 if (syntax & RE_CONTEXT_INVALID_OPS) | |
2648 FREE_STACK_RETURN (REG_BADRPT); | |
2649 else if (syntax & RE_CONTEXT_INDEP_OPS) | |
2650 laststart = b; | |
2651 else | |
2652 goto unfetch_interval; | |
2653 } | |
2654 | |
2655 /* If the upper bound is zero, don't want to succeed at | |
2656 all; jump from `laststart' to `b + 3', which will be | |
2657 the end of the buffer after we insert the jump. */ | |
2658 if (upper_bound == 0) | |
2659 { | |
2660 GET_BUFFER_SPACE (3); | |
2661 INSERT_JUMP (jump, laststart, b + 3); | |
2662 b += 3; | |
2663 } | |
2664 | |
2665 /* Otherwise, we have a nontrivial interval. When | |
2666 we're all done, the pattern will look like: | |
2667 set_number_at <jump count> <upper bound> | |
2668 set_number_at <succeed_n count> <lower bound> | |
2669 succeed_n <after jump addr> <succeed_n count> | |
2670 <body of loop> | |
2671 jump_n <succeed_n addr> <jump count> | |
2672 (The upper bound and `jump_n' are omitted if | |
2673 `upper_bound' is 1, though.) */ | |
2674 else | |
2675 { /* If the upper bound is > 1, we need to insert | |
2676 more at the end of the loop. */ | |
2677 unsigned nbytes = 10 + (upper_bound > 1) * 10; | |
2678 | |
2679 GET_BUFFER_SPACE (nbytes); | |
2680 | |
2681 /* Initialize lower bound of the `succeed_n', even | |
2682 though it will be set during matching by its | |
2683 attendant `set_number_at' (inserted next), | |
2684 because `re_compile_fastmap' needs to know. | |
2685 Jump to the `jump_n' we might insert below. */ | |
2686 INSERT_JUMP2 (succeed_n, laststart, | |
2687 b + 5 + (upper_bound > 1) * 5, | |
2688 lower_bound); | |
2689 b += 5; | |
2690 | |
2691 /* Code to initialize the lower bound. Insert | |
2692 before the `succeed_n'. The `5' is the last two | |
2693 bytes of this `set_number_at', plus 3 bytes of | |
2694 the following `succeed_n'. */ | |
2695 insert_op2 (set_number_at, laststart, 5, lower_bound, b); | |
2696 b += 5; | |
2697 | |
2698 if (upper_bound > 1) | |
2699 { /* More than one repetition is allowed, so | |
2700 append a backward jump to the `succeed_n' | |
2701 that starts this interval. | |
2702 | |
2703 When we've reached this during matching, | |
2704 we'll have matched the interval once, so | |
2705 jump back only `upper_bound - 1' times. */ | |
2706 STORE_JUMP2 (jump_n, b, laststart + 5, | |
2707 upper_bound - 1); | |
2708 b += 5; | |
2709 | |
2710 /* The location we want to set is the second | |
2711 parameter of the `jump_n'; that is `b-2' as | |
2712 an absolute address. `laststart' will be | |
2713 the `set_number_at' we're about to insert; | |
2714 `laststart+3' the number to set, the source | |
2715 for the relative address. But we are | |
2716 inserting into the middle of the pattern -- | |
2717 so everything is getting moved up by 5. | |
2718 Conclusion: (b - 2) - (laststart + 3) + 5, | |
2719 i.e., b - laststart. | |
2720 | |
2721 We insert this at the beginning of the loop | |
2722 so that if we fail during matching, we'll | |
2723 reinitialize the bounds. */ | |
2724 insert_op2 (set_number_at, laststart, b - laststart, | |
2725 upper_bound - 1, b); | |
2726 b += 5; | |
2727 } | |
2728 } | |
2729 pending_exact = 0; | |
2730 beg_interval = NULL; | |
2731 } | |
2732 break; | |
2733 | |
2734 unfetch_interval: | |
2735 /* If an invalid interval, match the characters as literals. */ | |
2736 assert (beg_interval); | |
2737 p = beg_interval; | |
2738 beg_interval = NULL; | |
2739 | |
2740 /* normal_char and normal_backslash need `c'. */ | |
2741 PATFETCH (c); | |
2742 | |
2743 if (!(syntax & RE_NO_BK_BRACES)) | |
2744 { | |
2745 if (p > pattern && p[-1] == '\\') | |
2746 goto normal_backslash; | |
2747 } | |
2748 goto normal_char; | |
2749 | |
2750 #ifdef emacs | |
2751 /* There is no way to specify the before_dot and after_dot | |
2752 operators. rms says this is ok. --karl */ | |
2753 case '=': | |
2754 BUF_PUSH (at_dot); | |
2755 break; | |
2756 | |
2757 case 's': | |
2758 laststart = b; | |
2759 PATFETCH (c); | |
2760 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | |
2761 break; | |
2762 | |
2763 case 'S': | |
2764 laststart = b; | |
2765 PATFETCH (c); | |
2766 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | |
2767 break; | |
2768 | |
2769 case 'c': | |
2770 laststart = b; | |
2771 PATFETCH_RAW (c); | |
2772 BUF_PUSH_2 (categoryspec, c); | |
2293 break; | 2773 break; |
2294 | 2774 |
2295 | 2775 case 'C': |
2296 case '|': /* `\|'. */ | |
2297 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | |
2298 goto normal_backslash; | |
2299 handle_alt: | |
2300 if (syntax & RE_LIMITED_OPS) | |
2301 goto normal_char; | |
2302 | |
2303 /* Insert before the previous alternative a jump which | |
2304 jumps to this alternative if the former fails. */ | |
2305 GET_BUFFER_SPACE (3); | |
2306 INSERT_JUMP (on_failure_jump, begalt, b + 6); | |
2307 pending_exact = 0; | |
2308 b += 3; | |
2309 | |
2310 /* The alternative before this one has a jump after it | |
2311 which gets executed if it gets matched. Adjust that | |
2312 jump so it will jump to this alternative's analogous | |
2313 jump (put in below, which in turn will jump to the next | |
2314 (if any) alternative's such jump, etc.). The last such | |
2315 jump jumps to the correct final destination. A picture: | |
2316 _____ _____ | |
2317 | | | | | |
2318 | v | v | |
2319 a | b | c | |
2320 | |
2321 If we are at `b', then fixup_alt_jump right now points to a | |
2322 three-byte space after `a'. We'll put in the jump, set | |
2323 fixup_alt_jump to right after `b', and leave behind three | |
2324 bytes which we'll fill in when we get to after `c'. */ | |
2325 | |
2326 if (fixup_alt_jump) | |
2327 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | |
2328 | |
2329 /* Mark and leave space for a jump after this alternative, | |
2330 to be filled in later either by next alternative or | |
2331 when know we're at the end of a series of alternatives. */ | |
2332 fixup_alt_jump = b; | |
2333 GET_BUFFER_SPACE (3); | |
2334 b += 3; | |
2335 | |
2336 laststart = 0; | |
2337 begalt = b; | |
2338 break; | |
2339 | |
2340 | |
2341 case '{': | |
2342 /* If \{ is a literal. */ | |
2343 if (!(syntax & RE_INTERVALS) | |
2344 /* If we're at `\{' and it's not the open-interval | |
2345 operator. */ | |
2346 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | |
2347 || (p - 2 == pattern && p == pend)) | |
2348 goto normal_backslash; | |
2349 | |
2350 handle_interval: | |
2351 { | |
2352 /* If got here, then the syntax allows intervals. */ | |
2353 | |
2354 /* At least (most) this many matches must be made. */ | |
2355 int lower_bound = -1, upper_bound = -1; | |
2356 | |
2357 beg_interval = p - 1; | |
2358 | |
2359 if (p == pend) | |
2360 { | |
2361 if (syntax & RE_NO_BK_BRACES) | |
2362 goto unfetch_interval; | |
2363 else | |
2364 FREE_STACK_RETURN (REG_EBRACE); | |
2365 } | |
2366 | |
2367 GET_UNSIGNED_NUMBER (lower_bound); | |
2368 | |
2369 if (c == ',') | |
2370 { | |
2371 GET_UNSIGNED_NUMBER (upper_bound); | |
2372 if (upper_bound < 0) upper_bound = RE_DUP_MAX; | |
2373 } | |
2374 else | |
2375 /* Interval such as `{1}' => match exactly once. */ | |
2376 upper_bound = lower_bound; | |
2377 | |
2378 if (lower_bound < 0 || upper_bound > RE_DUP_MAX | |
2379 || lower_bound > upper_bound) | |
2380 { | |
2381 if (syntax & RE_NO_BK_BRACES) | |
2382 goto unfetch_interval; | |
2383 else | |
2384 FREE_STACK_RETURN (REG_BADBR); | |
2385 } | |
2386 | |
2387 if (!(syntax & RE_NO_BK_BRACES)) | |
2388 { | |
2389 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); | |
2390 | |
2391 PATFETCH (c); | |
2392 } | |
2393 | |
2394 if (c != '}') | |
2395 { | |
2396 if (syntax & RE_NO_BK_BRACES) | |
2397 goto unfetch_interval; | |
2398 else | |
2399 FREE_STACK_RETURN (REG_BADBR); | |
2400 } | |
2401 | |
2402 /* We just parsed a valid interval. */ | |
2403 | |
2404 /* If it's invalid to have no preceding re. */ | |
2405 if (!laststart) | |
2406 { | |
2407 if (syntax & RE_CONTEXT_INVALID_OPS) | |
2408 FREE_STACK_RETURN (REG_BADRPT); | |
2409 else if (syntax & RE_CONTEXT_INDEP_OPS) | |
2410 laststart = b; | |
2411 else | |
2412 goto unfetch_interval; | |
2413 } | |
2414 | |
2415 /* If the upper bound is zero, don't want to succeed at | |
2416 all; jump from `laststart' to `b + 3', which will be | |
2417 the end of the buffer after we insert the jump. */ | |
2418 if (upper_bound == 0) | |
2419 { | |
2420 GET_BUFFER_SPACE (3); | |
2421 INSERT_JUMP (jump, laststart, b + 3); | |
2422 b += 3; | |
2423 } | |
2424 | |
2425 /* Otherwise, we have a nontrivial interval. When | |
2426 we're all done, the pattern will look like: | |
2427 set_number_at <jump count> <upper bound> | |
2428 set_number_at <succeed_n count> <lower bound> | |
2429 succeed_n <after jump addr> <succeed_n count> | |
2430 <body of loop> | |
2431 jump_n <succeed_n addr> <jump count> | |
2432 (The upper bound and `jump_n' are omitted if | |
2433 `upper_bound' is 1, though.) */ | |
2434 else | |
2435 { /* If the upper bound is > 1, we need to insert | |
2436 more at the end of the loop. */ | |
2437 unsigned nbytes = 10 + (upper_bound > 1) * 10; | |
2438 | |
2439 GET_BUFFER_SPACE (nbytes); | |
2440 | |
2441 /* Initialize lower bound of the `succeed_n', even | |
2442 though it will be set during matching by its | |
2443 attendant `set_number_at' (inserted next), | |
2444 because `re_compile_fastmap' needs to know. | |
2445 Jump to the `jump_n' we might insert below. */ | |
2446 INSERT_JUMP2 (succeed_n, laststart, | |
2447 b + 5 + (upper_bound > 1) * 5, | |
2448 lower_bound); | |
2449 b += 5; | |
2450 | |
2451 /* Code to initialize the lower bound. Insert | |
2452 before the `succeed_n'. The `5' is the last two | |
2453 bytes of this `set_number_at', plus 3 bytes of | |
2454 the following `succeed_n'. */ | |
2455 insert_op2 (set_number_at, laststart, 5, lower_bound, b); | |
2456 b += 5; | |
2457 | |
2458 if (upper_bound > 1) | |
2459 { /* More than one repetition is allowed, so | |
2460 append a backward jump to the `succeed_n' | |
2461 that starts this interval. | |
2462 | |
2463 When we've reached this during matching, | |
2464 we'll have matched the interval once, so | |
2465 jump back only `upper_bound - 1' times. */ | |
2466 STORE_JUMP2 (jump_n, b, laststart + 5, | |
2467 upper_bound - 1); | |
2468 b += 5; | |
2469 | |
2470 /* The location we want to set is the second | |
2471 parameter of the `jump_n'; that is `b-2' as | |
2472 an absolute address. `laststart' will be | |
2473 the `set_number_at' we're about to insert; | |
2474 `laststart+3' the number to set, the source | |
2475 for the relative address. But we are | |
2476 inserting into the middle of the pattern -- | |
2477 so everything is getting moved up by 5. | |
2478 Conclusion: (b - 2) - (laststart + 3) + 5, | |
2479 i.e., b - laststart. | |
2480 | |
2481 We insert this at the beginning of the loop | |
2482 so that if we fail during matching, we'll | |
2483 reinitialize the bounds. */ | |
2484 insert_op2 (set_number_at, laststart, b - laststart, | |
2485 upper_bound - 1, b); | |
2486 b += 5; | |
2487 } | |
2488 } | |
2489 pending_exact = 0; | |
2490 beg_interval = NULL; | |
2491 } | |
2492 break; | |
2493 | |
2494 unfetch_interval: | |
2495 /* If an invalid interval, match the characters as literals. */ | |
2496 assert (beg_interval); | |
2497 p = beg_interval; | |
2498 beg_interval = NULL; | |
2499 | |
2500 /* normal_char and normal_backslash need `c'. */ | |
2501 PATFETCH (c); | |
2502 | |
2503 if (!(syntax & RE_NO_BK_BRACES)) | |
2504 { | |
2505 if (p > pattern && p[-1] == '\\') | |
2506 goto normal_backslash; | |
2507 } | |
2508 goto normal_char; | |
2509 | |
2510 #ifdef emacs | |
2511 /* There is no way to specify the before_dot and after_dot | |
2512 operators. rms says this is ok. --karl */ | |
2513 case '=': | |
2514 BUF_PUSH (at_dot); | |
2515 break; | |
2516 | |
2517 case 's': | |
2518 laststart = b; | 2776 laststart = b; |
2519 PATFETCH (c); | 2777 PATFETCH_RAW (c); |
2520 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | 2778 BUF_PUSH_2 (notcategoryspec, c); |
2521 break; | |
2522 | |
2523 case 'S': | |
2524 laststart = b; | |
2525 PATFETCH (c); | |
2526 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | |
2527 break; | 2779 break; |
2528 #endif /* emacs */ | 2780 #endif /* emacs */ |
2529 | 2781 |
2530 | 2782 |
2531 case 'w': | 2783 case 'w': |
2532 laststart = b; | 2784 laststart = b; |
2533 BUF_PUSH (wordchar); | 2785 BUF_PUSH (wordchar); |
2534 break; | 2786 break; |
2535 | 2787 |
2536 | 2788 |
2537 case 'W': | 2789 case 'W': |
2538 laststart = b; | 2790 laststart = b; |
2539 BUF_PUSH (notwordchar); | 2791 BUF_PUSH (notwordchar); |
2540 break; | 2792 break; |
2541 | 2793 |
2542 | 2794 |
2543 case '<': | 2795 case '<': |
2544 BUF_PUSH (wordbeg); | 2796 BUF_PUSH (wordbeg); |
2545 break; | 2797 break; |
2546 | 2798 |
2547 case '>': | 2799 case '>': |
2548 BUF_PUSH (wordend); | 2800 BUF_PUSH (wordend); |
2549 break; | 2801 break; |
2550 | 2802 |
2551 case 'b': | 2803 case 'b': |
2552 BUF_PUSH (wordbound); | 2804 BUF_PUSH (wordbound); |
2553 break; | 2805 break; |
2554 | 2806 |
2555 case 'B': | 2807 case 'B': |
2556 BUF_PUSH (notwordbound); | 2808 BUF_PUSH (notwordbound); |
2557 break; | 2809 break; |
2558 | 2810 |
2559 case '`': | 2811 case '`': |
2560 BUF_PUSH (begbuf); | 2812 BUF_PUSH (begbuf); |
2561 break; | 2813 break; |
2562 | 2814 |
2563 case '\'': | 2815 case '\'': |
2564 BUF_PUSH (endbuf); | 2816 BUF_PUSH (endbuf); |
2565 break; | 2817 break; |
2566 | 2818 |
2567 case '1': case '2': case '3': case '4': case '5': | 2819 case '1': case '2': case '3': case '4': case '5': |
2568 case '6': case '7': case '8': case '9': | 2820 case '6': case '7': case '8': case '9': |
2569 if (syntax & RE_NO_BK_REFS) | 2821 if (syntax & RE_NO_BK_REFS) |
2570 goto normal_char; | 2822 goto normal_char; |
2571 | 2823 |
2572 c1 = c - '0'; | 2824 c1 = c - '0'; |
2573 | 2825 |
2574 if (c1 > regnum) | 2826 if (c1 > regnum) |
2575 FREE_STACK_RETURN (REG_ESUBREG); | 2827 FREE_STACK_RETURN (REG_ESUBREG); |
2576 | 2828 |
2577 /* Can't back reference to a subexpression if inside of it. */ | 2829 /* Can't back reference to a subexpression if inside of it. */ |
2578 if (group_in_compile_stack (compile_stack, c1)) | 2830 if (group_in_compile_stack (compile_stack, c1)) |
2579 goto normal_char; | 2831 goto normal_char; |
2580 | 2832 |
2581 laststart = b; | 2833 laststart = b; |
2582 BUF_PUSH_2 (duplicate, c1); | 2834 BUF_PUSH_2 (duplicate, c1); |
2583 break; | 2835 break; |
2584 | 2836 |
2585 | 2837 |
2586 case '+': | 2838 case '+': |
2587 case '?': | 2839 case '?': |
2588 if (syntax & RE_BK_PLUS_QM) | 2840 if (syntax & RE_BK_PLUS_QM) |
2589 goto handle_plus; | 2841 goto handle_plus; |
2590 else | 2842 else |
2591 goto normal_backslash; | 2843 goto normal_backslash; |
2592 | 2844 |
2593 default: | 2845 default: |
2594 normal_backslash: | 2846 normal_backslash: |
2595 /* You might think it would be useful for \ to mean | 2847 /* You might think it would be useful for \ to mean |
2596 not to translate; but if we don't translate it | 2848 not to translate; but if we don't translate it |
2597 it will never match anything. */ | 2849 it will never match anything. */ |
2598 c = TRANSLATE (c); | 2850 c = TRANSLATE (c); |
2599 goto normal_char; | 2851 goto normal_char; |
2600 } | 2852 } |
2601 break; | 2853 break; |
2602 | 2854 |
2603 | 2855 |
2604 default: | 2856 default: |
2605 /* Expects the character in `c'. */ | 2857 /* Expects the character in `c'. */ |
2606 normal_char: | 2858 normal_char: |
2859 p1 = p - 1; /* P1 points the head of C. */ | |
2860 #ifdef emacs | |
2861 if (bufp->multibyte) | |
2862 /* Set P to the next character boundary. */ | |
2863 p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1; | |
2864 #endif | |
2607 /* If no exactn currently being built. */ | 2865 /* If no exactn currently being built. */ |
2608 if (!pending_exact | 2866 if (!pending_exact |
2609 | 2867 |
2610 /* If last exactn not at current position. */ | 2868 /* If last exactn not at current position. */ |
2611 || pending_exact + *pending_exact + 1 != b | 2869 || pending_exact + *pending_exact + 1 != b |
2612 | 2870 |
2613 /* We have only one byte following the exactn for the count. */ | 2871 /* We have only one byte following the exactn for the count. */ |
2614 || *pending_exact == (1 << BYTEWIDTH) - 1 | 2872 || *pending_exact >= (1 << BYTEWIDTH) - (p - p1) |
2615 | 2873 |
2616 /* If followed by a repetition operator. */ | 2874 /* If followed by a repetition operator. */ |
2617 || *p == '*' || *p == '^' | 2875 || *p == '*' || *p == '^' |
2618 || ((syntax & RE_BK_PLUS_QM) | 2876 || ((syntax & RE_BK_PLUS_QM) |
2619 ? *p == '\\' && (p[1] == '+' || p[1] == '?') | 2877 ? *p == '\\' && (p[1] == '+' || p[1] == '?') |
2620 : (*p == '+' || *p == '?')) | 2878 : (*p == '+' || *p == '?')) |
2621 || ((syntax & RE_INTERVALS) | 2879 || ((syntax & RE_INTERVALS) |
2622 && ((syntax & RE_NO_BK_BRACES) | 2880 && ((syntax & RE_NO_BK_BRACES) |
2623 ? *p == '{' | 2881 ? *p == '{' |
2624 : (p[0] == '\\' && p[1] == '{')))) | 2882 : (p[0] == '\\' && p[1] == '{')))) |
2625 { | 2883 { |
2626 /* Start building a new exactn. */ | 2884 /* Start building a new exactn. */ |
2627 | 2885 |
2628 laststart = b; | 2886 laststart = b; |
2629 | 2887 |
2630 BUF_PUSH_2 (exactn, 0); | 2888 BUF_PUSH_2 (exactn, 0); |
2631 pending_exact = b - 1; | 2889 pending_exact = b - 1; |
2890 } | |
2891 | |
2892 /* Here, C may translated, therefore C may not equal to *P1. */ | |
2893 while (1) | |
2894 { | |
2895 BUF_PUSH (c); | |
2896 (*pending_exact)++; | |
2897 if (++p1 == p) | |
2898 break; | |
2899 | |
2900 /* Rest of multibyte form should be copied literally. */ | |
2901 c = *(unsigned char *)p1; | |
2632 } | 2902 } |
2633 | |
2634 BUF_PUSH (c); | |
2635 (*pending_exact)++; | |
2636 break; | 2903 break; |
2637 } /* switch (c) */ | 2904 } /* switch (c) */ |
2638 } /* while p != pend */ | 2905 } /* while p != pend */ |
2639 | 2906 |
2640 | 2907 |
2641 /* Through the pattern now. */ | 2908 /* Through the pattern now. */ |
2642 | 2909 |
2708 return REG_NOERROR; | 2975 return REG_NOERROR; |
2709 } /* regex_compile */ | 2976 } /* regex_compile */ |
2710 | 2977 |
2711 /* Subroutines for `regex_compile'. */ | 2978 /* Subroutines for `regex_compile'. */ |
2712 | 2979 |
2713 /* Store OP at LOC followed by two-byte integer parameter ARG. */ | 2980 /* Store OP at LOC followed by two-byte integer parameter ARG. */ |
2714 | 2981 |
2715 static void | 2982 static void |
2716 store_op1 (op, loc, arg) | 2983 store_op1 (op, loc, arg) |
2717 re_opcode_t op; | 2984 re_opcode_t op; |
2718 unsigned char *loc; | 2985 unsigned char *loc; |
2789 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | 3056 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; |
2790 | 3057 |
2791 return | 3058 return |
2792 /* After a subexpression? */ | 3059 /* After a subexpression? */ |
2793 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | 3060 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) |
2794 /* After an alternative? */ | 3061 /* After an alternative? */ |
2795 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | 3062 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); |
2796 } | 3063 } |
2797 | 3064 |
2798 | 3065 |
2799 /* The dual of at_begline_loc_p. This one is for $. We assume there is | 3066 /* The dual of at_begline_loc_p. This one is for $. We assume there is |
2809 const char *next_next = p + 1 < pend ? p + 1 : 0; | 3076 const char *next_next = p + 1 < pend ? p + 1 : 0; |
2810 | 3077 |
2811 return | 3078 return |
2812 /* Before a subexpression? */ | 3079 /* Before a subexpression? */ |
2813 (syntax & RE_NO_BK_PARENS ? *next == ')' | 3080 (syntax & RE_NO_BK_PARENS ? *next == ')' |
2814 : next_backslash && next_next && *next_next == ')') | 3081 : next_backslash && next_next && *next_next == ')') |
2815 /* Before an alternative? */ | 3082 /* Before an alternative? */ |
2816 || (syntax & RE_NO_BK_VBAR ? *next == '|' | 3083 || (syntax & RE_NO_BK_VBAR ? *next == '|' |
2817 : next_backslash && next_next && *next_next == '|'); | 3084 : next_backslash && next_next && *next_next == '|'); |
2818 } | 3085 } |
2819 | 3086 |
2820 | 3087 |
2821 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | 3088 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and |
2822 false if it's not. */ | 3089 false if it's not. */ |
2877 | 3144 |
2878 /* Have to increment the pointer into the pattern string, so the | 3145 /* Have to increment the pointer into the pattern string, so the |
2879 caller isn't still at the ending character. */ | 3146 caller isn't still at the ending character. */ |
2880 (*p_ptr)++; | 3147 (*p_ptr)++; |
2881 | 3148 |
2882 /* If the start is after the end, the range is empty. */ | 3149 /* If the start is after the end, the range is empty. */ |
2883 if (range_start > range_end) | 3150 if (range_start > range_end) |
2884 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | 3151 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; |
2885 | 3152 |
2886 /* Here we see why `this_char' has to be larger than an `unsigned | 3153 /* Here we see why `this_char' has to be larger than an `unsigned |
2887 char' -- the range is inclusive, so if `range_end' == 0xff | 3154 char' -- the range is inclusive, so if `range_end' == 0xff |
2910 | 3177 |
2911 int | 3178 int |
2912 re_compile_fastmap (bufp) | 3179 re_compile_fastmap (bufp) |
2913 struct re_pattern_buffer *bufp; | 3180 struct re_pattern_buffer *bufp; |
2914 { | 3181 { |
2915 int j, k; | 3182 int i, j, k; |
2916 #ifdef MATCH_MAY_ALLOCATE | 3183 #ifdef MATCH_MAY_ALLOCATE |
2917 fail_stack_type fail_stack; | 3184 fail_stack_type fail_stack; |
2918 #endif | 3185 #endif |
2919 #ifndef REGEX_MALLOC | 3186 #ifndef REGEX_MALLOC |
2920 char *destination; | 3187 char *destination; |
2931 /* This holds the pointer to the failure stack, when | 3198 /* This holds the pointer to the failure stack, when |
2932 it is allocated relocatably. */ | 3199 it is allocated relocatably. */ |
2933 fail_stack_elt_t *failure_stack_ptr; | 3200 fail_stack_elt_t *failure_stack_ptr; |
2934 | 3201 |
2935 /* Assume that each path through the pattern can be null until | 3202 /* Assume that each path through the pattern can be null until |
2936 proven otherwise. We set this false at the bottom of switch | 3203 proven otherwise. We set this false at the bottom of switch |
2937 statement, to which we get only if a particular path doesn't | 3204 statement, to which we get only if a particular path doesn't |
2938 match the empty string. */ | 3205 match the empty string. */ |
2939 boolean path_can_be_null = true; | 3206 boolean path_can_be_null = true; |
2940 | 3207 |
2941 /* We aren't doing a `succeed_n' to begin with. */ | 3208 /* We aren't doing a `succeed_n' to begin with. */ |
2942 boolean succeed_n_p = false; | 3209 boolean succeed_n_p = false; |
2943 | 3210 |
3211 /* If all elements for base leading-codes in fastmap is set, this | |
3212 flag is set true. */ | |
3213 boolean match_any_multibyte_characters = false; | |
3214 | |
3215 /* Maximum code of simple (single byte) character. */ | |
3216 int simple_char_max; | |
3217 | |
2944 assert (fastmap != NULL && p != NULL); | 3218 assert (fastmap != NULL && p != NULL); |
2945 | 3219 |
2946 INIT_FAIL_STACK (); | 3220 INIT_FAIL_STACK (); |
2947 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | 3221 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ |
2948 bufp->fastmap_accurate = 1; /* It will be when we're done. */ | 3222 bufp->fastmap_accurate = 1; /* It will be when we're done. */ |
2949 bufp->can_be_null = 0; | 3223 bufp->can_be_null = 0; |
2950 | 3224 |
2951 while (1) | 3225 while (1) |
2952 { | 3226 { |
2966 } | 3240 } |
2967 else | 3241 else |
2968 break; | 3242 break; |
2969 } | 3243 } |
2970 | 3244 |
2971 /* We should never be about to go beyond the end of the pattern. */ | 3245 /* We should never be about to go beyond the end of the pattern. */ |
2972 assert (p < pend); | 3246 assert (p < pend); |
2973 | 3247 |
2974 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | 3248 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
2975 { | 3249 { |
2976 | 3250 |
2977 /* I guess the idea here is to simply not bother with a fastmap | 3251 /* I guess the idea here is to simply not bother with a fastmap |
2978 if a backreference is used, since it's too hard to figure out | 3252 if a backreference is used, since it's too hard to figure out |
2979 the fastmap for the corresponding group. Setting | 3253 the fastmap for the corresponding group. Setting |
2980 `can_be_null' stops `re_search_2' from using the fastmap, so | 3254 `can_be_null' stops `re_search_2' from using the fastmap, so |
2981 that is all we do. */ | 3255 that is all we do. */ |
2982 case duplicate: | 3256 case duplicate: |
2983 bufp->can_be_null = 1; | 3257 bufp->can_be_null = 1; |
2984 goto done; | 3258 goto done; |
2985 | 3259 |
2986 | 3260 |
2987 /* Following are the cases which match a character. These end | 3261 /* Following are the cases which match a character. These end |
2988 with `break'. */ | 3262 with `break'. */ |
2989 | 3263 |
2990 case exactn: | 3264 case exactn: |
2991 fastmap[p[1]] = 1; | 3265 fastmap[p[1]] = 1; |
2992 break; | 3266 break; |
2993 | 3267 |
2994 | 3268 |
2995 case charset: | 3269 #ifndef emacs |
2996 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | 3270 case charset: |
3271 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | |
2997 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | 3272 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) |
2998 fastmap[j] = 1; | 3273 fastmap[j] = 1; |
2999 break; | 3274 break; |
3000 | 3275 |
3001 | 3276 |
3002 case charset_not: | 3277 case charset_not: |
3003 /* Chars beyond end of map must be allowed. */ | 3278 /* Chars beyond end of map must be allowed. */ |
3004 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) | 3279 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) |
3005 fastmap[j] = 1; | 3280 fastmap[j] = 1; |
3006 | 3281 |
3007 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | 3282 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) |
3008 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | 3283 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) |
3009 fastmap[j] = 1; | 3284 fastmap[j] = 1; |
3010 break; | 3285 break; |
3011 | 3286 |
3012 | 3287 |
3013 case wordchar: | 3288 case wordchar: |
3014 for (j = 0; j < (1 << BYTEWIDTH); j++) | 3289 for (j = 0; j < (1 << BYTEWIDTH); j++) |
3015 if (SYNTAX (j) == Sword) | 3290 if (SYNTAX (j) == Sword) |
3020 case notwordchar: | 3295 case notwordchar: |
3021 for (j = 0; j < (1 << BYTEWIDTH); j++) | 3296 for (j = 0; j < (1 << BYTEWIDTH); j++) |
3022 if (SYNTAX (j) != Sword) | 3297 if (SYNTAX (j) != Sword) |
3023 fastmap[j] = 1; | 3298 fastmap[j] = 1; |
3024 break; | 3299 break; |
3025 | 3300 #else /* emacs */ |
3026 | 3301 case charset: |
3027 case anychar: | 3302 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++; |
3303 j >= 0; j--) | |
3304 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | |
3305 fastmap[j] = 1; | |
3306 | |
3307 if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2]) | |
3308 && match_any_multibyte_characters == false) | |
3309 { | |
3310 /* Set fastmap[I] 1 where I is a base leading code of each | |
3311 multibyte character in the range table. */ | |
3312 int c, count; | |
3313 | |
3314 /* Make P points the range table. */ | |
3315 p += CHARSET_BITMAP_SIZE (&p[-2]); | |
3316 | |
3317 /* Extract the number of ranges in range table into | |
3318 COUNT. */ | |
3319 EXTRACT_NUMBER_AND_INCR (count, p); | |
3320 for (; count > 0; count--, p += 2 * 3) /* XXX */ | |
3321 { | |
3322 /* Extract the start of each range. */ | |
3323 EXTRACT_CHARACTER (c, p); | |
3324 j = CHAR_CHARSET (c); | |
3325 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1; | |
3326 } | |
3327 } | |
3328 break; | |
3329 | |
3330 | |
3331 case charset_not: | |
3332 /* Chars beyond end of map must be allowed. End of map is | |
3333 `127' if bufp->multibyte is nonzero. */ | |
3334 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); | |
3335 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH; | |
3336 j < simple_char_max; j++) | |
3337 fastmap[j] = 1; | |
3338 | |
3339 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++; | |
3340 j >= 0; j--) | |
3341 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | |
3342 fastmap[j] = 1; | |
3343 | |
3344 if (bufp->multibyte) | |
3345 /* Any character set can possibly contain a character | |
3346 which doesn't match the specified set of characters. */ | |
3347 { | |
3348 set_fastmap_for_multibyte_characters: | |
3349 if (match_any_multibyte_characters == false) | |
3350 { | |
3351 for (j = 0x80; j < 0xA0; j++) /* XXX */ | |
3352 if (BASE_LEADING_CODE_P (j)) | |
3353 fastmap[j] = 1; | |
3354 match_any_multibyte_characters = true; | |
3355 } | |
3356 } | |
3357 break; | |
3358 | |
3359 | |
3360 case wordchar: | |
3361 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); | |
3362 for (j = 0; j < simple_char_max; j++) | |
3363 if (SYNTAX (j) == Sword) | |
3364 fastmap[j] = 1; | |
3365 | |
3366 if (bufp->multibyte) | |
3367 /* Any character set can possibly contain a character | |
3368 whose syntax is `Sword'. */ | |
3369 goto set_fastmap_for_multibyte_characters; | |
3370 break; | |
3371 | |
3372 | |
3373 case notwordchar: | |
3374 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); | |
3375 for (j = 0; j < simple_char_max; j++) | |
3376 if (SYNTAX (j) != Sword) | |
3377 fastmap[j] = 1; | |
3378 | |
3379 if (bufp->multibyte) | |
3380 /* Any character set can possibly contain a character | |
3381 whose syntax is not `Sword'. */ | |
3382 goto set_fastmap_for_multibyte_characters; | |
3383 break; | |
3384 #endif | |
3385 | |
3386 case anychar: | |
3028 { | 3387 { |
3029 int fastmap_newline = fastmap['\n']; | 3388 int fastmap_newline = fastmap['\n']; |
3030 | 3389 |
3031 /* `.' matches anything ... */ | 3390 /* `.' matches anything (but if bufp->multibyte is |
3032 for (j = 0; j < (1 << BYTEWIDTH); j++) | 3391 nonzero, matches `\000' .. `\127' and possible multibyte |
3392 character) ... */ | |
3393 if (bufp->multibyte) | |
3394 { | |
3395 simple_char_max = 0x80; | |
3396 | |
3397 for (j = 0x80; j < 0xA0; j++) | |
3398 if (BASE_LEADING_CODE_P (j)) | |
3399 fastmap[j] = 1; | |
3400 match_any_multibyte_characters = true; | |
3401 } | |
3402 else | |
3403 simple_char_max = (1 << BYTEWIDTH); | |
3404 | |
3405 for (j = 0; j < simple_char_max; j++) | |
3033 fastmap[j] = 1; | 3406 fastmap[j] = 1; |
3034 | 3407 |
3035 /* ... except perhaps newline. */ | 3408 /* ... except perhaps newline. */ |
3036 if (!(bufp->syntax & RE_DOT_NEWLINE)) | 3409 if (!(bufp->syntax & RE_DOT_NEWLINE)) |
3037 fastmap['\n'] = fastmap_newline; | 3410 fastmap['\n'] = fastmap_newline; |
3038 | 3411 |
3039 /* Return if we have already set `can_be_null'; if we have, | 3412 /* Return if we have already set `can_be_null'; if we have, |
3040 then the fastmap is irrelevant. Something's wrong here. */ | 3413 then the fastmap is irrelevant. Something's wrong here. */ |
3041 else if (bufp->can_be_null) | 3414 else if (bufp->can_be_null) |
3042 goto done; | 3415 goto done; |
3043 | 3416 |
3044 /* Otherwise, have to check alternative paths. */ | 3417 /* Otherwise, have to check alternative paths. */ |
3045 break; | 3418 break; |
3046 } | 3419 } |
3047 | 3420 |
3048 #ifdef emacs | 3421 #ifdef emacs |
3049 case syntaxspec: | |
3050 k = *p++; | |
3051 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3052 if (SYNTAX (j) == (enum syntaxcode) k) | |
3053 fastmap[j] = 1; | |
3054 break; | |
3055 | |
3056 | |
3057 case notsyntaxspec: | |
3058 k = *p++; | |
3059 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3060 if (SYNTAX (j) != (enum syntaxcode) k) | |
3061 fastmap[j] = 1; | |
3062 break; | |
3063 | |
3064 | |
3065 /* All cases after this match the empty string. These end with | |
3066 `continue'. */ | |
3067 | |
3068 | |
3069 case before_dot: | |
3070 case at_dot: | |
3071 case after_dot: | |
3072 continue; | |
3073 #endif /* emacs */ | |
3074 | |
3075 | |
3076 case no_op: | |
3077 case begline: | |
3078 case endline: | |
3079 case begbuf: | |
3080 case endbuf: | |
3081 case wordbound: | 3422 case wordbound: |
3082 case notwordbound: | 3423 case notwordbound: |
3083 case wordbeg: | 3424 case wordbeg: |
3084 case wordend: | 3425 case wordend: |
3085 case push_dummy_failure: | 3426 case notsyntaxspec: |
3086 continue; | 3427 case syntaxspec: |
3428 /* This match depends on text properties. These end with | |
3429 aborting optimizations. */ | |
3430 bufp->can_be_null = 1; | |
3431 goto done; | |
3432 #if 0 | |
3433 k = *p++; | |
3434 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); | |
3435 for (j = 0; j < simple_char_max; j++) | |
3436 if (SYNTAX (j) == (enum syntaxcode) k) | |
3437 fastmap[j] = 1; | |
3438 | |
3439 if (bufp->multibyte) | |
3440 /* Any character set can possibly contain a character | |
3441 whose syntax is K. */ | |
3442 goto set_fastmap_for_multibyte_characters; | |
3443 break; | |
3444 | |
3445 case notsyntaxspec: | |
3446 k = *p++; | |
3447 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); | |
3448 for (j = 0; j < simple_char_max; j++) | |
3449 if (SYNTAX (j) != (enum syntaxcode) k) | |
3450 fastmap[j] = 1; | |
3451 | |
3452 if (bufp->multibyte) | |
3453 /* Any character set can possibly contain a character | |
3454 whose syntax is not K. */ | |
3455 goto set_fastmap_for_multibyte_characters; | |
3456 break; | |
3457 #endif | |
3458 | |
3459 | |
3460 case categoryspec: | |
3461 k = *p++; | |
3462 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); | |
3463 for (j = 0; j < simple_char_max; j++) | |
3464 if (CHAR_HAS_CATEGORY (j, k)) | |
3465 fastmap[j] = 1; | |
3466 | |
3467 if (bufp->multibyte) | |
3468 /* Any character set can possibly contain a character | |
3469 whose category is K. */ | |
3470 goto set_fastmap_for_multibyte_characters; | |
3471 break; | |
3472 | |
3473 | |
3474 case notcategoryspec: | |
3475 k = *p++; | |
3476 simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); | |
3477 for (j = 0; j < simple_char_max; j++) | |
3478 if (!CHAR_HAS_CATEGORY (j, k)) | |
3479 fastmap[j] = 1; | |
3480 | |
3481 if (bufp->multibyte) | |
3482 /* Any character set can possibly contain a character | |
3483 whose category is not K. */ | |
3484 goto set_fastmap_for_multibyte_characters; | |
3485 break; | |
3486 | |
3487 /* All cases after this match the empty string. These end with | |
3488 `continue'. */ | |
3489 | |
3490 | |
3491 case before_dot: | |
3492 case at_dot: | |
3493 case after_dot: | |
3494 continue; | |
3495 #endif /* emacs */ | |
3496 | |
3497 | |
3498 case no_op: | |
3499 case begline: | |
3500 case endline: | |
3501 case begbuf: | |
3502 case endbuf: | |
3503 #ifndef emacs | |
3504 case wordbound: | |
3505 case notwordbound: | |
3506 case wordbeg: | |
3507 case wordend: | |
3508 #endif | |
3509 case push_dummy_failure: | |
3510 continue; | |
3087 | 3511 |
3088 | 3512 |
3089 case jump_n: | 3513 case jump_n: |
3090 case pop_failure_jump: | 3514 case pop_failure_jump: |
3091 case maybe_pop_jump: | 3515 case maybe_pop_jump: |
3092 case jump: | 3516 case jump: |
3093 case jump_past_alt: | 3517 case jump_past_alt: |
3094 case dummy_failure_jump: | 3518 case dummy_failure_jump: |
3095 EXTRACT_NUMBER_AND_INCR (j, p); | 3519 EXTRACT_NUMBER_AND_INCR (j, p); |
3096 p += j; | 3520 p += j; |
3097 if (j > 0) | 3521 if (j > 0) |
3098 continue; | 3522 continue; |
3099 | 3523 |
3100 /* Jump backward implies we just went through the body of a | 3524 /* Jump backward implies we just went through the body of a |
3101 loop and matched nothing. Opcode jumped to should be | 3525 loop and matched nothing. Opcode jumped to should be |
3102 `on_failure_jump' or `succeed_n'. Just treat it like an | 3526 `on_failure_jump' or `succeed_n'. Just treat it like an |
3103 ordinary jump. For a * loop, it has pushed its failure | 3527 ordinary jump. For a * loop, it has pushed its failure |
3104 point already; if so, discard that as redundant. */ | 3528 point already; if so, discard that as redundant. */ |
3105 if ((re_opcode_t) *p != on_failure_jump | 3529 if ((re_opcode_t) *p != on_failure_jump |
3106 && (re_opcode_t) *p != succeed_n) | 3530 && (re_opcode_t) *p != succeed_n) |
3107 continue; | 3531 continue; |
3108 | 3532 |
3109 p++; | 3533 p++; |
3110 EXTRACT_NUMBER_AND_INCR (j, p); | 3534 EXTRACT_NUMBER_AND_INCR (j, p); |
3111 p += j; | 3535 p += j; |
3112 | 3536 |
3113 /* If what's on the stack is where we are now, pop it. */ | 3537 /* If what's on the stack is where we are now, pop it. */ |
3114 if (!FAIL_STACK_EMPTY () | 3538 if (!FAIL_STACK_EMPTY () |
3115 && fail_stack.stack[fail_stack.avail - 1].pointer == p) | 3539 && fail_stack.stack[fail_stack.avail - 1].pointer == p) |
3116 fail_stack.avail--; | 3540 fail_stack.avail--; |
3117 | 3541 |
3118 continue; | 3542 continue; |
3119 | 3543 |
3120 | 3544 |
3121 case on_failure_jump: | 3545 case on_failure_jump: |
3122 case on_failure_keep_string_jump: | 3546 case on_failure_keep_string_jump: |
3123 handle_on_failure_jump: | 3547 handle_on_failure_jump: |
3124 EXTRACT_NUMBER_AND_INCR (j, p); | 3548 EXTRACT_NUMBER_AND_INCR (j, p); |
3125 | 3549 |
3126 /* For some patterns, e.g., `(a?)?', `p+j' here points to the | 3550 /* For some patterns, e.g., `(a?)?', `p+j' here points to the |
3127 end of the pattern. We don't want to push such a point, | 3551 end of the pattern. We don't want to push such a point, |
3128 since when we restore it above, entering the switch will | 3552 since when we restore it above, entering the switch will |
3129 increment `p' past the end of the pattern. We don't need | 3553 increment `p' past the end of the pattern. We don't need |
3130 to push such a point since we obviously won't find any more | 3554 to push such a point since we obviously won't find any more |
3131 fastmap entries beyond `pend'. Such a pattern can match | 3555 fastmap entries beyond `pend'. Such a pattern can match |
3132 the null string, though. */ | 3556 the null string, though. */ |
3133 if (p + j < pend) | 3557 if (p + j < pend) |
3134 { | 3558 { |
3135 if (!PUSH_PATTERN_OP (p + j, fail_stack)) | 3559 if (!PUSH_PATTERN_OP (p + j, fail_stack)) |
3136 { | 3560 { |
3137 RESET_FAIL_STACK (); | 3561 RESET_FAIL_STACK (); |
3138 return -2; | 3562 return -2; |
3139 } | 3563 } |
3564 } | |
3565 else | |
3566 bufp->can_be_null = 1; | |
3567 | |
3568 if (succeed_n_p) | |
3569 { | |
3570 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | |
3571 succeed_n_p = false; | |
3140 } | 3572 } |
3141 else | 3573 |
3142 bufp->can_be_null = 1; | 3574 continue; |
3143 | 3575 |
3144 if (succeed_n_p) | 3576 |
3577 case succeed_n: | |
3578 /* Get to the number of times to succeed. */ | |
3579 p += 2; | |
3580 | |
3581 /* Increment p past the n for when k != 0. */ | |
3582 EXTRACT_NUMBER_AND_INCR (k, p); | |
3583 if (k == 0) | |
3145 { | 3584 { |
3146 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | 3585 p -= 4; |
3147 succeed_n_p = false; | 3586 succeed_n_p = true; /* Spaghetti code alert. */ |
3148 } | 3587 goto handle_on_failure_jump; |
3149 | 3588 } |
3150 continue; | 3589 continue; |
3151 | |
3152 | |
3153 case succeed_n: | |
3154 /* Get to the number of times to succeed. */ | |
3155 p += 2; | |
3156 | |
3157 /* Increment p past the n for when k != 0. */ | |
3158 EXTRACT_NUMBER_AND_INCR (k, p); | |
3159 if (k == 0) | |
3160 { | |
3161 p -= 4; | |
3162 succeed_n_p = true; /* Spaghetti code alert. */ | |
3163 goto handle_on_failure_jump; | |
3164 } | |
3165 continue; | |
3166 | 3590 |
3167 | 3591 |
3168 case set_number_at: | 3592 case set_number_at: |
3169 p += 4; | 3593 p += 4; |
3170 continue; | 3594 continue; |
3171 | 3595 |
3172 | 3596 |
3173 case start_memory: | 3597 case start_memory: |
3174 case stop_memory: | 3598 case stop_memory: |
3175 p += 2; | 3599 p += 2; |
3176 continue; | 3600 continue; |
3177 | 3601 |
3178 | 3602 |
3179 default: | 3603 default: |
3180 abort (); /* We have listed all the cases. */ | 3604 abort (); /* We have listed all the cases. */ |
3181 } /* switch *p++ */ | 3605 } /* switch *p++ */ |
3182 | 3606 |
3183 /* Getting here means we have found the possible starting | 3607 /* Getting here means we have found the possible starting |
3184 characters for one path of the pattern -- and that the empty | 3608 characters for one path of the pattern -- and that the empty |
3185 string does not match. We need not follow this path further. | 3609 string does not match. We need not follow this path further. |
3186 Instead, look at the next alternative (remembered on the | 3610 Instead, look at the next alternative (remembered on the |
3187 stack), or quit if no more. The test at the top of the loop | 3611 stack), or quit if no more. The test at the top of the loop |
3188 does these things. */ | 3612 does these things. */ |
3189 path_can_be_null = false; | 3613 path_can_be_null = false; |
3190 p = pend; | 3614 p = pend; |
3191 } /* while p */ | 3615 } /* while p */ |
3192 | 3616 |
3193 /* Set `can_be_null' for the last path (also the first path, if the | 3617 /* Set `can_be_null' for the last path (also the first path, if the |
3194 pattern is empty). */ | 3618 pattern is empty). */ |
3195 bufp->can_be_null |= path_can_be_null; | 3619 bufp->can_be_null |= path_can_be_null; |
3196 | 3620 |
3197 done: | 3621 done: |
3198 RESET_FAIL_STACK (); | 3622 RESET_FAIL_STACK (); |
3199 return 0; | 3623 return 0; |
3232 regs->num_regs = 0; | 3656 regs->num_regs = 0; |
3233 regs->start = regs->end = (regoff_t *) 0; | 3657 regs->start = regs->end = (regoff_t *) 0; |
3234 } | 3658 } |
3235 } | 3659 } |
3236 | 3660 |
3237 /* Searching routines. */ | 3661 /* Searching routines. */ |
3238 | 3662 |
3239 /* Like re_search_2, below, but only one string is specified, and | 3663 /* Like re_search_2, below, but only one string is specified, and |
3240 doesn't let you say where to stop matching. */ | 3664 doesn't let you say where to stop matching. */ |
3241 | 3665 |
3242 int | 3666 int |
3248 { | 3672 { |
3249 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | 3673 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, |
3250 regs, size); | 3674 regs, size); |
3251 } | 3675 } |
3252 | 3676 |
3677 /* End address of virtual concatenation of string. */ | |
3678 #define STOP_ADDR_VSTRING(P) \ | |
3679 (((P) >= size1 ? string2 + size2 : string1 + size1)) | |
3680 | |
3681 /* Address of POS in the concatenation of virtual string. */ | |
3682 #define POS_ADDR_VSTRING(POS) \ | |
3683 (((POS) >= size1 ? string2 - size1 : string1) + (POS)) | |
3253 | 3684 |
3254 /* Using the compiled pattern in BUFP->buffer, first tries to match the | 3685 /* Using the compiled pattern in BUFP->buffer, first tries to match the |
3255 virtual concatenation of STRING1 and STRING2, starting first at index | 3686 virtual concatenation of STRING1 and STRING2, starting first at index |
3256 STARTPOS, then at STARTPOS + 1, and so on. | 3687 STARTPOS, then at STARTPOS + 1, and so on. |
3257 | 3688 |
3287 register RE_TRANSLATE_TYPE translate = bufp->translate; | 3718 register RE_TRANSLATE_TYPE translate = bufp->translate; |
3288 int total_size = size1 + size2; | 3719 int total_size = size1 + size2; |
3289 int endpos = startpos + range; | 3720 int endpos = startpos + range; |
3290 int anchored_start = 0; | 3721 int anchored_start = 0; |
3291 | 3722 |
3723 /* Nonzero if we have to concern multibyte character. */ | |
3724 int multibyte = bufp->multibyte; | |
3725 | |
3292 /* Check for out-of-range STARTPOS. */ | 3726 /* Check for out-of-range STARTPOS. */ |
3293 if (startpos < 0 || startpos > total_size) | 3727 if (startpos < 0 || startpos > total_size) |
3294 return -1; | 3728 return -1; |
3295 | 3729 |
3296 /* Fix up RANGE if it might eventually take us outside | 3730 /* Fix up RANGE if it might eventually take us outside |
3328 return -2; | 3762 return -2; |
3329 | 3763 |
3330 /* See whether the pattern is anchored. */ | 3764 /* See whether the pattern is anchored. */ |
3331 if (bufp->buffer[0] == begline) | 3765 if (bufp->buffer[0] == begline) |
3332 anchored_start = 1; | 3766 anchored_start = 1; |
3767 | |
3768 #ifdef emacs | |
3769 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, | |
3770 POS_AS_IN_BUFFER (startpos > 0 | |
3771 ? startpos - 1 : startpos), | |
3772 1); | |
3773 #endif | |
3333 | 3774 |
3334 /* Loop through the string, looking for a place to start matching. */ | 3775 /* Loop through the string, looking for a place to start matching. */ |
3335 for (;;) | 3776 for (;;) |
3336 { | 3777 { |
3337 /* If the pattern is anchored, | 3778 /* If the pattern is anchored, |
3346 == '\n'))) | 3787 == '\n'))) |
3347 goto advance; | 3788 goto advance; |
3348 } | 3789 } |
3349 | 3790 |
3350 /* If a fastmap is supplied, skip quickly over characters that | 3791 /* If a fastmap is supplied, skip quickly over characters that |
3351 cannot be the start of a match. If the pattern can match the | 3792 cannot be the start of a match. If the pattern can match the |
3352 null string, however, we don't need to skip characters; we want | 3793 null string, however, we don't need to skip characters; we want |
3353 the first null string. */ | 3794 the first null string. */ |
3354 if (fastmap && startpos < total_size && !bufp->can_be_null) | 3795 if (fastmap && startpos < total_size && !bufp->can_be_null) |
3355 { | 3796 { |
3356 if (range > 0) /* Searching forwards. */ | 3797 if (range > 0) /* Searching forwards. */ |
3357 { | 3798 { |
3358 register const char *d; | 3799 register const char *d; |
3359 register int lim = 0; | 3800 register int lim = 0; |
3360 int irange = range; | 3801 int irange = range; |
3361 | 3802 |
3362 if (startpos < size1 && startpos + range >= size1) | 3803 if (startpos < size1 && startpos + range >= size1) |
3363 lim = range - (size1 - startpos); | 3804 lim = range - (size1 - startpos); |
3364 | 3805 |
3365 d = (startpos >= size1 ? string2 - size1 : string1) + startpos; | 3806 d = POS_ADDR_VSTRING (startpos); |
3366 | 3807 |
3367 /* Written out as an if-else to avoid testing `translate' | 3808 /* Written out as an if-else to avoid testing `translate' |
3368 inside the loop. */ | 3809 inside the loop. */ |
3369 if (translate) | 3810 if (translate) |
3370 while (range > lim | 3811 while (range > lim |
3371 && !fastmap[(unsigned char) | 3812 && !fastmap[(unsigned char) |
3372 translate[(unsigned char) *d++]]) | 3813 translate[(unsigned char) *d++]]) |
3373 range--; | 3814 range--; |
3374 else | 3815 else |
3375 while (range > lim && !fastmap[(unsigned char) *d++]) | 3816 while (range > lim && !fastmap[(unsigned char) *d++]) |
3376 range--; | 3817 range--; |
3377 | 3818 |
3378 startpos += irange - range; | 3819 startpos += irange - range; |
3379 } | 3820 } |
3380 else /* Searching backwards. */ | 3821 else /* Searching backwards. */ |
3381 { | 3822 { |
3382 register char c = (size1 == 0 || startpos >= size1 | 3823 register char c = (size1 == 0 || startpos >= size1 |
3383 ? string2[startpos - size1] | 3824 ? string2[startpos - size1] |
3384 : string1[startpos]); | 3825 : string1[startpos]); |
3385 | 3826 |
3386 if (!fastmap[(unsigned char) TRANSLATE (c)]) | 3827 if (!fastmap[(unsigned char) TRANSLATE (c)]) |
3387 goto advance; | 3828 goto advance; |
3388 } | 3829 } |
3389 } | 3830 } |
3390 | 3831 |
3391 /* If can't match the null string, and that's all we have left, fail. */ | 3832 /* If can't match the null string, and that's all we have left, fail. */ |
3392 if (range >= 0 && startpos == total_size && fastmap | 3833 if (range >= 0 && startpos == total_size && fastmap |
3393 && !bufp->can_be_null) | 3834 && !bufp->can_be_null) |
3394 return -1; | 3835 return -1; |
3395 | 3836 |
3396 val = re_match_2_internal (bufp, string1, size1, string2, size2, | 3837 val = re_match_2_internal (bufp, string1, size1, string2, size2, |
3397 startpos, regs, stop); | 3838 startpos, regs, stop); |
3398 #ifndef REGEX_MALLOC | 3839 #ifndef REGEX_MALLOC |
3407 if (val == -2) | 3848 if (val == -2) |
3408 return -2; | 3849 return -2; |
3409 | 3850 |
3410 advance: | 3851 advance: |
3411 if (!range) | 3852 if (!range) |
3412 break; | 3853 break; |
3413 else if (range > 0) | 3854 else if (range > 0) |
3414 { | 3855 { |
3415 range--; | 3856 /* Update STARTPOS to the next character boundary. */ |
3416 startpos++; | 3857 if (multibyte) |
3858 { | |
3859 const unsigned char *p = POS_ADDR_VSTRING (startpos); | |
3860 const unsigned char *pend = STOP_ADDR_VSTRING (startpos); | |
3861 int len = MULTIBYTE_FORM_LENGTH (p, pend - p); | |
3862 | |
3863 range -= len; | |
3864 if (range < 0) | |
3865 break; | |
3866 startpos += len; | |
3867 } | |
3868 else | |
3869 { | |
3870 range--; | |
3871 startpos++; | |
3872 } | |
3417 } | 3873 } |
3418 else | 3874 else |
3419 { | 3875 { |
3420 range++; | 3876 range++; |
3421 startpos--; | 3877 startpos--; |
3422 } | 3878 |
3879 /* Update STARTPOS to the previous character boundary. */ | |
3880 if (multibyte) | |
3881 { | |
3882 const unsigned char *p = POS_ADDR_VSTRING (startpos); | |
3883 int len = 0; | |
3884 | |
3885 /* Find the head of multibyte form. */ | |
3886 while (!CHAR_HEAD_P (p)) | |
3887 p--, len++; | |
3888 | |
3889 /* Adjust it. */ | |
3890 #if 0 /* XXX */ | |
3891 if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1)) | |
3892 ; | |
3893 else | |
3894 #endif | |
3895 { | |
3896 range += len; | |
3897 if (range > 0) | |
3898 break; | |
3899 | |
3900 startpos -= len; | |
3901 } | |
3902 } | |
3903 } | |
3423 } | 3904 } |
3424 return -1; | 3905 return -1; |
3425 } /* re_search_2 */ | 3906 } /* re_search_2 */ |
3426 | 3907 |
3427 /* Declarations and macros for re_match_2. */ | 3908 /* Declarations and macros for re_match_2. */ |
3428 | 3909 |
3429 static int bcmp_translate (); | 3910 static int bcmp_translate (); |
3430 static boolean alt_match_null_string_p (), | 3911 static boolean alt_match_null_string_p (), |
3431 common_op_match_null_string_p (), | 3912 common_op_match_null_string_p (), |
3432 group_match_null_string_p (); | 3913 group_match_null_string_p (); |
3433 | 3914 |
3434 /* This converts PTR, a pointer into one of the search strings `string1' | 3915 /* This converts PTR, a pointer into one of the search strings `string1' |
3435 and `string2' into an offset from the beginning of that string. */ | 3916 and `string2' into an offset from the beginning of that string. */ |
3436 #define POINTER_TO_OFFSET(ptr) \ | 3917 #define POINTER_TO_OFFSET(ptr) \ |
3437 (FIRST_STRING_P (ptr) \ | 3918 (FIRST_STRING_P (ptr) \ |
3443 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | 3924 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) |
3444 | 3925 |
3445 /* Call before fetching a character with *d. This switches over to | 3926 /* Call before fetching a character with *d. This switches over to |
3446 string2 if necessary. */ | 3927 string2 if necessary. */ |
3447 #define PREFETCH() \ | 3928 #define PREFETCH() \ |
3448 while (d == dend) \ | 3929 while (d == dend) \ |
3449 { \ | 3930 { \ |
3450 /* End of string2 => fail. */ \ | 3931 /* End of string2 => fail. */ \ |
3451 if (dend == end_match_2) \ | 3932 if (dend == end_match_2) \ |
3452 goto fail; \ | 3933 goto fail; \ |
3453 /* End of string1 => advance to string2. */ \ | 3934 /* End of string1 => advance to string2. */ \ |
3454 d = string2; \ | 3935 d = string2; \ |
3455 dend = end_match_2; \ | 3936 dend = end_match_2; \ |
3456 } | 3937 } |
3457 | 3938 |
3458 | 3939 |
3459 /* Test if at very beginning or at very end of the virtual concatenation | 3940 /* Test if at very beginning or at very end of the virtual concatenation |
3460 of `string1' and `string2'. If only one string, it's `string2'. */ | 3941 of `string1' and `string2'. If only one string, it's `string2'. */ |
3461 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | 3942 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) |
3462 #define AT_STRINGS_END(d) ((d) == end2) | 3943 #define AT_STRINGS_END(d) ((d) == end2) |
3463 | 3944 |
3464 | 3945 |
3465 /* Test if D points to a character which is word-constituent. We have | 3946 /* Test if D points to a character which is word-constituent. We have |
3466 two special cases to check for: if past the end of string1, look at | 3947 two special cases to check for: if past the end of string1, look at |
3467 the first character in string2; and if before the beginning of | 3948 the first character in string2; and if before the beginning of |
3468 string2, look at the last character in string1. */ | 3949 string2, look at the last character in string1. */ |
3469 #define WORDCHAR_P(d) \ | 3950 #define WORDCHAR_P(d) \ |
3470 (SYNTAX ((d) == end1 ? *string2 \ | 3951 (SYNTAX ((d) == end1 ? *string2 \ |
3471 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ | 3952 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ |
3472 == Sword) | 3953 == Sword) |
3473 | 3954 |
3474 /* Disabled due to a compiler bug -- see comment at case wordbound */ | 3955 /* Disabled due to a compiler bug -- see comment at case wordbound */ |
3956 | |
3957 /* The comment at case wordbound is following one, but we don't use | |
3958 AT_WORD_BOUNDARY anymore to support multibyte form. | |
3959 | |
3960 The DEC Alpha C compiler 3.x generates incorrect code for the | |
3961 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of | |
3962 AT_WORD_BOUNDARY, so this code is disabled. Expanding the | |
3963 macro and introducing temporary variables works around the bug. */ | |
3964 | |
3475 #if 0 | 3965 #if 0 |
3476 /* Test if the character before D and the one at D differ with respect | 3966 /* Test if the character before D and the one at D differ with respect |
3477 to being word-constituent. */ | 3967 to being word-constituent. */ |
3478 #define AT_WORD_BOUNDARY(d) \ | 3968 #define AT_WORD_BOUNDARY(d) \ |
3479 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ | 3969 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ |
3480 || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) | 3970 || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) |
3481 #endif | 3971 #endif |
3482 | 3972 |
3483 /* Free everything we malloc. */ | 3973 /* Free everything we malloc. */ |
3484 #ifdef MATCH_MAY_ALLOCATE | 3974 #ifdef MATCH_MAY_ALLOCATE |
3485 #define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else | 3975 #define FREE_VAR(var) if (var) then { REGEX_FREE (var); var = NULL; } else |
3486 #define FREE_VARIABLES() \ | 3976 #define FREE_VARIABLES() \ |
3487 do { \ | 3977 do { \ |
3488 REGEX_FREE_STACK (fail_stack.stack); \ | 3978 REGEX_FREE_STACK (fail_stack.stack); \ |
3489 FREE_VAR (regstart); \ | 3979 FREE_VAR (regstart); \ |
3490 FREE_VAR (regend); \ | 3980 FREE_VAR (regend); \ |
3498 } while (0) | 3988 } while (0) |
3499 #else | 3989 #else |
3500 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ | 3990 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ |
3501 #endif /* not MATCH_MAY_ALLOCATE */ | 3991 #endif /* not MATCH_MAY_ALLOCATE */ |
3502 | 3992 |
3503 /* These values must meet several constraints. They must not be valid | 3993 /* These values must meet several constraints. They must not be valid |
3504 register values; since we have a limit of 255 registers (because | 3994 register values; since we have a limit of 255 registers (because |
3505 we use only one byte in the pattern for the register number), we can | 3995 we use only one byte in the pattern for the register number), we can |
3506 use numbers larger than 255. They must differ by 1, because of | 3996 use numbers larger than 255. They must differ by 1, because of |
3507 NUM_FAILURE_ITEMS above. And the value for the lowest register must | 3997 NUM_FAILURE_ITEMS above. And the value for the lowest register must |
3508 be larger than the value for the highest register, so we do not try | 3998 be larger than the value for the highest register, so we do not try |
3509 to actually save any registers when none are active. */ | 3999 to actually save any registers when none are active. */ |
3510 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | 4000 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) |
3511 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | 4001 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) |
3512 | 4002 |
3513 /* Matching routines. */ | 4003 /* Matching routines. */ |
3514 | 4004 |
3515 #ifndef emacs /* Emacs never uses this. */ | 4005 #ifndef emacs /* Emacs never uses this. */ |
3516 /* re_match is like re_match_2 except it takes only a single string. */ | 4006 /* re_match is like re_match_2 except it takes only a single string. */ |
3517 | 4007 |
3518 int | 4008 int |
3519 re_match (bufp, string, size, pos, regs) | 4009 re_match (bufp, string, size, pos, regs) |
3520 struct re_pattern_buffer *bufp; | 4010 struct re_pattern_buffer *bufp; |
3527 alloca (0); | 4017 alloca (0); |
3528 return result; | 4018 return result; |
3529 } | 4019 } |
3530 #endif /* not emacs */ | 4020 #endif /* not emacs */ |
3531 | 4021 |
4022 #ifdef emacs | |
4023 /* In Emacs, this is the string or buffer in which we | |
4024 are matching. It is used for looking up syntax properties. */ | |
4025 Lisp_Object re_match_object; | |
4026 #endif | |
3532 | 4027 |
3533 /* re_match_2 matches the compiled pattern in BUFP against the | 4028 /* re_match_2 matches the compiled pattern in BUFP against the |
3534 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | 4029 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 |
3535 and SIZE2, respectively). We start matching at POS, and stop | 4030 and SIZE2, respectively). We start matching at POS, and stop |
3536 matching at STOP. | 4031 matching at STOP. |
3537 | 4032 |
3538 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | 4033 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we |
3539 store offsets for the substring each group matched in REGS. See the | 4034 store offsets for the substring each group matched in REGS. See the |
3540 documentation for exactly how many groups we fill. | 4035 documentation for exactly how many groups we fill. |
3541 | 4036 |
3542 We return -1 if no match, -2 if an internal error (such as the | 4037 We return -1 if no match, -2 if an internal error (such as the |
3543 failure stack overflowing). Otherwise, we return the length of the | 4038 failure stack overflowing). Otherwise, we return the length of the |
3544 matched substring. */ | 4039 matched substring. */ |
3545 | 4040 |
3546 int | 4041 int |
3547 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | 4042 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
3548 struct re_pattern_buffer *bufp; | 4043 struct re_pattern_buffer *bufp; |
3550 int size1, size2; | 4045 int size1, size2; |
3551 int pos; | 4046 int pos; |
3552 struct re_registers *regs; | 4047 struct re_registers *regs; |
3553 int stop; | 4048 int stop; |
3554 { | 4049 { |
3555 int result = re_match_2_internal (bufp, string1, size1, string2, size2, | 4050 int result; |
4051 | |
4052 #ifdef emacs | |
4053 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, | |
4054 POS_AS_IN_BUFFER (pos > 0 ? pos - 1 : pos), | |
4055 1); | |
4056 #endif | |
4057 | |
4058 result = re_match_2_internal (bufp, string1, size1, string2, size2, | |
3556 pos, regs, stop); | 4059 pos, regs, stop); |
3557 alloca (0); | 4060 alloca (0); |
3558 return result; | 4061 return result; |
3559 } | 4062 } |
3560 | 4063 |
3561 /* This is a separate function so that we can force an alloca cleanup | 4064 /* This is a separate function so that we can force an alloca cleanup |
3562 afterwards. */ | 4065 afterwards. */ |
3563 static int | 4066 static int |
3564 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) | 4067 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) |
3565 struct re_pattern_buffer *bufp; | 4068 struct re_pattern_buffer *bufp; |
3566 const char *string1, *string2; | 4069 const char *string1, *string2; |
3567 int size1, size2; | 4070 int size1, size2; |
3575 | 4078 |
3576 /* Just past the end of the corresponding string. */ | 4079 /* Just past the end of the corresponding string. */ |
3577 const char *end1, *end2; | 4080 const char *end1, *end2; |
3578 | 4081 |
3579 /* Pointers into string1 and string2, just past the last characters in | 4082 /* Pointers into string1 and string2, just past the last characters in |
3580 each to consider matching. */ | 4083 each to consider matching. */ |
3581 const char *end_match_1, *end_match_2; | 4084 const char *end_match_1, *end_match_2; |
3582 | 4085 |
3583 /* Where we are in the data, and the end of the current string. */ | 4086 /* Where we are in the data, and the end of the current string. */ |
3584 const char *d, *dend; | 4087 const char *d, *dend; |
3585 | 4088 |
3589 | 4092 |
3590 /* Mark the opcode just after a start_memory, so we can test for an | 4093 /* Mark the opcode just after a start_memory, so we can test for an |
3591 empty subpattern when we get to the stop_memory. */ | 4094 empty subpattern when we get to the stop_memory. */ |
3592 unsigned char *just_past_start_mem = 0; | 4095 unsigned char *just_past_start_mem = 0; |
3593 | 4096 |
3594 /* We use this to map every character in the string. */ | 4097 /* We use this to map every character in the string. */ |
3595 RE_TRANSLATE_TYPE translate = bufp->translate; | 4098 RE_TRANSLATE_TYPE translate = bufp->translate; |
4099 | |
4100 /* Nonzero if we have to concern multibyte character. */ | |
4101 int multibyte = bufp->multibyte; | |
3596 | 4102 |
3597 /* Failure point stack. Each place that can handle a failure further | 4103 /* Failure point stack. Each place that can handle a failure further |
3598 down the line pushes a failure point on this stack. It consists of | 4104 down the line pushes a failure point on this stack. It consists of |
3599 restart, regend, and reg_info for all registers corresponding to | 4105 restart, regend, and reg_info for all registers corresponding to |
3600 the subexpressions we're currently inside, plus the number of such | 4106 the subexpressions we're currently inside, plus the number of such |
3601 registers, and, finally, two char *'s. The first char * is where | 4107 registers, and, finally, two char *'s. The first char * is where |
3602 to resume scanning the pattern; the second one is where to resume | 4108 to resume scanning the pattern; the second one is where to resume |
3603 scanning the strings. If the latter is zero, the failure point is | 4109 scanning the strings. If the latter is zero, the failure point is |
3604 a ``dummy''; if a failure happens and the failure point is a dummy, | 4110 a ``dummy''; if a failure happens and the failure point is a dummy, |
3605 it gets discarded and the next next one is tried. */ | 4111 it gets discarded and the next next one is tried. */ |
3606 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | 4112 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
3607 fail_stack_type fail_stack; | 4113 fail_stack_type fail_stack; |
3608 #endif | 4114 #endif |
3609 #ifdef DEBUG | 4115 #ifdef DEBUG |
3610 static unsigned failure_id = 0; | 4116 static unsigned failure_id = 0; |
3611 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | 4117 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; |
3614 /* This holds the pointer to the failure stack, when | 4120 /* This holds the pointer to the failure stack, when |
3615 it is allocated relocatably. */ | 4121 it is allocated relocatably. */ |
3616 fail_stack_elt_t *failure_stack_ptr; | 4122 fail_stack_elt_t *failure_stack_ptr; |
3617 | 4123 |
3618 /* We fill all the registers internally, independent of what we | 4124 /* We fill all the registers internally, independent of what we |
3619 return, for use in backreferences. The number here includes | 4125 return, for use in backreferences. The number here includes |
3620 an element for register zero. */ | 4126 an element for register zero. */ |
3621 unsigned num_regs = bufp->re_nsub + 1; | 4127 unsigned num_regs = bufp->re_nsub + 1; |
3622 | 4128 |
3623 /* The currently active registers. */ | 4129 /* The currently active registers. */ |
3624 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 4130 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
3647 /* The is_active field of reg_info helps us keep track of which (possibly | 4153 /* The is_active field of reg_info helps us keep track of which (possibly |
3648 nested) subexpressions we are currently in. The matched_something | 4154 nested) subexpressions we are currently in. The matched_something |
3649 field of reg_info[reg_num] helps us tell whether or not we have | 4155 field of reg_info[reg_num] helps us tell whether or not we have |
3650 matched any of the pattern so far this time through the reg_num-th | 4156 matched any of the pattern so far this time through the reg_num-th |
3651 subexpression. These two fields get reset each time through any | 4157 subexpression. These two fields get reset each time through any |
3652 loop their register is in. */ | 4158 loop their register is in. */ |
3653 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | 4159 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
3654 register_info_type *reg_info; | 4160 register_info_type *reg_info; |
3655 #endif | 4161 #endif |
3656 | 4162 |
3657 /* The following record the register info as found in the above | 4163 /* The following record the register info as found in the above |
3658 variables when we find a match better than any we've seen before. | 4164 variables when we find a match better than any we've seen before. |
3663 const char **best_regstart, **best_regend; | 4169 const char **best_regstart, **best_regend; |
3664 #endif | 4170 #endif |
3665 | 4171 |
3666 /* Logically, this is `best_regend[0]'. But we don't want to have to | 4172 /* Logically, this is `best_regend[0]'. But we don't want to have to |
3667 allocate space for that if we're not allocating space for anything | 4173 allocate space for that if we're not allocating space for anything |
3668 else (see below). Also, we never need info about register 0 for | 4174 else (see below). Also, we never need info about register 0 for |
3669 any of the other register vectors, and it seems rather a kludge to | 4175 any of the other register vectors, and it seems rather a kludge to |
3670 treat `best_regend' differently than the rest. So we keep track of | 4176 treat `best_regend' differently than the rest. So we keep track of |
3671 the end of the best match so far in a separate variable. We | 4177 the end of the best match so far in a separate variable. We |
3672 initialize this to NULL so that when we backtrack the first time | 4178 initialize this to NULL so that when we backtrack the first time |
3673 and need to test it, it's not garbage. */ | 4179 and need to test it, it's not garbage. */ |
3708 reg_info = REGEX_TALLOC (num_regs, register_info_type); | 4214 reg_info = REGEX_TALLOC (num_regs, register_info_type); |
3709 reg_dummy = REGEX_TALLOC (num_regs, const char *); | 4215 reg_dummy = REGEX_TALLOC (num_regs, const char *); |
3710 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); | 4216 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); |
3711 | 4217 |
3712 if (!(regstart && regend && old_regstart && old_regend && reg_info | 4218 if (!(regstart && regend && old_regstart && old_regend && reg_info |
3713 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | 4219 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) |
3714 { | 4220 { |
3715 FREE_VARIABLES (); | 4221 FREE_VARIABLES (); |
3716 return -2; | 4222 return -2; |
3717 } | 4223 } |
3718 } | 4224 } |
3719 else | 4225 else |
3720 { | 4226 { |
3721 /* We must initialize all our variables to NULL, so that | 4227 /* We must initialize all our variables to NULL, so that |
3722 `FREE_VARIABLES' doesn't try to free them. */ | 4228 `FREE_VARIABLES' doesn't try to free them. */ |
3723 regstart = regend = old_regstart = old_regend = best_regstart | 4229 regstart = regend = old_regstart = old_regend = best_regstart |
3724 = best_regend = reg_dummy = NULL; | 4230 = best_regend = reg_dummy = NULL; |
3725 reg_info = reg_info_dummy = (register_info_type *) NULL; | 4231 reg_info = reg_info_dummy = (register_info_type *) NULL; |
3726 } | 4232 } |
3727 #endif /* MATCH_MAY_ALLOCATE */ | 4233 #endif /* MATCH_MAY_ALLOCATE */ |
3728 | 4234 |
3729 /* The starting position is bogus. */ | 4235 /* The starting position is bogus. */ |
3737 start_memory/stop_memory has been seen for. Also initialize the | 4243 start_memory/stop_memory has been seen for. Also initialize the |
3738 register information struct. */ | 4244 register information struct. */ |
3739 for (mcnt = 1; mcnt < num_regs; mcnt++) | 4245 for (mcnt = 1; mcnt < num_regs; mcnt++) |
3740 { | 4246 { |
3741 regstart[mcnt] = regend[mcnt] | 4247 regstart[mcnt] = regend[mcnt] |
3742 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | 4248 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; |
3743 | 4249 |
3744 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | 4250 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; |
3745 IS_ACTIVE (reg_info[mcnt]) = 0; | 4251 IS_ACTIVE (reg_info[mcnt]) = 0; |
3746 MATCHED_SOMETHING (reg_info[mcnt]) = 0; | 4252 MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
3747 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | 4253 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; |
3748 } | 4254 } |
3749 | 4255 |
3750 /* We move `string1' into `string2' if the latter's empty -- but not if | 4256 /* We move `string1' into `string2' if the latter's empty -- but not if |
3751 `string1' is null. */ | 4257 `string1' is null. */ |
3752 if (size2 == 0 && string1 != NULL) | 4258 if (size2 == 0 && string1 != NULL) |
3753 { | 4259 { |
3754 string2 = string1; | 4260 string2 = string1; |
3755 size2 = size1; | 4261 size2 = size1; |
3756 string1 = 0; | 4262 string1 = 0; |
3792 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | 4298 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); |
3793 DEBUG_PRINT1 ("The string to match is: `"); | 4299 DEBUG_PRINT1 ("The string to match is: `"); |
3794 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | 4300 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); |
3795 DEBUG_PRINT1 ("'\n"); | 4301 DEBUG_PRINT1 ("'\n"); |
3796 | 4302 |
3797 /* This loops over pattern commands. It exits by returning from the | 4303 /* This loops over pattern commands. It exits by returning from the |
3798 function if the match is complete, or it drops through if the match | 4304 function if the match is complete, or it drops through if the match |
3799 fails at this starting point in the input data. */ | 4305 fails at this starting point in the input data. */ |
3800 for (;;) | 4306 for (;;) |
3801 { | 4307 { |
3802 DEBUG_PRINT2 ("\n0x%x: ", p); | 4308 DEBUG_PRINT2 ("\n0x%x: ", p); |
3803 | 4309 |
3804 if (p == pend) | 4310 if (p == pend) |
3805 { /* End of pattern means we might have succeeded. */ | 4311 { /* End of pattern means we might have succeeded. */ |
3806 DEBUG_PRINT1 ("end of pattern ... "); | 4312 DEBUG_PRINT1 ("end of pattern ... "); |
3807 | 4313 |
3808 /* If we haven't matched the entire string, and we want the | 4314 /* If we haven't matched the entire string, and we want the |
3809 longest match, try backtracking. */ | 4315 longest match, try backtracking. */ |
3810 if (d != end_match_2) | 4316 if (d != end_match_2) |
3811 { | 4317 { |
3812 /* 1 if this match ends in the same string (string1 or string2) | 4318 /* 1 if this match ends in the same string (string1 or string2) |
3813 as the best previous match. */ | 4319 as the best previous match. */ |
3814 boolean same_str_p = (FIRST_STRING_P (match_end) | 4320 boolean same_str_p = (FIRST_STRING_P (match_end) |
3815 == MATCHING_IN_FIRST_STRING); | 4321 == MATCHING_IN_FIRST_STRING); |
3816 /* 1 if this match is the best seen so far. */ | 4322 /* 1 if this match is the best seen so far. */ |
3817 boolean best_match_p; | 4323 boolean best_match_p; |
3818 | 4324 |
3819 /* AIX compiler got confused when this was combined | 4325 /* AIX compiler got confused when this was combined |
3820 with the previous declaration. */ | 4326 with the previous declaration. */ |
3821 if (same_str_p) | 4327 if (same_str_p) |
3822 best_match_p = d > match_end; | 4328 best_match_p = d > match_end; |
3823 else | 4329 else |
3824 best_match_p = !MATCHING_IN_FIRST_STRING; | 4330 best_match_p = !MATCHING_IN_FIRST_STRING; |
3825 | 4331 |
3826 DEBUG_PRINT1 ("backtracking.\n"); | 4332 DEBUG_PRINT1 ("backtracking.\n"); |
3827 | 4333 |
3828 if (!FAIL_STACK_EMPTY ()) | 4334 if (!FAIL_STACK_EMPTY ()) |
3829 { /* More failure points to try. */ | 4335 { /* More failure points to try. */ |
3830 | 4336 |
3831 /* If exceeds best match so far, save it. */ | 4337 /* If exceeds best match so far, save it. */ |
3832 if (!best_regs_set || best_match_p) | 4338 if (!best_regs_set || best_match_p) |
3833 { | 4339 { |
3834 best_regs_set = true; | 4340 best_regs_set = true; |
3835 match_end = d; | 4341 match_end = d; |
3836 | 4342 |
3837 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | 4343 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); |
3838 | 4344 |
3839 for (mcnt = 1; mcnt < num_regs; mcnt++) | 4345 for (mcnt = 1; mcnt < num_regs; mcnt++) |
3840 { | 4346 { |
3841 best_regstart[mcnt] = regstart[mcnt]; | 4347 best_regstart[mcnt] = regstart[mcnt]; |
3842 best_regend[mcnt] = regend[mcnt]; | 4348 best_regend[mcnt] = regend[mcnt]; |
3843 } | 4349 } |
3844 } | 4350 } |
3845 goto fail; | 4351 goto fail; |
3846 } | 4352 } |
3847 | 4353 |
3848 /* If no failure points, don't restore garbage. And if | 4354 /* If no failure points, don't restore garbage. And if |
3849 last match is real best match, don't restore second | 4355 last match is real best match, don't restore second |
3850 best one. */ | 4356 best one. */ |
3851 else if (best_regs_set && !best_match_p) | 4357 else if (best_regs_set && !best_match_p) |
3852 { | 4358 { |
3853 restore_best_regs: | 4359 restore_best_regs: |
3854 /* Restore best match. It may happen that `dend == | 4360 /* Restore best match. It may happen that `dend == |
3855 end_match_1' while the restored d is in string2. | 4361 end_match_1' while the restored d is in string2. |
3856 For example, the pattern `x.*y.*z' against the | 4362 For example, the pattern `x.*y.*z' against the |
3857 strings `x-' and `y-z-', if the two strings are | 4363 strings `x-' and `y-z-', if the two strings are |
3858 not consecutive in memory. */ | 4364 not consecutive in memory. */ |
3859 DEBUG_PRINT1 ("Restoring best registers.\n"); | 4365 DEBUG_PRINT1 ("Restoring best registers.\n"); |
3860 | 4366 |
3861 d = match_end; | 4367 d = match_end; |
3862 dend = ((d >= string1 && d <= end1) | 4368 dend = ((d >= string1 && d <= end1) |
3863 ? end_match_1 : end_match_2); | 4369 ? end_match_1 : end_match_2); |
3864 | 4370 |
3865 for (mcnt = 1; mcnt < num_regs; mcnt++) | 4371 for (mcnt = 1; mcnt < num_regs; mcnt++) |
3866 { | 4372 { |
3867 regstart[mcnt] = best_regstart[mcnt]; | 4373 regstart[mcnt] = best_regstart[mcnt]; |
3868 regend[mcnt] = best_regend[mcnt]; | 4374 regend[mcnt] = best_regend[mcnt]; |
3869 } | 4375 } |
3870 } | 4376 } |
3871 } /* d != end_match_2 */ | 4377 } /* d != end_match_2 */ |
3872 | 4378 |
3873 succeed_label: | 4379 succeed_label: |
3874 DEBUG_PRINT1 ("Accepting match.\n"); | 4380 DEBUG_PRINT1 ("Accepting match.\n"); |
3875 | 4381 |
3876 /* If caller wants register contents data back, do it. */ | 4382 /* If caller wants register contents data back, do it. */ |
3877 if (regs && !bufp->no_sub) | 4383 if (regs && !bufp->no_sub) |
3878 { | 4384 { |
3879 /* Have the register data arrays been allocated? */ | 4385 /* Have the register data arrays been allocated? */ |
3880 if (bufp->regs_allocated == REGS_UNALLOCATED) | 4386 if (bufp->regs_allocated == REGS_UNALLOCATED) |
3881 { /* No. So allocate them with malloc. We need one | 4387 { /* No. So allocate them with malloc. We need one |
3882 extra element beyond `num_regs' for the `-1' marker | 4388 extra element beyond `num_regs' for the `-1' marker |
3883 GNU code uses. */ | 4389 GNU code uses. */ |
3884 regs->num_regs = MAX (RE_NREGS, num_regs + 1); | 4390 regs->num_regs = MAX (RE_NREGS, num_regs + 1); |
3885 regs->start = TALLOC (regs->num_regs, regoff_t); | 4391 regs->start = TALLOC (regs->num_regs, regoff_t); |
3886 regs->end = TALLOC (regs->num_regs, regoff_t); | 4392 regs->end = TALLOC (regs->num_regs, regoff_t); |
3887 if (regs->start == NULL || regs->end == NULL) | 4393 if (regs->start == NULL || regs->end == NULL) |
3888 { | 4394 { |
3889 FREE_VARIABLES (); | 4395 FREE_VARIABLES (); |
3890 return -2; | 4396 return -2; |
3891 } | 4397 } |
3892 bufp->regs_allocated = REGS_REALLOCATE; | 4398 bufp->regs_allocated = REGS_REALLOCATE; |
3893 } | 4399 } |
3894 else if (bufp->regs_allocated == REGS_REALLOCATE) | 4400 else if (bufp->regs_allocated == REGS_REALLOCATE) |
3895 { /* Yes. If we need more elements than were already | 4401 { /* Yes. If we need more elements than were already |
3896 allocated, reallocate them. If we need fewer, just | 4402 allocated, reallocate them. If we need fewer, just |
3897 leave it alone. */ | 4403 leave it alone. */ |
3898 if (regs->num_regs < num_regs + 1) | 4404 if (regs->num_regs < num_regs + 1) |
3899 { | 4405 { |
3900 regs->num_regs = num_regs + 1; | 4406 regs->num_regs = num_regs + 1; |
3901 RETALLOC (regs->start, regs->num_regs, regoff_t); | 4407 RETALLOC (regs->start, regs->num_regs, regoff_t); |
3902 RETALLOC (regs->end, regs->num_regs, regoff_t); | 4408 RETALLOC (regs->end, regs->num_regs, regoff_t); |
3903 if (regs->start == NULL || regs->end == NULL) | 4409 if (regs->start == NULL || regs->end == NULL) |
3904 { | 4410 { |
3905 FREE_VARIABLES (); | 4411 FREE_VARIABLES (); |
3906 return -2; | 4412 return -2; |
3907 } | 4413 } |
3908 } | 4414 } |
3909 } | 4415 } |
3910 else | 4416 else |
3911 { | 4417 { |
3912 /* These braces fend off a "empty body in an else-statement" | 4418 /* These braces fend off a "empty body in an else-statement" |
3913 warning under GCC when assert expands to nothing. */ | 4419 warning under GCC when assert expands to nothing. */ |
3914 assert (bufp->regs_allocated == REGS_FIXED); | 4420 assert (bufp->regs_allocated == REGS_FIXED); |
3915 } | 4421 } |
3916 | 4422 |
3917 /* Convert the pointer data in `regstart' and `regend' to | 4423 /* Convert the pointer data in `regstart' and `regend' to |
3918 indices. Register zero has to be set differently, | 4424 indices. Register zero has to be set differently, |
3919 since we haven't kept track of any info for it. */ | 4425 since we haven't kept track of any info for it. */ |
3920 if (regs->num_regs > 0) | 4426 if (regs->num_regs > 0) |
3921 { | 4427 { |
3922 regs->start[0] = pos; | 4428 regs->start[0] = pos; |
3923 regs->end[0] = (MATCHING_IN_FIRST_STRING | 4429 regs->end[0] = (MATCHING_IN_FIRST_STRING |
3924 ? ((regoff_t) (d - string1)) | 4430 ? ((regoff_t) (d - string1)) |
3925 : ((regoff_t) (d - string2 + size1))); | 4431 : ((regoff_t) (d - string2 + size1))); |
3926 } | 4432 } |
3927 | 4433 |
3928 /* Go through the first `min (num_regs, regs->num_regs)' | 4434 /* Go through the first `min (num_regs, regs->num_regs)' |
3929 registers, since that is all we initialized. */ | 4435 registers, since that is all we initialized. */ |
3930 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) | 4436 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) |
3931 { | 4437 { |
3932 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) | 4438 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) |
3933 regs->start[mcnt] = regs->end[mcnt] = -1; | 4439 regs->start[mcnt] = regs->end[mcnt] = -1; |
3934 else | 4440 else |
3935 { | 4441 { |
3936 regs->start[mcnt] | 4442 regs->start[mcnt] |
3937 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); | 4443 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); |
3938 regs->end[mcnt] | 4444 regs->end[mcnt] |
3939 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); | 4445 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); |
3940 } | 4446 } |
3941 } | 4447 } |
3942 | 4448 |
3943 /* If the regs structure we return has more elements than | 4449 /* If the regs structure we return has more elements than |
3944 were in the pattern, set the extra elements to -1. If | 4450 were in the pattern, set the extra elements to -1. If |
3945 we (re)allocated the registers, this is the case, | 4451 we (re)allocated the registers, this is the case, |
3946 because we always allocate enough to have at least one | 4452 because we always allocate enough to have at least one |
3947 -1 at the end. */ | 4453 -1 at the end. */ |
3948 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | 4454 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) |
3949 regs->start[mcnt] = regs->end[mcnt] = -1; | 4455 regs->start[mcnt] = regs->end[mcnt] = -1; |
3950 } /* regs && !bufp->no_sub */ | 4456 } /* regs && !bufp->no_sub */ |
3951 | 4457 |
3952 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | 4458 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
3953 nfailure_points_pushed, nfailure_points_popped, | 4459 nfailure_points_pushed, nfailure_points_popped, |
3954 nfailure_points_pushed - nfailure_points_popped); | 4460 nfailure_points_pushed - nfailure_points_popped); |
3955 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | 4461 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
3956 | 4462 |
3957 mcnt = d - pos - (MATCHING_IN_FIRST_STRING | 4463 mcnt = d - pos - (MATCHING_IN_FIRST_STRING |
3958 ? string1 | 4464 ? string1 |
3959 : string2 - size1); | 4465 : string2 - size1); |
3960 | 4466 |
3961 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | 4467 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); |
3962 | 4468 |
3963 FREE_VARIABLES (); | 4469 FREE_VARIABLES (); |
3964 return mcnt; | 4470 return mcnt; |
3965 } | 4471 } |
3966 | 4472 |
3967 /* Otherwise match next pattern command. */ | 4473 /* Otherwise match next pattern command. */ |
3968 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) | 4474 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
3969 { | 4475 { |
3970 /* Ignore these. Used to ignore the n of succeed_n's which | 4476 /* Ignore these. Used to ignore the n of succeed_n's which |
3971 currently have n == 0. */ | 4477 currently have n == 0. */ |
3972 case no_op: | 4478 case no_op: |
3973 DEBUG_PRINT1 ("EXECUTING no_op.\n"); | 4479 DEBUG_PRINT1 ("EXECUTING no_op.\n"); |
3974 break; | 4480 break; |
3975 | 4481 |
3976 case succeed: | 4482 case succeed: |
3977 DEBUG_PRINT1 ("EXECUTING succeed.\n"); | 4483 DEBUG_PRINT1 ("EXECUTING succeed.\n"); |
3978 goto succeed_label; | 4484 goto succeed_label; |
3979 | 4485 |
3980 /* Match the next n pattern characters exactly. The following | 4486 /* Match the next n pattern characters exactly. The following |
3981 byte in the pattern defines n, and the n bytes after that | 4487 byte in the pattern defines n, and the n bytes after that |
3982 are the characters to match. */ | 4488 are the characters to match. */ |
3983 case exactn: | 4489 case exactn: |
3984 mcnt = *p++; | 4490 mcnt = *p++; |
3985 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | 4491 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); |
3986 | 4492 |
3987 /* This is written out as an if-else so we don't waste time | 4493 /* This is written out as an if-else so we don't waste time |
3988 testing `translate' inside the loop. */ | 4494 testing `translate' inside the loop. */ |
3989 if (translate) | 4495 if (translate) |
3990 { | 4496 { |
3991 do | 4497 do |
3992 { | 4498 { |
3993 PREFETCH (); | 4499 PREFETCH (); |
3994 if ((unsigned char) translate[(unsigned char) *d++] | 4500 if ((unsigned char) translate[(unsigned char) *d++] |
3995 != (unsigned char) *p++) | 4501 != (unsigned char) *p++) |
3996 goto fail; | 4502 goto fail; |
3997 } | 4503 } |
3998 while (--mcnt); | 4504 while (--mcnt); |
3999 } | 4505 } |
4000 else | 4506 else |
4001 { | 4507 { |
4005 if (*d++ != (char) *p++) goto fail; | 4511 if (*d++ != (char) *p++) goto fail; |
4006 } | 4512 } |
4007 while (--mcnt); | 4513 while (--mcnt); |
4008 } | 4514 } |
4009 SET_REGS_MATCHED (); | 4515 SET_REGS_MATCHED (); |
4010 break; | 4516 break; |
4011 | 4517 |
4012 | 4518 |
4013 /* Match any character except possibly a newline or a null. */ | 4519 /* Match any character except possibly a newline or a null. */ |
4014 case anychar: | 4520 case anychar: |
4015 DEBUG_PRINT1 ("EXECUTING anychar.\n"); | 4521 DEBUG_PRINT1 ("EXECUTING anychar.\n"); |
4016 | 4522 |
4017 PREFETCH (); | 4523 PREFETCH (); |
4018 | 4524 |
4019 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') | 4525 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') |
4020 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) | 4526 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) |
4021 goto fail; | 4527 goto fail; |
4022 | 4528 |
4023 SET_REGS_MATCHED (); | 4529 SET_REGS_MATCHED (); |
4024 DEBUG_PRINT2 (" Matched `%d'.\n", *d); | 4530 DEBUG_PRINT2 (" Matched `%d'.\n", *d); |
4025 d++; | 4531 d += multibyte ? MULTIBYTE_FORM_LENGTH (d, dend - d) : 1; |
4026 break; | 4532 break; |
4027 | 4533 |
4028 | 4534 |
4029 case charset: | 4535 case charset: |
4030 case charset_not: | 4536 case charset_not: |
4031 { | 4537 { |
4032 register unsigned char c; | 4538 register unsigned int c; |
4033 boolean not = (re_opcode_t) *(p - 1) == charset_not; | 4539 boolean not = (re_opcode_t) *(p - 1) == charset_not; |
4034 | 4540 int len; |
4035 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | 4541 |
4542 /* Start of actual range_table, or end of bitmap if there is no | |
4543 range table. */ | |
4544 unsigned char *range_table; | |
4545 | |
4546 /* Nonzero if there is range table. */ | |
4547 int range_table_exists; | |
4548 | |
4549 /* Number of ranges of range table. Not in bytes. */ | |
4550 int count; | |
4551 | |
4552 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | |
4036 | 4553 |
4037 PREFETCH (); | 4554 PREFETCH (); |
4038 c = TRANSLATE (*d); /* The character to match. */ | 4555 c = (unsigned char) *d; |
4039 | 4556 |
4040 /* Cast to `unsigned' instead of `unsigned char' in case the | 4557 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */ |
4041 bit list is a full 32 bytes long. */ | 4558 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]); |
4042 if (c < (unsigned) (*p * BYTEWIDTH) | 4559 if (range_table_exists) |
4560 EXTRACT_NUMBER_AND_INCR (count, range_table); | |
4561 else | |
4562 count = 0; | |
4563 | |
4564 if (multibyte && BASE_LEADING_CODE_P (c)) | |
4565 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); | |
4566 | |
4567 if (SINGLE_BYTE_CHAR_P (c)) | |
4568 { /* Lookup bitmap. */ | |
4569 c = TRANSLATE (c); /* The character to match. */ | |
4570 len = 1; | |
4571 | |
4572 /* Cast to `unsigned' instead of `unsigned char' in | |
4573 case the bit list is a full 32 bytes long. */ | |
4574 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH) | |
4043 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | 4575 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
4044 not = !not; | 4576 not = !not; |
4045 | 4577 } |
4046 p += 1 + *p; | 4578 else if (range_table_exists) |
4579 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count); | |
4580 | |
4581 p = CHARSET_RANGE_TABLE_END (range_table, count); | |
4047 | 4582 |
4048 if (!not) goto fail; | 4583 if (!not) goto fail; |
4049 | 4584 |
4050 SET_REGS_MATCHED (); | 4585 SET_REGS_MATCHED (); |
4051 d++; | 4586 d += len; |
4052 break; | 4587 break; |
4053 } | 4588 } |
4054 | 4589 |
4055 | 4590 |
4056 /* The beginning of a group is represented by start_memory. | 4591 /* The beginning of a group is represented by start_memory. |
4057 The arguments are the register number in the next byte, and the | 4592 The arguments are the register number in the next byte, and the |
4058 number of groups inner to this one in the next. The text | 4593 number of groups inner to this one in the next. The text |
4059 matched within the group is recorded (in the internal | 4594 matched within the group is recorded (in the internal |
4060 registers data structure) under the register number. */ | 4595 registers data structure) under the register number. */ |
4061 case start_memory: | 4596 case start_memory: |
4062 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | 4597 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); |
4063 | 4598 |
4064 /* Find out if this group can match the empty string. */ | 4599 /* Find out if this group can match the empty string. */ |
4065 p1 = p; /* To send to group_match_null_string_p. */ | 4600 p1 = p; /* To send to group_match_null_string_p. */ |
4066 | 4601 |
4067 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | 4602 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) |
4068 REG_MATCH_NULL_STRING_P (reg_info[*p]) | 4603 REG_MATCH_NULL_STRING_P (reg_info[*p]) |
4069 = group_match_null_string_p (&p1, pend, reg_info); | 4604 = group_match_null_string_p (&p1, pend, reg_info); |
4070 | 4605 |
4071 /* Save the position in the string where we were the last time | 4606 /* Save the position in the string where we were the last time |
4072 we were at this open-group operator in case the group is | 4607 we were at this open-group operator in case the group is |
4073 operated upon by a repetition operator, e.g., with `(a*)*b' | 4608 operated upon by a repetition operator, e.g., with `(a*)*b' |
4074 against `ab'; then we want to ignore where we are now in | 4609 against `ab'; then we want to ignore where we are now in |
4075 the string in case this attempt to match fails. */ | 4610 the string in case this attempt to match fails. */ |
4076 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | 4611 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
4077 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | 4612 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] |
4078 : regstart[*p]; | 4613 : regstart[*p]; |
4079 DEBUG_PRINT2 (" old_regstart: %d\n", | 4614 DEBUG_PRINT2 (" old_regstart: %d\n", |
4080 POINTER_TO_OFFSET (old_regstart[*p])); | 4615 POINTER_TO_OFFSET (old_regstart[*p])); |
4081 | 4616 |
4082 regstart[*p] = d; | 4617 regstart[*p] = d; |
4083 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | 4618 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); |
4084 | 4619 |
4085 IS_ACTIVE (reg_info[*p]) = 1; | 4620 IS_ACTIVE (reg_info[*p]) = 1; |
4086 MATCHED_SOMETHING (reg_info[*p]) = 0; | 4621 MATCHED_SOMETHING (reg_info[*p]) = 0; |
4087 | 4622 |
4088 /* Clear this whenever we change the register activity status. */ | 4623 /* Clear this whenever we change the register activity status. */ |
4089 set_regs_matched_done = 0; | 4624 set_regs_matched_done = 0; |
4090 | 4625 |
4091 /* This is the new highest active register. */ | 4626 /* This is the new highest active register. */ |
4092 highest_active_reg = *p; | 4627 highest_active_reg = *p; |
4093 | 4628 |
4094 /* If nothing was active before, this is the new lowest active | 4629 /* If nothing was active before, this is the new lowest active |
4095 register. */ | 4630 register. */ |
4096 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | 4631 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
4097 lowest_active_reg = *p; | 4632 lowest_active_reg = *p; |
4098 | 4633 |
4099 /* Move past the register number and inner group count. */ | 4634 /* Move past the register number and inner group count. */ |
4100 p += 2; | 4635 p += 2; |
4101 just_past_start_mem = p; | 4636 just_past_start_mem = p; |
4102 | 4637 |
4103 break; | 4638 break; |
4104 | 4639 |
4105 | 4640 |
4106 /* The stop_memory opcode represents the end of a group. Its | 4641 /* The stop_memory opcode represents the end of a group. Its |
4107 arguments are the same as start_memory's: the register | 4642 arguments are the same as start_memory's: the register |
4108 number, and the number of inner groups. */ | 4643 number, and the number of inner groups. */ |
4109 case stop_memory: | 4644 case stop_memory: |
4110 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | 4645 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); |
4111 | 4646 |
4112 /* We need to save the string position the last time we were at | 4647 /* We need to save the string position the last time we were at |
4113 this close-group operator in case the group is operated | 4648 this close-group operator in case the group is operated |
4114 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | 4649 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' |
4115 against `aba'; then we want to ignore where we are now in | 4650 against `aba'; then we want to ignore where we are now in |
4116 the string in case this attempt to match fails. */ | 4651 the string in case this attempt to match fails. */ |
4117 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | 4652 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) |
4118 ? REG_UNSET (regend[*p]) ? d : regend[*p] | 4653 ? REG_UNSET (regend[*p]) ? d : regend[*p] |
4119 : regend[*p]; | 4654 : regend[*p]; |
4120 DEBUG_PRINT2 (" old_regend: %d\n", | 4655 DEBUG_PRINT2 (" old_regend: %d\n", |
4121 POINTER_TO_OFFSET (old_regend[*p])); | 4656 POINTER_TO_OFFSET (old_regend[*p])); |
4122 | 4657 |
4123 regend[*p] = d; | 4658 regend[*p] = d; |
4124 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | 4659 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); |
4125 | 4660 |
4126 /* This register isn't active anymore. */ | 4661 /* This register isn't active anymore. */ |
4127 IS_ACTIVE (reg_info[*p]) = 0; | 4662 IS_ACTIVE (reg_info[*p]) = 0; |
4128 | 4663 |
4129 /* Clear this whenever we change the register activity status. */ | 4664 /* Clear this whenever we change the register activity status. */ |
4130 set_regs_matched_done = 0; | 4665 set_regs_matched_done = 0; |
4131 | 4666 |
4132 /* If this was the only register active, nothing is active | 4667 /* If this was the only register active, nothing is active |
4133 anymore. */ | 4668 anymore. */ |
4134 if (lowest_active_reg == highest_active_reg) | 4669 if (lowest_active_reg == highest_active_reg) |
4135 { | 4670 { |
4136 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 4671 lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
4137 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | 4672 highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
4138 } | 4673 } |
4139 else | 4674 else |
4140 { /* We must scan for the new highest active register, since | 4675 { /* We must scan for the new highest active register, since |
4141 it isn't necessarily one less than now: consider | 4676 it isn't necessarily one less than now: consider |
4142 (a(b)c(d(e)f)g). When group 3 ends, after the f), the | 4677 (a(b)c(d(e)f)g). When group 3 ends, after the f), the |
4143 new highest active register is 1. */ | 4678 new highest active register is 1. */ |
4144 unsigned char r = *p - 1; | 4679 unsigned char r = *p - 1; |
4145 while (r > 0 && !IS_ACTIVE (reg_info[r])) | 4680 while (r > 0 && !IS_ACTIVE (reg_info[r])) |
4146 r--; | 4681 r--; |
4147 | 4682 |
4148 /* If we end up at register zero, that means that we saved | 4683 /* If we end up at register zero, that means that we saved |
4149 the registers as the result of an `on_failure_jump', not | 4684 the registers as the result of an `on_failure_jump', not |
4150 a `start_memory', and we jumped to past the innermost | 4685 a `start_memory', and we jumped to past the innermost |
4151 `stop_memory'. For example, in ((.)*) we save | 4686 `stop_memory'. For example, in ((.)*) we save |
4152 registers 1 and 2 as a result of the *, but when we pop | 4687 registers 1 and 2 as a result of the *, but when we pop |
4153 back to the second ), we are at the stop_memory 1. | 4688 back to the second ), we are at the stop_memory 1. |
4154 Thus, nothing is active. */ | 4689 Thus, nothing is active. */ |
4155 if (r == 0) | 4690 if (r == 0) |
4156 { | 4691 { |
4157 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | 4692 lowest_active_reg = NO_LOWEST_ACTIVE_REG; |
4158 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | 4693 highest_active_reg = NO_HIGHEST_ACTIVE_REG; |
4159 } | 4694 } |
4160 else | 4695 else |
4161 highest_active_reg = r; | 4696 highest_active_reg = r; |
4162 } | 4697 } |
4163 | 4698 |
4164 /* If just failed to match something this time around with a | 4699 /* If just failed to match something this time around with a |
4165 group that's operated on by a repetition operator, try to | 4700 group that's operated on by a repetition operator, try to |
4166 force exit from the ``loop'', and restore the register | 4701 force exit from the ``loop'', and restore the register |
4167 information for this group that we had before trying this | 4702 information for this group that we had before trying this |
4168 last match. */ | 4703 last match. */ |
4169 if ((!MATCHED_SOMETHING (reg_info[*p]) | 4704 if ((!MATCHED_SOMETHING (reg_info[*p]) |
4170 || just_past_start_mem == p - 1) | 4705 || just_past_start_mem == p - 1) |
4171 && (p + 2) < pend) | 4706 && (p + 2) < pend) |
4172 { | 4707 { |
4173 boolean is_a_jump_n = false; | 4708 boolean is_a_jump_n = false; |
4174 | 4709 |
4175 p1 = p + 2; | 4710 p1 = p + 2; |
4176 mcnt = 0; | 4711 mcnt = 0; |
4177 switch ((re_opcode_t) *p1++) | 4712 switch ((re_opcode_t) *p1++) |
4178 { | 4713 { |
4179 case jump_n: | 4714 case jump_n: |
4180 is_a_jump_n = true; | 4715 is_a_jump_n = true; |
4181 case pop_failure_jump: | 4716 case pop_failure_jump: |
4182 case maybe_pop_jump: | 4717 case maybe_pop_jump: |
4183 case jump: | 4718 case jump: |
4184 case dummy_failure_jump: | 4719 case dummy_failure_jump: |
4185 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 4720 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4186 if (is_a_jump_n) | 4721 if (is_a_jump_n) |
4187 p1 += 2; | 4722 p1 += 2; |
4188 break; | 4723 break; |
4189 | 4724 |
4190 default: | 4725 default: |
4191 /* do nothing */ ; | 4726 /* do nothing */ ; |
4192 } | 4727 } |
4193 p1 += mcnt; | 4728 p1 += mcnt; |
4194 | 4729 |
4195 /* If the next operation is a jump backwards in the pattern | 4730 /* If the next operation is a jump backwards in the pattern |
4196 to an on_failure_jump right before the start_memory | 4731 to an on_failure_jump right before the start_memory |
4197 corresponding to this stop_memory, exit from the loop | 4732 corresponding to this stop_memory, exit from the loop |
4198 by forcing a failure after pushing on the stack the | 4733 by forcing a failure after pushing on the stack the |
4199 on_failure_jump's jump in the pattern, and d. */ | 4734 on_failure_jump's jump in the pattern, and d. */ |
4200 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | 4735 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump |
4201 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | 4736 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) |
4202 { | 4737 { |
4203 /* If this group ever matched anything, then restore | 4738 /* If this group ever matched anything, then restore |
4204 what its registers were before trying this last | 4739 what its registers were before trying this last |
4205 failed match, e.g., with `(a*)*b' against `ab' for | 4740 failed match, e.g., with `(a*)*b' against `ab' for |
4206 regstart[1], and, e.g., with `((a*)*(b*)*)*' | 4741 regstart[1], and, e.g., with `((a*)*(b*)*)*' |
4207 against `aba' for regend[3]. | 4742 against `aba' for regend[3]. |
4208 | 4743 |
4209 Also restore the registers for inner groups for, | 4744 Also restore the registers for inner groups for, |
4210 e.g., `((a*)(b*))*' against `aba' (register 3 would | 4745 e.g., `((a*)(b*))*' against `aba' (register 3 would |
4211 otherwise get trashed). */ | 4746 otherwise get trashed). */ |
4212 | 4747 |
4213 if (EVER_MATCHED_SOMETHING (reg_info[*p])) | 4748 if (EVER_MATCHED_SOMETHING (reg_info[*p])) |
4214 { | 4749 { |
4215 unsigned r; | 4750 unsigned r; |
4216 | 4751 |
4217 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | 4752 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; |
4218 | 4753 |
4219 /* Restore this and inner groups' (if any) registers. */ | 4754 /* Restore this and inner groups' (if any) registers. */ |
4220 for (r = *p; r < *p + *(p + 1); r++) | 4755 for (r = *p; r < *p + *(p + 1); r++) |
4221 { | 4756 { |
4222 regstart[r] = old_regstart[r]; | 4757 regstart[r] = old_regstart[r]; |
4223 | 4758 |
4224 /* xx why this test? */ | 4759 /* xx why this test? */ |
4225 if (old_regend[r] >= regstart[r]) | 4760 if (old_regend[r] >= regstart[r]) |
4226 regend[r] = old_regend[r]; | 4761 regend[r] = old_regend[r]; |
4227 } | 4762 } |
4228 } | 4763 } |
4229 p1++; | 4764 p1++; |
4230 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 4765 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4231 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | 4766 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); |
4232 | 4767 |
4233 goto fail; | 4768 goto fail; |
4234 } | 4769 } |
4235 } | 4770 } |
4236 | 4771 |
4237 /* Move past the register number and the inner group count. */ | 4772 /* Move past the register number and the inner group count. */ |
4238 p += 2; | 4773 p += 2; |
4239 break; | 4774 break; |
4240 | 4775 |
4241 | 4776 |
4242 /* \<digit> has been turned into a `duplicate' command which is | 4777 /* \<digit> has been turned into a `duplicate' command which is |
4243 followed by the numeric value of <digit> as the register number. */ | 4778 followed by the numeric value of <digit> as the register number. */ |
4244 case duplicate: | 4779 case duplicate: |
4245 { | 4780 { |
4246 register const char *d2, *dend2; | 4781 register const char *d2, *dend2; |
4247 int regno = *p++; /* Get which register to match against. */ | 4782 int regno = *p++; /* Get which register to match against. */ |
4248 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | 4783 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); |
4249 | 4784 |
4250 /* Can't back reference a group which we've never matched. */ | 4785 /* Can't back reference a group which we've never matched. */ |
4251 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | 4786 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) |
4252 goto fail; | 4787 goto fail; |
4253 | 4788 |
4254 /* Where in input to try to start matching. */ | 4789 /* Where in input to try to start matching. */ |
4255 d2 = regstart[regno]; | 4790 d2 = regstart[regno]; |
4256 | 4791 |
4257 /* Where to stop matching; if both the place to start and | 4792 /* Where to stop matching; if both the place to start and |
4258 the place to stop matching are in the same string, then | 4793 the place to stop matching are in the same string, then |
4259 set to the place to stop, otherwise, for now have to use | 4794 set to the place to stop, otherwise, for now have to use |
4260 the end of the first string. */ | 4795 the end of the first string. */ |
4261 | 4796 |
4262 dend2 = ((FIRST_STRING_P (regstart[regno]) | 4797 dend2 = ((FIRST_STRING_P (regstart[regno]) |
4263 == FIRST_STRING_P (regend[regno])) | 4798 == FIRST_STRING_P (regend[regno])) |
4264 ? regend[regno] : end_match_1); | 4799 ? regend[regno] : end_match_1); |
4265 for (;;) | 4800 for (;;) |
4266 { | 4801 { |
4267 /* If necessary, advance to next segment in register | 4802 /* If necessary, advance to next segment in register |
4268 contents. */ | 4803 contents. */ |
4269 while (d2 == dend2) | 4804 while (d2 == dend2) |
4270 { | 4805 { |
4271 if (dend2 == end_match_2) break; | 4806 if (dend2 == end_match_2) break; |
4272 if (dend2 == regend[regno]) break; | 4807 if (dend2 == regend[regno]) break; |
4273 | 4808 |
4274 /* End of string1 => advance to string2. */ | 4809 /* End of string1 => advance to string2. */ |
4275 d2 = string2; | 4810 d2 = string2; |
4276 dend2 = regend[regno]; | 4811 dend2 = regend[regno]; |
4277 } | 4812 } |
4278 /* At end of register contents => success */ | 4813 /* At end of register contents => success */ |
4279 if (d2 == dend2) break; | 4814 if (d2 == dend2) break; |
4280 | 4815 |
4281 /* If necessary, advance to next segment in data. */ | 4816 /* If necessary, advance to next segment in data. */ |
4283 | 4818 |
4284 /* How many characters left in this segment to match. */ | 4819 /* How many characters left in this segment to match. */ |
4285 mcnt = dend - d; | 4820 mcnt = dend - d; |
4286 | 4821 |
4287 /* Want how many consecutive characters we can match in | 4822 /* Want how many consecutive characters we can match in |
4288 one shot, so, if necessary, adjust the count. */ | 4823 one shot, so, if necessary, adjust the count. */ |
4289 if (mcnt > dend2 - d2) | 4824 if (mcnt > dend2 - d2) |
4290 mcnt = dend2 - d2; | 4825 mcnt = dend2 - d2; |
4291 | 4826 |
4292 /* Compare that many; failure if mismatch, else move | 4827 /* Compare that many; failure if mismatch, else move |
4293 past them. */ | 4828 past them. */ |
4294 if (translate | 4829 if (translate |
4295 ? bcmp_translate (d, d2, mcnt, translate) | 4830 ? bcmp_translate (d, d2, mcnt, translate) |
4296 : bcmp (d, d2, mcnt)) | 4831 : bcmp (d, d2, mcnt)) |
4297 goto fail; | 4832 goto fail; |
4298 d += mcnt, d2 += mcnt; | 4833 d += mcnt, d2 += mcnt; |
4299 | 4834 |
4300 /* Do this because we've match some characters. */ | 4835 /* Do this because we've match some characters. */ |
4301 SET_REGS_MATCHED (); | 4836 SET_REGS_MATCHED (); |
4302 } | 4837 } |
4303 } | 4838 } |
4304 break; | 4839 break; |
4305 | 4840 |
4306 | 4841 |
4307 /* begline matches the empty string at the beginning of the string | 4842 /* begline matches the empty string at the beginning of the string |
4308 (unless `not_bol' is set in `bufp'), and, if | 4843 (unless `not_bol' is set in `bufp'), and, if |
4309 `newline_anchor' is set, after newlines. */ | 4844 `newline_anchor' is set, after newlines. */ |
4310 case begline: | 4845 case begline: |
4311 DEBUG_PRINT1 ("EXECUTING begline.\n"); | 4846 DEBUG_PRINT1 ("EXECUTING begline.\n"); |
4312 | 4847 |
4313 if (AT_STRINGS_BEG (d)) | 4848 if (AT_STRINGS_BEG (d)) |
4314 { | 4849 { |
4315 if (!bufp->not_bol) break; | 4850 if (!bufp->not_bol) break; |
4316 } | 4851 } |
4317 else if (d[-1] == '\n' && bufp->newline_anchor) | 4852 else if (d[-1] == '\n' && bufp->newline_anchor) |
4318 { | 4853 { |
4319 break; | 4854 break; |
4320 } | 4855 } |
4321 /* In all other cases, we fail. */ | 4856 /* In all other cases, we fail. */ |
4322 goto fail; | 4857 goto fail; |
4323 | 4858 |
4324 | 4859 |
4325 /* endline is the dual of begline. */ | 4860 /* endline is the dual of begline. */ |
4326 case endline: | 4861 case endline: |
4327 DEBUG_PRINT1 ("EXECUTING endline.\n"); | 4862 DEBUG_PRINT1 ("EXECUTING endline.\n"); |
4328 | 4863 |
4329 if (AT_STRINGS_END (d)) | 4864 if (AT_STRINGS_END (d)) |
4330 { | 4865 { |
4331 if (!bufp->not_eol) break; | 4866 if (!bufp->not_eol) break; |
4332 } | 4867 } |
4333 | 4868 |
4334 /* We have to ``prefetch'' the next character. */ | 4869 /* We have to ``prefetch'' the next character. */ |
4335 else if ((d == end1 ? *string2 : *d) == '\n' | 4870 else if ((d == end1 ? *string2 : *d) == '\n' |
4336 && bufp->newline_anchor) | 4871 && bufp->newline_anchor) |
4337 { | 4872 { |
4338 break; | 4873 break; |
4339 } | 4874 } |
4340 goto fail; | 4875 goto fail; |
4341 | 4876 |
4342 | 4877 |
4343 /* Match at the very beginning of the data. */ | 4878 /* Match at the very beginning of the data. */ |
4344 case begbuf: | 4879 case begbuf: |
4345 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | 4880 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); |
4346 if (AT_STRINGS_BEG (d)) | 4881 if (AT_STRINGS_BEG (d)) |
4347 break; | 4882 break; |
4348 goto fail; | 4883 goto fail; |
4349 | 4884 |
4350 | 4885 |
4351 /* Match at the very end of the data. */ | 4886 /* Match at the very end of the data. */ |
4352 case endbuf: | 4887 case endbuf: |
4353 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | 4888 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); |
4354 if (AT_STRINGS_END (d)) | 4889 if (AT_STRINGS_END (d)) |
4355 break; | 4890 break; |
4356 goto fail; | 4891 goto fail; |
4357 | 4892 |
4358 | 4893 |
4359 /* on_failure_keep_string_jump is used to optimize `.*\n'. It | 4894 /* on_failure_keep_string_jump is used to optimize `.*\n'. It |
4360 pushes NULL as the value for the string on the stack. Then | 4895 pushes NULL as the value for the string on the stack. Then |
4361 `pop_failure_point' will keep the current value for the | 4896 `pop_failure_point' will keep the current value for the |
4362 string, instead of restoring it. To see why, consider | 4897 string, instead of restoring it. To see why, consider |
4363 matching `foo\nbar' against `.*\n'. The .* matches the foo; | 4898 matching `foo\nbar' against `.*\n'. The .* matches the foo; |
4364 then the . fails against the \n. But the next thing we want | 4899 then the . fails against the \n. But the next thing we want |
4365 to do is match the \n against the \n; if we restored the | 4900 to do is match the \n against the \n; if we restored the |
4366 string value, we would be back at the foo. | 4901 string value, we would be back at the foo. |
4367 | 4902 |
4368 Because this is used only in specific cases, we don't need to | 4903 Because this is used only in specific cases, we don't need to |
4369 check all the things that `on_failure_jump' does, to make | 4904 check all the things that `on_failure_jump' does, to make |
4370 sure the right things get saved on the stack. Hence we don't | 4905 sure the right things get saved on the stack. Hence we don't |
4371 share its code. The only reason to push anything on the | 4906 share its code. The only reason to push anything on the |
4372 stack at all is that otherwise we would have to change | 4907 stack at all is that otherwise we would have to change |
4373 `anychar's code to do something besides goto fail in this | 4908 `anychar's code to do something besides goto fail in this |
4374 case; that seems worse than this. */ | 4909 case; that seems worse than this. */ |
4375 case on_failure_keep_string_jump: | 4910 case on_failure_keep_string_jump: |
4376 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | 4911 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); |
4377 | 4912 |
4378 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4913 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4379 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | 4914 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); |
4380 | 4915 |
4381 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); | 4916 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); |
4382 break; | 4917 break; |
4383 | 4918 |
4384 | 4919 |
4385 /* Uses of on_failure_jump: | 4920 /* Uses of on_failure_jump: |
4386 | 4921 |
4387 Each alternative starts with an on_failure_jump that points | 4922 Each alternative starts with an on_failure_jump that points |
4388 to the beginning of the next alternative. Each alternative | 4923 to the beginning of the next alternative. Each alternative |
4389 except the last ends with a jump that in effect jumps past | 4924 except the last ends with a jump that in effect jumps past |
4390 the rest of the alternatives. (They really jump to the | 4925 the rest of the alternatives. (They really jump to the |
4391 ending jump of the following alternative, because tensioning | 4926 ending jump of the following alternative, because tensioning |
4392 these jumps is a hassle.) | 4927 these jumps is a hassle.) |
4393 | 4928 |
4394 Repeats start with an on_failure_jump that points past both | 4929 Repeats start with an on_failure_jump that points past both |
4395 the repetition text and either the following jump or | 4930 the repetition text and either the following jump or |
4396 pop_failure_jump back to this on_failure_jump. */ | 4931 pop_failure_jump back to this on_failure_jump. */ |
4397 case on_failure_jump: | 4932 case on_failure_jump: |
4398 on_failure: | 4933 on_failure: |
4399 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | 4934 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); |
4400 | 4935 |
4401 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4936 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4402 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | 4937 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); |
4403 | 4938 |
4404 /* If this on_failure_jump comes right before a group (i.e., | 4939 /* If this on_failure_jump comes right before a group (i.e., |
4405 the original * applied to a group), save the information | 4940 the original * applied to a group), save the information |
4406 for that group and all inner ones, so that if we fail back | 4941 for that group and all inner ones, so that if we fail back |
4407 to this point, the group's information will be correct. | 4942 to this point, the group's information will be correct. |
4408 For example, in \(a*\)*\1, we need the preceding group, | 4943 For example, in \(a*\)*\1, we need the preceding group, |
4409 and in \(zz\(a*\)b*\)\2, we need the inner group. */ | 4944 and in \(zz\(a*\)b*\)\2, we need the inner group. */ |
4410 | 4945 |
4411 /* We can't use `p' to check ahead because we push | 4946 /* We can't use `p' to check ahead because we push |
4412 a failure point to `p + mcnt' after we do this. */ | 4947 a failure point to `p + mcnt' after we do this. */ |
4413 p1 = p; | 4948 p1 = p; |
4414 | 4949 |
4415 /* We need to skip no_op's before we look for the | 4950 /* We need to skip no_op's before we look for the |
4416 start_memory in case this on_failure_jump is happening as | 4951 start_memory in case this on_failure_jump is happening as |
4417 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | 4952 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 |
4418 against aba. */ | 4953 against aba. */ |
4419 while (p1 < pend && (re_opcode_t) *p1 == no_op) | 4954 while (p1 < pend && (re_opcode_t) *p1 == no_op) |
4420 p1++; | 4955 p1++; |
4421 | 4956 |
4422 if (p1 < pend && (re_opcode_t) *p1 == start_memory) | 4957 if (p1 < pend && (re_opcode_t) *p1 == start_memory) |
4423 { | 4958 { |
4424 /* We have a new highest active register now. This will | 4959 /* We have a new highest active register now. This will |
4425 get reset at the start_memory we are about to get to, | 4960 get reset at the start_memory we are about to get to, |
4426 but we will have saved all the registers relevant to | 4961 but we will have saved all the registers relevant to |
4427 this repetition op, as described above. */ | 4962 this repetition op, as described above. */ |
4428 highest_active_reg = *(p1 + 1) + *(p1 + 2); | 4963 highest_active_reg = *(p1 + 1) + *(p1 + 2); |
4429 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | 4964 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) |
4430 lowest_active_reg = *(p1 + 1); | 4965 lowest_active_reg = *(p1 + 1); |
4431 } | 4966 } |
4432 | 4967 |
4433 DEBUG_PRINT1 (":\n"); | 4968 DEBUG_PRINT1 (":\n"); |
4434 PUSH_FAILURE_POINT (p + mcnt, d, -2); | 4969 PUSH_FAILURE_POINT (p + mcnt, d, -2); |
4435 break; | 4970 break; |
4436 | 4971 |
4437 | 4972 |
4438 /* A smart repeat ends with `maybe_pop_jump'. | 4973 /* A smart repeat ends with `maybe_pop_jump'. |
4439 We change it to either `pop_failure_jump' or `jump'. */ | 4974 We change it to either `pop_failure_jump' or `jump'. */ |
4440 case maybe_pop_jump: | 4975 case maybe_pop_jump: |
4441 EXTRACT_NUMBER_AND_INCR (mcnt, p); | 4976 EXTRACT_NUMBER_AND_INCR (mcnt, p); |
4442 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | 4977 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); |
4443 { | 4978 { |
4444 register unsigned char *p2 = p; | 4979 register unsigned char *p2 = p; |
4445 | 4980 |
4446 /* Compare the beginning of the repeat with what in the | 4981 /* Compare the beginning of the repeat with what in the |
4447 pattern follows its end. If we can establish that there | 4982 pattern follows its end. If we can establish that there |
4448 is nothing that they would both match, i.e., that we | 4983 is nothing that they would both match, i.e., that we |
4449 would have to backtrack because of (as in, e.g., `a*a') | 4984 would have to backtrack because of (as in, e.g., `a*a') |
4450 then we can change to pop_failure_jump, because we'll | 4985 then we can change to pop_failure_jump, because we'll |
4451 never have to backtrack. | 4986 never have to backtrack. |
4452 | 4987 |
4453 This is not true in the case of alternatives: in | 4988 This is not true in the case of alternatives: in |
4454 `(a|ab)*' we do need to backtrack to the `ab' alternative | 4989 `(a|ab)*' we do need to backtrack to the `ab' alternative |
4455 (e.g., if the string was `ab'). But instead of trying to | 4990 (e.g., if the string was `ab'). But instead of trying to |
4456 detect that here, the alternative has put on a dummy | 4991 detect that here, the alternative has put on a dummy |
4457 failure point which is what we will end up popping. */ | 4992 failure point which is what we will end up popping. */ |
4458 | 4993 |
4459 /* Skip over open/close-group commands. | 4994 /* Skip over open/close-group commands. |
4460 If what follows this loop is a ...+ construct, | 4995 If what follows this loop is a ...+ construct, |
4461 look at what begins its body, since we will have to | 4996 look at what begins its body, since we will have to |
4462 match at least one of that. */ | 4997 match at least one of that. */ |
4474 } | 5009 } |
4475 | 5010 |
4476 p1 = p + mcnt; | 5011 p1 = p + mcnt; |
4477 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | 5012 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding |
4478 to the `maybe_finalize_jump' of this case. Examine what | 5013 to the `maybe_finalize_jump' of this case. Examine what |
4479 follows. */ | 5014 follows. */ |
4480 | 5015 |
4481 /* If we're at the end of the pattern, we can change. */ | 5016 /* If we're at the end of the pattern, we can change. */ |
4482 if (p2 == pend) | 5017 if (p2 == pend) |
4483 { | 5018 { |
4484 /* Consider what happens when matching ":\(.*\)" | 5019 /* Consider what happens when matching ":\(.*\)" |
4485 against ":/". I don't really understand this code | 5020 against ":/". I don't really understand this code |
4486 yet. */ | 5021 yet. */ |
4487 p[-3] = (unsigned char) pop_failure_jump; | 5022 p[-3] = (unsigned char) pop_failure_jump; |
4488 DEBUG_PRINT1 | 5023 DEBUG_PRINT1 |
4489 (" End of pattern: change to `pop_failure_jump'.\n"); | 5024 (" End of pattern: change to `pop_failure_jump'.\n"); |
4490 } | 5025 } |
4491 | 5026 |
4492 else if ((re_opcode_t) *p2 == exactn | 5027 else if ((re_opcode_t) *p2 == exactn |
4493 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | 5028 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) |
4494 { | 5029 { |
4495 register unsigned char c | 5030 register unsigned int c |
4496 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | 5031 = *p2 == (unsigned char) endline ? '\n' : p2[2]; |
4497 | 5032 |
4498 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) | 5033 if ((re_opcode_t) p1[3] == exactn) |
4499 { | 5034 { |
4500 p[-3] = (unsigned char) pop_failure_jump; | 5035 if (!(multibyte /* && (c != '\n') */ |
4501 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | 5036 && BASE_LEADING_CODE_P (c)) |
4502 c, p1[5]); | 5037 ? c != p1[5] |
5038 : (STRING_CHAR (&p2[2], pend - &p2[2]) | |
5039 != STRING_CHAR (&p1[5], pend - &p1[5]))) | |
5040 { | |
5041 p[-3] = (unsigned char) pop_failure_jump; | |
5042 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | |
5043 c, p1[5]); | |
5044 } | |
4503 } | 5045 } |
4504 | 5046 |
4505 else if ((re_opcode_t) p1[3] == charset | 5047 else if ((re_opcode_t) p1[3] == charset |
4506 || (re_opcode_t) p1[3] == charset_not) | 5048 || (re_opcode_t) p1[3] == charset_not) |
4507 { | 5049 { |
4508 int not = (re_opcode_t) p1[3] == charset_not; | 5050 int not = (re_opcode_t) p1[3] == charset_not; |
4509 | 5051 |
4510 if (c < (unsigned char) (p1[4] * BYTEWIDTH) | 5052 if (multibyte /* && (c != '\n') */ |
5053 && BASE_LEADING_CODE_P (c)) | |
5054 c = STRING_CHAR (&p2[2], pend - &p2[2]); | |
5055 | |
5056 /* Test if C is listed in charset (or charset_not) | |
5057 at `&p1[3]'. */ | |
5058 if (SINGLE_BYTE_CHAR_P (c)) | |
5059 { | |
5060 if (c < CHARSET_BITMAP_SIZE (&p1[3]) * BYTEWIDTH | |
4511 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | 5061 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) |
4512 not = !not; | 5062 not = !not; |
4513 | 5063 } |
4514 /* `not' is equal to 1 if c would match, which means | 5064 else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3])) |
4515 that we can't change to pop_failure_jump. */ | 5065 CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3]); |
5066 | |
5067 /* `not' is equal to 1 if c would match, which means | |
5068 that we can't change to pop_failure_jump. */ | |
4516 if (!not) | 5069 if (!not) |
4517 { | 5070 { |
4518 p[-3] = (unsigned char) pop_failure_jump; | 5071 p[-3] = (unsigned char) pop_failure_jump; |
4519 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | 5072 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
4520 } | 5073 } |
4521 } | 5074 } |
4522 } | 5075 } |
4523 else if ((re_opcode_t) *p2 == charset) | 5076 else if ((re_opcode_t) *p2 == charset) |
4524 { | 5077 { |
4525 #ifdef DEBUG | 5078 if ((re_opcode_t) p1[3] == exactn) |
4526 register unsigned char c | |
4527 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |
4528 #endif | |
4529 | |
4530 if ((re_opcode_t) p1[3] == exactn | |
4531 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] | |
4532 && (p2[2 + p1[5] / BYTEWIDTH] | |
4533 & (1 << (p1[5] % BYTEWIDTH))))) | |
4534 { | 5079 { |
4535 p[-3] = (unsigned char) pop_failure_jump; | 5080 register unsigned int c = p1[5]; |
4536 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | 5081 int not = 0; |
4537 c, p1[5]); | 5082 |
4538 } | 5083 if (multibyte && BASE_LEADING_CODE_P (c)) |
4539 | 5084 c = STRING_CHAR (&p1[5], pend - &p1[5]); |
4540 else if ((re_opcode_t) p1[3] == charset_not) | 5085 |
5086 /* Test if C is listed in charset at `p2'. */ | |
5087 if (SINGLE_BYTE_CHAR_P (c)) | |
5088 { | |
5089 if (c < CHARSET_BITMAP_SIZE (p2) * BYTEWIDTH | |
5090 && (p2[2 + c / BYTEWIDTH] | |
5091 & (1 << (c % BYTEWIDTH)))) | |
5092 not = !not; | |
5093 } | |
5094 else if (CHARSET_RANGE_TABLE_EXISTS_P (p2)) | |
5095 CHARSET_LOOKUP_RANGE_TABLE (not, c, p2); | |
5096 | |
5097 if (!not) | |
5098 { | |
5099 p[-3] = (unsigned char) pop_failure_jump; | |
5100 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |
5101 } | |
5102 } | |
5103 | |
5104 /* It is hard to list up all the character in charset | |
5105 P2 if it includes multibyte character. Give up in | |
5106 such case. */ | |
5107 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2)) | |
5108 { | |
5109 /* Now, we are sure that P2 has no range table. | |
5110 So, for the size of bitmap in P2, `p2[1]' is | |
5111 enough. But P1 may have range table, so the | |
5112 size of bitmap table of P1 is extracted by | |
5113 using macro `CHARSET_BITMAP_SIZE'. | |
5114 | |
5115 Since we know that all the character listed in | |
5116 P2 is ASCII, it is enough to test only bitmap | |
5117 table of P1. */ | |
5118 | |
5119 if ((re_opcode_t) p1[3] == charset_not) | |
4541 { | 5120 { |
4542 int idx; | 5121 int idx; |
4543 /* We win if the charset_not inside the loop | 5122 /* We win if the charset_not inside the loop lists |
4544 lists every character listed in the charset after. */ | 5123 every character listed in the charset after. */ |
4545 for (idx = 0; idx < (int) p2[1]; idx++) | 5124 for (idx = 0; idx < (int) p2[1]; idx++) |
4546 if (! (p2[2 + idx] == 0 | 5125 if (! (p2[2 + idx] == 0 |
4547 || (idx < (int) p1[4] | 5126 || (idx < CHARSET_BITMAP_SIZE (&p1[3]) |
4548 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | 5127 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) |
4549 break; | 5128 break; |
4550 | 5129 |
4551 if (idx == p2[1]) | 5130 if (idx == p2[1]) |
4552 { | 5131 { |
4553 p[-3] = (unsigned char) pop_failure_jump; | 5132 p[-3] = (unsigned char) pop_failure_jump; |
4554 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | 5133 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
4555 } | 5134 } |
4556 } | 5135 } |
4557 else if ((re_opcode_t) p1[3] == charset) | 5136 else if ((re_opcode_t) p1[3] == charset) |
4558 { | 5137 { |
4559 int idx; | 5138 int idx; |
4560 /* We win if the charset inside the loop | 5139 /* We win if the charset inside the loop |
4561 has no overlap with the one after the loop. */ | 5140 has no overlap with the one after the loop. */ |
4562 for (idx = 0; | 5141 for (idx = 0; |
4563 idx < (int) p2[1] && idx < (int) p1[4]; | 5142 (idx < (int) p2[1] |
5143 && idx < CHARSET_BITMAP_SIZE (&p1[3])); | |
4564 idx++) | 5144 idx++) |
4565 if ((p2[2 + idx] & p1[5 + idx]) != 0) | 5145 if ((p2[2 + idx] & p1[5 + idx]) != 0) |
4566 break; | 5146 break; |
4567 | 5147 |
4568 if (idx == p2[1] || idx == p1[4]) | 5148 if (idx == p2[1] |
4569 { | 5149 || idx == CHARSET_BITMAP_SIZE (&p1[3])) |
4570 p[-3] = (unsigned char) pop_failure_jump; | 5150 { |
4571 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | 5151 p[-3] = (unsigned char) pop_failure_jump; |
4572 } | 5152 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
5153 } | |
4573 } | 5154 } |
4574 } | 5155 } |
5156 } | |
4575 } | 5157 } |
4576 p -= 2; /* Point at relative address again. */ | 5158 p -= 2; /* Point at relative address again. */ |
4577 if ((re_opcode_t) p[-1] != pop_failure_jump) | 5159 if ((re_opcode_t) p[-1] != pop_failure_jump) |
4578 { | 5160 { |
4579 p[-1] = (unsigned char) jump; | 5161 p[-1] = (unsigned char) jump; |
4580 DEBUG_PRINT1 (" Match => jump.\n"); | 5162 DEBUG_PRINT1 (" Match => jump.\n"); |
4581 goto unconditional_jump; | 5163 goto unconditional_jump; |
4582 } | 5164 } |
4583 /* Note fall through. */ | 5165 /* Note fall through. */ |
4584 | 5166 |
4585 | 5167 |
4586 /* The end of a simple repeat has a pop_failure_jump back to | 5168 /* The end of a simple repeat has a pop_failure_jump back to |
4587 its matching on_failure_jump, where the latter will push a | 5169 its matching on_failure_jump, where the latter will push a |
4588 failure point. The pop_failure_jump takes off failure | 5170 failure point. The pop_failure_jump takes off failure |
4589 points put on by this pop_failure_jump's matching | 5171 points put on by this pop_failure_jump's matching |
4590 on_failure_jump; we got through the pattern to here from the | 5172 on_failure_jump; we got through the pattern to here from the |
4591 matching on_failure_jump, so didn't fail. */ | 5173 matching on_failure_jump, so didn't fail. */ |
4592 case pop_failure_jump: | 5174 case pop_failure_jump: |
4593 { | 5175 { |
4594 /* We need to pass separate storage for the lowest and | 5176 /* We need to pass separate storage for the lowest and |
4595 highest registers, even though we don't care about the | 5177 highest registers, even though we don't care about the |
4596 actual values. Otherwise, we will restore only one | 5178 actual values. Otherwise, we will restore only one |
4597 register from the stack, since lowest will == highest in | 5179 register from the stack, since lowest will == highest in |
4598 `pop_failure_point'. */ | 5180 `pop_failure_point'. */ |
4599 unsigned dummy_low_reg, dummy_high_reg; | 5181 unsigned dummy_low_reg, dummy_high_reg; |
4600 unsigned char *pdummy; | 5182 unsigned char *pdummy; |
4601 const char *sdummy; | 5183 const char *sdummy; |
4602 | 5184 |
4603 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | 5185 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); |
4604 POP_FAILURE_POINT (sdummy, pdummy, | 5186 POP_FAILURE_POINT (sdummy, pdummy, |
4605 dummy_low_reg, dummy_high_reg, | 5187 dummy_low_reg, dummy_high_reg, |
4606 reg_dummy, reg_dummy, reg_info_dummy); | 5188 reg_dummy, reg_dummy, reg_info_dummy); |
4607 } | 5189 } |
4608 /* Note fall through. */ | 5190 /* Note fall through. */ |
4609 | 5191 |
4610 | 5192 |
4611 /* Unconditionally jump (without popping any failure points). */ | 5193 /* Unconditionally jump (without popping any failure points). */ |
4612 case jump: | 5194 case jump: |
4613 unconditional_jump: | 5195 unconditional_jump: |
4614 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | 5196 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ |
4615 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | 5197 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); |
4616 p += mcnt; /* Do the jump. */ | 5198 p += mcnt; /* Do the jump. */ |
4617 DEBUG_PRINT2 ("(to 0x%x).\n", p); | 5199 DEBUG_PRINT2 ("(to 0x%x).\n", p); |
4618 break; | 5200 break; |
4619 | 5201 |
4620 | 5202 |
4621 /* We need this opcode so we can detect where alternatives end | 5203 /* We need this opcode so we can detect where alternatives end |
4622 in `group_match_null_string_p' et al. */ | 5204 in `group_match_null_string_p' et al. */ |
4623 case jump_past_alt: | 5205 case jump_past_alt: |
4624 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | 5206 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); |
4625 goto unconditional_jump; | 5207 goto unconditional_jump; |
4626 | 5208 |
4627 | 5209 |
4628 /* Normally, the on_failure_jump pushes a failure point, which | 5210 /* Normally, the on_failure_jump pushes a failure point, which |
4629 then gets popped at pop_failure_jump. We will end up at | 5211 then gets popped at pop_failure_jump. We will end up at |
4630 pop_failure_jump, also, and with a pattern of, say, `a+', we | 5212 pop_failure_jump, also, and with a pattern of, say, `a+', we |
4631 are skipping over the on_failure_jump, so we have to push | 5213 are skipping over the on_failure_jump, so we have to push |
4632 something meaningless for pop_failure_jump to pop. */ | 5214 something meaningless for pop_failure_jump to pop. */ |
4633 case dummy_failure_jump: | 5215 case dummy_failure_jump: |
4634 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | 5216 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); |
4635 /* It doesn't matter what we push for the string here. What | 5217 /* It doesn't matter what we push for the string here. What |
4636 the code at `fail' tests is the value for the pattern. */ | 5218 the code at `fail' tests is the value for the pattern. */ |
4637 PUSH_FAILURE_POINT (0, 0, -2); | 5219 PUSH_FAILURE_POINT (0, 0, -2); |
4638 goto unconditional_jump; | 5220 goto unconditional_jump; |
4639 | 5221 |
4640 | 5222 |
4641 /* At the end of an alternative, we need to push a dummy failure | 5223 /* At the end of an alternative, we need to push a dummy failure |
4642 point in case we are followed by a `pop_failure_jump', because | 5224 point in case we are followed by a `pop_failure_jump', because |
4643 we don't want the failure point for the alternative to be | 5225 we don't want the failure point for the alternative to be |
4644 popped. For example, matching `(a|ab)*' against `aab' | 5226 popped. For example, matching `(a|ab)*' against `aab' |
4645 requires that we match the `ab' alternative. */ | 5227 requires that we match the `ab' alternative. */ |
4646 case push_dummy_failure: | 5228 case push_dummy_failure: |
4647 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | 5229 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); |
4648 /* See comments just above at `dummy_failure_jump' about the | 5230 /* See comments just above at `dummy_failure_jump' about the |
4649 two zeroes. */ | 5231 two zeroes. */ |
4650 PUSH_FAILURE_POINT (0, 0, -2); | 5232 PUSH_FAILURE_POINT (0, 0, -2); |
5233 break; | |
5234 | |
5235 /* Have to succeed matching what follows at least n times. | |
5236 After that, handle like `on_failure_jump'. */ | |
5237 case succeed_n: | |
5238 EXTRACT_NUMBER (mcnt, p + 2); | |
5239 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | |
5240 | |
5241 assert (mcnt >= 0); | |
5242 /* Originally, this is how many times we HAVE to succeed. */ | |
5243 if (mcnt > 0) | |
5244 { | |
5245 mcnt--; | |
5246 p += 2; | |
5247 STORE_NUMBER_AND_INCR (p, mcnt); | |
5248 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | |
5249 } | |
5250 else if (mcnt == 0) | |
5251 { | |
5252 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | |
5253 p[2] = (unsigned char) no_op; | |
5254 p[3] = (unsigned char) no_op; | |
5255 goto on_failure; | |
5256 } | |
5257 break; | |
5258 | |
5259 case jump_n: | |
5260 EXTRACT_NUMBER (mcnt, p + 2); | |
5261 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | |
5262 | |
5263 /* Originally, this is how many times we CAN jump. */ | |
5264 if (mcnt) | |
5265 { | |
5266 mcnt--; | |
5267 STORE_NUMBER (p + 2, mcnt); | |
5268 goto unconditional_jump; | |
5269 } | |
5270 /* If don't have to jump any more, skip over the rest of command. */ | |
5271 else | |
5272 p += 4; | |
5273 break; | |
5274 | |
5275 case set_number_at: | |
5276 { | |
5277 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | |
5278 | |
5279 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5280 p1 = p + mcnt; | |
5281 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
5282 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | |
5283 STORE_NUMBER (p1, mcnt); | |
5284 break; | |
5285 } | |
5286 | |
5287 case wordbound: | |
5288 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | |
5289 | |
5290 /* We SUCCEED in one of the following cases: */ | |
5291 | |
5292 /* Case 1: D is at the beginning or the end of string. */ | |
5293 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) | |
5294 break; | |
5295 else | |
5296 { | |
5297 /* C1 is the character before D, S1 is the syntax of C1, C2 | |
5298 is the character at D, and S2 is the syntax of C2. */ | |
5299 int c1, c2, s1, s2; | |
5300 int pos1 = PTR_TO_OFFSET (d - 1); | |
5301 | |
5302 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); | |
5303 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); | |
5304 #ifdef emacs | |
5305 UPDATE_SYNTAX_TABLE (pos1 ? pos1 : 1); | |
5306 #endif | |
5307 s1 = SYNTAX (c1); | |
5308 #ifdef emacs | |
5309 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1); | |
5310 #endif | |
5311 s2 = SYNTAX (c2); | |
5312 | |
5313 if (/* Case 2: Only one of S1 and S2 is Sword. */ | |
5314 ((s1 == Sword) != (s2 == Sword)) | |
5315 /* Case 3: Both of S1 and S2 are Sword, and macro | |
5316 WORD_BOUNDARY_P (C1, C2) returns nonzero. */ | |
5317 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2))) | |
5318 break; | |
5319 } | |
5320 goto fail; | |
5321 | |
5322 case notwordbound: | |
5323 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | |
5324 | |
5325 /* We FAIL in one of the following cases: */ | |
5326 | |
5327 /* Case 1: D is at the beginning or the end of string. */ | |
5328 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) | |
5329 goto fail; | |
5330 else | |
5331 { | |
5332 /* C1 is the character before D, S1 is the syntax of C1, C2 | |
5333 is the character at D, and S2 is the syntax of C2. */ | |
5334 int c1, c2, s1, s2; | |
5335 int pos1 = PTR_TO_OFFSET (d - 1); | |
5336 | |
5337 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); | |
5338 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); | |
5339 #ifdef emacs | |
5340 UPDATE_SYNTAX_TABLE (pos1); | |
5341 #endif | |
5342 s1 = SYNTAX (c1); | |
5343 #ifdef emacs | |
5344 UPDATE_SYNTAX_TABLE_FORWARD (pos1 + 1); | |
5345 #endif | |
5346 s2 = SYNTAX (c2); | |
5347 | |
5348 if (/* Case 2: Only one of S1 and S2 is Sword. */ | |
5349 ((s1 == Sword) != (s2 == Sword)) | |
5350 /* Case 3: Both of S1 and S2 are Sword, and macro | |
5351 WORD_BOUNDARY_P (C1, C2) returns nonzero. */ | |
5352 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2))) | |
5353 goto fail; | |
5354 } | |
4651 break; | 5355 break; |
4652 | 5356 |
4653 /* Have to succeed matching what follows at least n times. | 5357 case wordbeg: |
4654 After that, handle like `on_failure_jump'. */ | 5358 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); |
4655 case succeed_n: | 5359 |
4656 EXTRACT_NUMBER (mcnt, p + 2); | 5360 /* We FAIL in one of the following cases: */ |
4657 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | 5361 |
4658 | 5362 /* Case 1: D is at the end of string. */ |
4659 assert (mcnt >= 0); | 5363 if (AT_STRINGS_END (d)) |
4660 /* Originally, this is how many times we HAVE to succeed. */ | 5364 goto fail; |
4661 if (mcnt > 0) | 5365 else |
4662 { | 5366 { |
4663 mcnt--; | 5367 /* C1 is the character before D, S1 is the syntax of C1, C2 |
4664 p += 2; | 5368 is the character at D, and S2 is the syntax of C2. */ |
4665 STORE_NUMBER_AND_INCR (p, mcnt); | 5369 int c1, c2, s1, s2; |
4666 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | 5370 int pos1 = PTR_TO_OFFSET (d); |
4667 } | 5371 |
4668 else if (mcnt == 0) | 5372 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); |
4669 { | 5373 #ifdef emacs |
4670 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | 5374 UPDATE_SYNTAX_TABLE (pos1); |
4671 p[2] = (unsigned char) no_op; | 5375 #endif |
4672 p[3] = (unsigned char) no_op; | 5376 s2 = SYNTAX (c2); |
4673 goto on_failure; | 5377 |
5378 /* Case 2: S2 is not Sword. */ | |
5379 if (s2 != Sword) | |
5380 goto fail; | |
5381 | |
5382 /* Case 3: D is not at the beginning of string ... */ | |
5383 if (!AT_STRINGS_BEG (d)) | |
5384 { | |
5385 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); | |
5386 #ifdef emacs | |
5387 UPDATE_SYNTAX_TABLE_BACKWARD (pos1 - 1); | |
5388 #endif | |
5389 s1 = SYNTAX (c1); | |
5390 | |
5391 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2) | |
5392 returns 0. */ | |
5393 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2)) | |
5394 goto fail; | |
5395 } | |
4674 } | 5396 } |
4675 break; | 5397 break; |
4676 | 5398 |
4677 case jump_n: | 5399 case wordend: |
4678 EXTRACT_NUMBER (mcnt, p + 2); | 5400 DEBUG_PRINT1 ("EXECUTING wordend.\n"); |
4679 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | 5401 |
4680 | 5402 /* We FAIL in one of the following cases: */ |
4681 /* Originally, this is how many times we CAN jump. */ | 5403 |
4682 if (mcnt) | 5404 /* Case 1: D is at the beginning of string. */ |
5405 if (AT_STRINGS_BEG (d)) | |
5406 goto fail; | |
5407 else | |
4683 { | 5408 { |
4684 mcnt--; | 5409 /* C1 is the character before D, S1 is the syntax of C1, C2 |
4685 STORE_NUMBER (p + 2, mcnt); | 5410 is the character at D, and S2 is the syntax of C2. */ |
4686 goto unconditional_jump; | 5411 int c1, c2, s1, s2; |
5412 | |
5413 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); | |
5414 s1 = SYNTAX (c1); | |
5415 | |
5416 /* Case 2: S1 is not Sword. */ | |
5417 if (s1 != Sword) | |
5418 goto fail; | |
5419 | |
5420 /* Case 3: D is not at the end of string ... */ | |
5421 if (!AT_STRINGS_END (d)) | |
5422 { | |
5423 GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2); | |
5424 s2 = SYNTAX (c2); | |
5425 | |
5426 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2) | |
5427 returns 0. */ | |
5428 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2)) | |
5429 goto fail; | |
5430 } | |
4687 } | 5431 } |
4688 /* If don't have to jump any more, skip over the rest of command. */ | |
4689 else | |
4690 p += 4; | |
4691 break; | 5432 break; |
4692 | 5433 |
4693 case set_number_at: | |
4694 { | |
4695 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | |
4696 | |
4697 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
4698 p1 = p + mcnt; | |
4699 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
4700 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | |
4701 STORE_NUMBER (p1, mcnt); | |
4702 break; | |
4703 } | |
4704 | |
4705 #if 0 | |
4706 /* The DEC Alpha C compiler 3.x generates incorrect code for the | |
4707 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of | |
4708 AT_WORD_BOUNDARY, so this code is disabled. Expanding the | |
4709 macro and introducing temporary variables works around the bug. */ | |
4710 | |
4711 case wordbound: | |
4712 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | |
4713 if (AT_WORD_BOUNDARY (d)) | |
4714 break; | |
4715 goto fail; | |
4716 | |
4717 case notwordbound: | |
4718 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | |
4719 if (AT_WORD_BOUNDARY (d)) | |
4720 goto fail; | |
4721 break; | |
4722 #else | |
4723 case wordbound: | |
4724 { | |
4725 boolean prevchar, thischar; | |
4726 | |
4727 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | |
4728 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) | |
4729 break; | |
4730 | |
4731 prevchar = WORDCHAR_P (d - 1); | |
4732 thischar = WORDCHAR_P (d); | |
4733 if (prevchar != thischar) | |
4734 break; | |
4735 goto fail; | |
4736 } | |
4737 | |
4738 case notwordbound: | |
4739 { | |
4740 boolean prevchar, thischar; | |
4741 | |
4742 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | |
4743 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) | |
4744 goto fail; | |
4745 | |
4746 prevchar = WORDCHAR_P (d - 1); | |
4747 thischar = WORDCHAR_P (d); | |
4748 if (prevchar != thischar) | |
4749 goto fail; | |
4750 break; | |
4751 } | |
4752 #endif | |
4753 | |
4754 case wordbeg: | |
4755 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | |
4756 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | |
4757 break; | |
4758 goto fail; | |
4759 | |
4760 case wordend: | |
4761 DEBUG_PRINT1 ("EXECUTING wordend.\n"); | |
4762 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | |
4763 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) | |
4764 break; | |
4765 goto fail; | |
4766 | |
4767 #ifdef emacs | 5434 #ifdef emacs |
4768 case before_dot: | 5435 case before_dot: |
4769 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | 5436 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); |
4770 if (PTR_CHAR_POS ((unsigned char *) d) >= PT) | 5437 if (PTR_CHAR_POS ((unsigned char *) d) >= PT) |
4771 goto fail; | 5438 goto fail; |
4772 break; | 5439 break; |
4773 | 5440 |
4774 case at_dot: | 5441 case at_dot: |
4775 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | 5442 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); |
4776 if (PTR_CHAR_POS ((unsigned char *) d) != PT) | 5443 if (PTR_CHAR_POS ((unsigned char *) d) != PT) |
4777 goto fail; | 5444 goto fail; |
4778 break; | 5445 break; |
4779 | 5446 |
4780 case after_dot: | 5447 case after_dot: |
4781 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | 5448 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); |
4782 if (PTR_CHAR_POS ((unsigned char *) d) <= PT) | 5449 if (PTR_CHAR_POS ((unsigned char *) d) <= PT) |
4783 goto fail; | 5450 goto fail; |
4784 break; | 5451 break; |
4785 | 5452 |
4786 case syntaxspec: | 5453 case syntaxspec: |
4787 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | 5454 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); |
4788 mcnt = *p++; | 5455 mcnt = *p++; |
4789 goto matchsyntax; | 5456 goto matchsyntax; |
4790 | 5457 |
4791 case wordchar: | 5458 case wordchar: |
4792 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | 5459 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
4793 mcnt = (int) Sword; | 5460 mcnt = (int) Sword; |
4794 matchsyntax: | 5461 matchsyntax: |
4795 PREFETCH (); | 5462 PREFETCH (); |
4796 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ | 5463 #ifdef emacs |
4797 d++; | 5464 { |
4798 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) | 5465 int pos1 = PTR_TO_OFFSET (d); |
5466 UPDATE_SYNTAX_TABLE (pos1); | |
5467 } | |
5468 #endif | |
5469 { | |
5470 int c, len; | |
5471 | |
5472 if (multibyte) | |
5473 /* we must concern about multibyte form, ... */ | |
5474 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); | |
5475 else | |
5476 /* everything should be handled as ASCII, even though it | |
5477 looks like multibyte form. */ | |
5478 c = *d, len = 1; | |
5479 | |
5480 if (SYNTAX (c) != (enum syntaxcode) mcnt) | |
4799 goto fail; | 5481 goto fail; |
5482 d += len; | |
5483 } | |
5484 SET_REGS_MATCHED (); | |
5485 break; | |
5486 | |
5487 case notsyntaxspec: | |
5488 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | |
5489 mcnt = *p++; | |
5490 goto matchnotsyntax; | |
5491 | |
5492 case notwordchar: | |
5493 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | |
5494 mcnt = (int) Sword; | |
5495 matchnotsyntax: | |
5496 PREFETCH (); | |
5497 #ifdef emacs | |
5498 { | |
5499 int pos1 = PTR_TO_OFFSET (d); | |
5500 UPDATE_SYNTAX_TABLE (pos1); | |
5501 } | |
5502 #endif | |
5503 { | |
5504 int c, len; | |
5505 | |
5506 if (multibyte) | |
5507 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); | |
5508 else | |
5509 c = *d, len = 1; | |
5510 | |
5511 if (SYNTAX (c) == (enum syntaxcode) mcnt) | |
5512 goto fail; | |
5513 d += len; | |
5514 } | |
4800 SET_REGS_MATCHED (); | 5515 SET_REGS_MATCHED (); |
4801 break; | 5516 break; |
4802 | 5517 |
4803 case notsyntaxspec: | 5518 case categoryspec: |
4804 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | 5519 DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p); |
4805 mcnt = *p++; | 5520 mcnt = *p++; |
4806 goto matchnotsyntax; | |
4807 | |
4808 case notwordchar: | |
4809 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | |
4810 mcnt = (int) Sword; | |
4811 matchnotsyntax: | |
4812 PREFETCH (); | 5521 PREFETCH (); |
4813 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ | 5522 { |
4814 d++; | 5523 int c, len; |
4815 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) | 5524 |
4816 goto fail; | 5525 if (multibyte) |
5526 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); | |
5527 else | |
5528 c = *d, len = 1; | |
5529 | |
5530 if (!CHAR_HAS_CATEGORY (c, mcnt)) | |
5531 goto fail; | |
5532 d += len; | |
5533 } | |
4817 SET_REGS_MATCHED (); | 5534 SET_REGS_MATCHED (); |
4818 break; | 5535 break; |
4819 | 5536 |
5537 case notcategoryspec: | |
5538 DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p); | |
5539 mcnt = *p++; | |
5540 PREFETCH (); | |
5541 { | |
5542 int c, len; | |
5543 | |
5544 if (multibyte) | |
5545 c = STRING_CHAR_AND_LENGTH (d, dend - d, len); | |
5546 else | |
5547 c = *d, len = 1; | |
5548 | |
5549 if (CHAR_HAS_CATEGORY (c, mcnt)) | |
5550 goto fail; | |
5551 d += len; | |
5552 } | |
5553 SET_REGS_MATCHED (); | |
5554 break; | |
5555 | |
4820 #else /* not emacs */ | 5556 #else /* not emacs */ |
4821 case wordchar: | 5557 case wordchar: |
4822 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | 5558 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); |
4823 PREFETCH (); | 5559 PREFETCH (); |
4824 if (!WORDCHAR_P (d)) | 5560 if (!WORDCHAR_P (d)) |
4825 goto fail; | 5561 goto fail; |
4826 SET_REGS_MATCHED (); | 5562 SET_REGS_MATCHED (); |
4827 d++; | 5563 d++; |
4828 break; | 5564 break; |
4829 | 5565 |
4830 case notwordchar: | 5566 case notwordchar: |
4831 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | 5567 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); |
4832 PREFETCH (); | 5568 PREFETCH (); |
4833 if (WORDCHAR_P (d)) | 5569 if (WORDCHAR_P (d)) |
4834 goto fail; | 5570 goto fail; |
4835 SET_REGS_MATCHED (); | 5571 SET_REGS_MATCHED (); |
4836 d++; | 5572 d++; |
4837 break; | 5573 break; |
4838 #endif /* not emacs */ | 5574 #endif /* not emacs */ |
4839 | 5575 |
4840 default: | 5576 default: |
4841 abort (); | 5577 abort (); |
4842 } | 5578 } |
4843 continue; /* Successfully executed one pattern command; keep going. */ | 5579 continue; /* Successfully executed one pattern command; keep going. */ |
4844 | 5580 |
4845 | 5581 |
4846 /* We goto here if a matching operation fails. */ | 5582 /* We goto here if a matching operation fails. */ |
4847 fail: | 5583 fail: |
4848 if (!FAIL_STACK_EMPTY ()) | 5584 if (!FAIL_STACK_EMPTY ()) |
4849 { /* A restart point is known. Restore to that state. */ | 5585 { /* A restart point is known. Restore to that state. */ |
4850 DEBUG_PRINT1 ("\nFAIL:\n"); | 5586 DEBUG_PRINT1 ("\nFAIL:\n"); |
4851 POP_FAILURE_POINT (d, p, | 5587 POP_FAILURE_POINT (d, p, |
4852 lowest_active_reg, highest_active_reg, | 5588 lowest_active_reg, highest_active_reg, |
4853 regstart, regend, reg_info); | 5589 regstart, regend, reg_info); |
4854 | 5590 |
4855 /* If this failure point is a dummy, try the next one. */ | 5591 /* If this failure point is a dummy, try the next one. */ |
4856 if (!p) | 5592 if (!p) |
4857 goto fail; | 5593 goto fail; |
4858 | 5594 |
4859 /* If we failed to the end of the pattern, don't examine *p. */ | 5595 /* If we failed to the end of the pattern, don't examine *p. */ |
4860 assert (p <= pend); | 5596 assert (p <= pend); |
4861 if (p < pend) | 5597 if (p < pend) |
4862 { | 5598 { |
4863 boolean is_a_jump_n = false; | 5599 boolean is_a_jump_n = false; |
4864 | 5600 |
4865 /* If failed to a backwards jump that's part of a repetition | 5601 /* If failed to a backwards jump that's part of a repetition |
4866 loop, need to pop this failure point and use the next one. */ | 5602 loop, need to pop this failure point and use the next one. */ |
4867 switch ((re_opcode_t) *p) | 5603 switch ((re_opcode_t) *p) |
4868 { | 5604 { |
4869 case jump_n: | 5605 case jump_n: |
4870 is_a_jump_n = true; | 5606 is_a_jump_n = true; |
4871 case maybe_pop_jump: | 5607 case maybe_pop_jump: |
4872 case pop_failure_jump: | 5608 case pop_failure_jump: |
4873 case jump: | 5609 case jump: |
4874 p1 = p + 1; | 5610 p1 = p + 1; |
4875 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5611 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4876 p1 += mcnt; | 5612 p1 += mcnt; |
4877 | 5613 |
4878 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | 5614 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) |
4879 || (!is_a_jump_n | 5615 || (!is_a_jump_n |
4880 && (re_opcode_t) *p1 == on_failure_jump)) | 5616 && (re_opcode_t) *p1 == on_failure_jump)) |
4881 goto fail; | 5617 goto fail; |
4882 break; | 5618 break; |
4883 default: | 5619 default: |
4884 /* do nothing */ ; | 5620 /* do nothing */ ; |
4885 } | 5621 } |
4886 } | 5622 } |
4887 | 5623 |
4888 if (d >= string1 && d <= end1) | 5624 if (d >= string1 && d <= end1) |
4889 dend = end_match_1; | 5625 dend = end_match_1; |
4890 } | 5626 } |
4891 else | 5627 else |
4892 break; /* Matching at this starting point really fails. */ | 5628 break; /* Matching at this starting point really fails. */ |
4893 } /* for (;;) */ | 5629 } /* for (;;) */ |
4894 | 5630 |
4895 if (best_regs_set) | 5631 if (best_regs_set) |
4896 goto restore_best_regs; | 5632 goto restore_best_regs; |
4897 | 5633 |
4898 FREE_VARIABLES (); | 5634 FREE_VARIABLES (); |
4899 | 5635 |
4900 return -1; /* Failure to match. */ | 5636 return -1; /* Failure to match. */ |
4901 } /* re_match_2 */ | 5637 } /* re_match_2 */ |
4902 | 5638 |
4903 /* Subroutine definitions for re_match_2. */ | 5639 /* Subroutine definitions for re_match_2. */ |
4904 | 5640 |
4905 | 5641 |
4924 | 5660 |
4925 while (p1 < end) | 5661 while (p1 < end) |
4926 { | 5662 { |
4927 /* Skip over opcodes that can match nothing, and return true or | 5663 /* Skip over opcodes that can match nothing, and return true or |
4928 false, as appropriate, when we get to one that can't, or to the | 5664 false, as appropriate, when we get to one that can't, or to the |
4929 matching stop_memory. */ | 5665 matching stop_memory. */ |
4930 | 5666 |
4931 switch ((re_opcode_t) *p1) | 5667 switch ((re_opcode_t) *p1) |
4932 { | 5668 { |
4933 /* Could be either a loop or a series of alternatives. */ | 5669 /* Could be either a loop or a series of alternatives. */ |
4934 case on_failure_jump: | 5670 case on_failure_jump: |
4935 p1++; | 5671 p1++; |
4936 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5672 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4937 | 5673 |
4938 /* If the next operation is not a jump backwards in the | 5674 /* If the next operation is not a jump backwards in the |
4939 pattern. */ | 5675 pattern. */ |
4940 | 5676 |
4941 if (mcnt >= 0) | 5677 if (mcnt >= 0) |
4942 { | 5678 { |
4943 /* Go through the on_failure_jumps of the alternatives, | 5679 /* Go through the on_failure_jumps of the alternatives, |
4944 seeing if any of the alternatives cannot match nothing. | 5680 seeing if any of the alternatives cannot match nothing. |
4945 The last alternative starts with only a jump, | 5681 The last alternative starts with only a jump, |
4946 whereas the rest start with on_failure_jump and end | 5682 whereas the rest start with on_failure_jump and end |
4947 with a jump, e.g., here is the pattern for `a|b|c': | 5683 with a jump, e.g., here is the pattern for `a|b|c': |
4948 | 5684 |
4949 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | 5685 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 |
4950 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | 5686 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 |
4951 /exactn/1/c | 5687 /exactn/1/c |
4952 | 5688 |
4953 So, we have to first go through the first (n-1) | 5689 So, we have to first go through the first (n-1) |
4954 alternatives and then deal with the last one separately. */ | 5690 alternatives and then deal with the last one separately. */ |
4955 | 5691 |
4956 | 5692 |
4957 /* Deal with the first (n-1) alternatives, which start | 5693 /* Deal with the first (n-1) alternatives, which start |
4958 with an on_failure_jump (see above) that jumps to right | 5694 with an on_failure_jump (see above) that jumps to right |
4959 past a jump_past_alt. */ | 5695 past a jump_past_alt. */ |
4960 | 5696 |
4961 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | 5697 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) |
4962 { | 5698 { |
4963 /* `mcnt' holds how many bytes long the alternative | 5699 /* `mcnt' holds how many bytes long the alternative |
4964 is, including the ending `jump_past_alt' and | 5700 is, including the ending `jump_past_alt' and |
4965 its number. */ | 5701 its number. */ |
4966 | 5702 |
4967 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | 5703 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, |
4968 reg_info)) | 5704 reg_info)) |
4969 return false; | 5705 return false; |
4970 | 5706 |
4971 /* Move to right after this alternative, including the | 5707 /* Move to right after this alternative, including the |
4972 jump_past_alt. */ | 5708 jump_past_alt. */ |
4973 p1 += mcnt; | 5709 p1 += mcnt; |
4974 | 5710 |
4975 /* Break if it's the beginning of an n-th alternative | 5711 /* Break if it's the beginning of an n-th alternative |
4976 that doesn't begin with an on_failure_jump. */ | 5712 that doesn't begin with an on_failure_jump. */ |
4977 if ((re_opcode_t) *p1 != on_failure_jump) | 5713 if ((re_opcode_t) *p1 != on_failure_jump) |
4978 break; | 5714 break; |
4979 | 5715 |
4980 /* Still have to check that it's not an n-th | 5716 /* Still have to check that it's not an n-th |
4981 alternative that starts with an on_failure_jump. */ | 5717 alternative that starts with an on_failure_jump. */ |
4982 p1++; | 5718 p1++; |
4983 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5719 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
4984 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | 5720 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) |
4985 { | 5721 { |
4986 /* Get to the beginning of the n-th alternative. */ | 5722 /* Get to the beginning of the n-th alternative. */ |
4987 p1 -= 3; | 5723 p1 -= 3; |
4988 break; | 5724 break; |
4989 } | 5725 } |
4990 } | 5726 } |
4991 | 5727 |
4992 /* Deal with the last alternative: go back and get number | 5728 /* Deal with the last alternative: go back and get number |
4993 of the `jump_past_alt' just before it. `mcnt' contains | 5729 of the `jump_past_alt' just before it. `mcnt' contains |
4994 the length of the alternative. */ | 5730 the length of the alternative. */ |
4995 EXTRACT_NUMBER (mcnt, p1 - 2); | 5731 EXTRACT_NUMBER (mcnt, p1 - 2); |
4996 | 5732 |
4997 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | 5733 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) |
4998 return false; | 5734 return false; |
4999 | 5735 |
5000 p1 += mcnt; /* Get past the n-th alternative. */ | 5736 p1 += mcnt; /* Get past the n-th alternative. */ |
5001 } /* if mcnt > 0 */ | 5737 } /* if mcnt > 0 */ |
5002 break; | 5738 break; |
5003 | 5739 |
5004 | 5740 |
5005 case stop_memory: | 5741 case stop_memory: |
5006 assert (p1[1] == **p); | 5742 assert (p1[1] == **p); |
5007 *p = p1 + 2; | 5743 *p = p1 + 2; |
5008 return true; | 5744 return true; |
5009 | 5745 |
5010 | 5746 |
5011 default: | 5747 default: |
5012 if (!common_op_match_null_string_p (&p1, end, reg_info)) | 5748 if (!common_op_match_null_string_p (&p1, end, reg_info)) |
5013 return false; | 5749 return false; |
5014 } | 5750 } |
5015 } /* while p1 < end */ | 5751 } /* while p1 < end */ |
5016 | 5752 |
5017 return false; | 5753 return false; |
5018 } /* group_match_null_string_p */ | 5754 } /* group_match_null_string_p */ |
5019 | 5755 |
5031 unsigned char *p1 = p; | 5767 unsigned char *p1 = p; |
5032 | 5768 |
5033 while (p1 < end) | 5769 while (p1 < end) |
5034 { | 5770 { |
5035 /* Skip over opcodes that can match nothing, and break when we get | 5771 /* Skip over opcodes that can match nothing, and break when we get |
5036 to one that can't. */ | 5772 to one that can't. */ |
5037 | 5773 |
5038 switch ((re_opcode_t) *p1) | 5774 switch ((re_opcode_t) *p1) |
5039 { | 5775 { |
5040 /* It's a loop. */ | 5776 /* It's a loop. */ |
5041 case on_failure_jump: | 5777 case on_failure_jump: |
5042 p1++; | 5778 p1++; |
5043 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5779 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5044 p1 += mcnt; | 5780 p1 += mcnt; |
5045 break; | 5781 break; |
5046 | 5782 |
5047 default: | 5783 default: |
5048 if (!common_op_match_null_string_p (&p1, end, reg_info)) | 5784 if (!common_op_match_null_string_p (&p1, end, reg_info)) |
5049 return false; | 5785 return false; |
5050 } | 5786 } |
5051 } /* while p1 < end */ | 5787 } /* while p1 < end */ |
5052 | 5788 |
5053 return true; | 5789 return true; |
5054 } /* alt_match_null_string_p */ | 5790 } /* alt_match_null_string_p */ |
5055 | 5791 |
5091 reg_no = *p1; | 5827 reg_no = *p1; |
5092 assert (reg_no > 0 && reg_no <= MAX_REGNUM); | 5828 assert (reg_no > 0 && reg_no <= MAX_REGNUM); |
5093 ret = group_match_null_string_p (&p1, end, reg_info); | 5829 ret = group_match_null_string_p (&p1, end, reg_info); |
5094 | 5830 |
5095 /* Have to set this here in case we're checking a group which | 5831 /* Have to set this here in case we're checking a group which |
5096 contains a group and a back reference to it. */ | 5832 contains a group and a back reference to it. */ |
5097 | 5833 |
5098 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | 5834 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) |
5099 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | 5835 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; |
5100 | 5836 |
5101 if (!ret) | 5837 if (!ret) |
5102 return false; | 5838 return false; |
5103 break; | 5839 break; |
5104 | 5840 |
5105 /* If this is an optimized succeed_n for zero times, make the jump. */ | 5841 /* If this is an optimized succeed_n for zero times, make the jump. */ |
5106 case jump: | 5842 case jump: |
5107 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5843 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5108 if (mcnt >= 0) | 5844 if (mcnt >= 0) |
5109 p1 += mcnt; | 5845 p1 += mcnt; |
5110 else | 5846 else |
5111 return false; | 5847 return false; |
5112 break; | 5848 break; |
5113 | 5849 |
5114 case succeed_n: | 5850 case succeed_n: |
5115 /* Get to the number of times to succeed. */ | 5851 /* Get to the number of times to succeed. */ |
5116 p1 += 2; | 5852 p1 += 2; |
5117 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5853 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5118 | 5854 |
5119 if (mcnt == 0) | 5855 if (mcnt == 0) |
5120 { | 5856 { |
5121 p1 -= 4; | 5857 p1 -= 4; |
5122 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | 5858 EXTRACT_NUMBER_AND_INCR (mcnt, p1); |
5123 p1 += mcnt; | 5859 p1 += mcnt; |
5124 } | 5860 } |
5125 else | 5861 else |
5126 return false; | 5862 return false; |
5127 break; | 5863 break; |
5128 | 5864 |
5129 case duplicate: | 5865 case duplicate: |
5130 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | 5866 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) |
5131 return false; | 5867 return false; |
5132 break; | 5868 break; |
5133 | 5869 |
5134 case set_number_at: | 5870 case set_number_at: |
5135 p1 += 4; | 5871 p1 += 4; |
5136 | 5872 |
5169 Returns 0 if the pattern was valid, otherwise an error string. | 5905 Returns 0 if the pattern was valid, otherwise an error string. |
5170 | 5906 |
5171 Assumes the `allocated' (and perhaps `buffer') and `translate' fields | 5907 Assumes the `allocated' (and perhaps `buffer') and `translate' fields |
5172 are set in BUFP on entry. | 5908 are set in BUFP on entry. |
5173 | 5909 |
5174 We call regex_compile to do the actual compilation. */ | 5910 We call regex_compile to do the actual compilation. */ |
5175 | 5911 |
5176 const char * | 5912 const char * |
5177 re_compile_pattern (pattern, length, bufp) | 5913 re_compile_pattern (pattern, length, bufp) |
5178 const char *pattern; | 5914 const char *pattern; |
5179 int length; | 5915 int length; |
5188 /* And GNU code determines whether or not to get register information | 5924 /* And GNU code determines whether or not to get register information |
5189 by passing null for the REGS argument to re_match, etc., not by | 5925 by passing null for the REGS argument to re_match, etc., not by |
5190 setting no_sub. */ | 5926 setting no_sub. */ |
5191 bufp->no_sub = 0; | 5927 bufp->no_sub = 0; |
5192 | 5928 |
5193 /* Match anchors at newline. */ | 5929 /* Match anchors at newline. */ |
5194 bufp->newline_anchor = 1; | 5930 bufp->newline_anchor = 1; |
5195 | 5931 |
5196 ret = regex_compile (pattern, length, re_syntax_options, bufp); | 5932 ret = regex_compile (pattern, length, re_syntax_options, bufp); |
5197 | 5933 |
5198 if (!ret) | 5934 if (!ret) |
5199 return NULL; | 5935 return NULL; |
5200 return gettext (re_error_msgid[(int) ret]); | 5936 return gettext (re_error_msgid[(int) ret]); |
5201 } | 5937 } |
5202 | 5938 |
5203 /* Entry points compatible with 4.2 BSD regex library. We don't define | 5939 /* Entry points compatible with 4.2 BSD regex library. We don't define |
5204 them unless specifically requested. */ | 5940 them unless specifically requested. */ |
5205 | 5941 |
5206 #if defined (_REGEX_RE_COMP) || defined (_LIBC) | 5942 #if defined (_REGEX_RE_COMP) || defined (_LIBC) |
5207 | 5943 |
5208 /* BSD has one and only one pattern buffer. */ | 5944 /* BSD has one and only one pattern buffer. */ |
5209 static struct re_pattern_buffer re_comp_buf; | 5945 static struct re_pattern_buffer re_comp_buf; |
5229 | 5965 |
5230 if (!re_comp_buf.buffer) | 5966 if (!re_comp_buf.buffer) |
5231 { | 5967 { |
5232 re_comp_buf.buffer = (unsigned char *) malloc (200); | 5968 re_comp_buf.buffer = (unsigned char *) malloc (200); |
5233 if (re_comp_buf.buffer == NULL) | 5969 if (re_comp_buf.buffer == NULL) |
5234 return gettext (re_error_msgid[(int) REG_ESPACE]); | 5970 return gettext (re_error_msgid[(int) REG_ESPACE]); |
5235 re_comp_buf.allocated = 200; | 5971 re_comp_buf.allocated = 200; |
5236 | 5972 |
5237 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); | 5973 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); |
5238 if (re_comp_buf.fastmap == NULL) | 5974 if (re_comp_buf.fastmap == NULL) |
5239 return gettext (re_error_msgid[(int) REG_ESPACE]); | 5975 return gettext (re_error_msgid[(int) REG_ESPACE]); |
5240 } | 5976 } |
5241 | 5977 |
5242 /* Since `re_exec' always passes NULL for the `regs' argument, we | 5978 /* Since `re_exec' always passes NULL for the `regs' argument, we |
5243 don't need to initialize the pattern buffer fields which affect it. */ | 5979 don't need to initialize the pattern buffer fields which affect it. */ |
5244 | 5980 |
5245 /* Match anchors at newlines. */ | 5981 /* Match anchors at newlines. */ |
5246 re_comp_buf.newline_anchor = 1; | 5982 re_comp_buf.newline_anchor = 1; |
5247 | 5983 |
5248 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | 5984 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); |
5249 | 5985 |
5250 if (!ret) | 5986 if (!ret) |
5272 | 6008 |
5273 #ifndef emacs | 6009 #ifndef emacs |
5274 | 6010 |
5275 /* regcomp takes a regular expression as a string and compiles it. | 6011 /* regcomp takes a regular expression as a string and compiles it. |
5276 | 6012 |
5277 PREG is a regex_t *. We do not expect any fields to be initialized, | 6013 PREG is a regex_t *. We do not expect any fields to be initialized, |
5278 since POSIX says we shouldn't. Thus, we set | 6014 since POSIX says we shouldn't. Thus, we set |
5279 | 6015 |
5280 `buffer' to the compiled pattern; | 6016 `buffer' to the compiled pattern; |
5281 `used' to the length of the compiled pattern; | 6017 `used' to the length of the compiled pattern; |
5282 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | 6018 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the |
5301 | 6037 |
5302 If REG_NOSUB is set, then when PREG is passed to regexec, that | 6038 If REG_NOSUB is set, then when PREG is passed to regexec, that |
5303 routine will report only success or failure, and nothing about the | 6039 routine will report only success or failure, and nothing about the |
5304 registers. | 6040 registers. |
5305 | 6041 |
5306 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | 6042 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for |
5307 the return codes and their meanings.) */ | 6043 the return codes and their meanings.) */ |
5308 | 6044 |
5309 int | 6045 int |
5310 regcomp (preg, pattern, cflags) | 6046 regcomp (preg, pattern, cflags) |
5311 regex_t *preg; | 6047 regex_t *preg; |
5334 | 6070 |
5335 preg->translate | 6071 preg->translate |
5336 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE | 6072 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE |
5337 * sizeof (*(RE_TRANSLATE_TYPE)0)); | 6073 * sizeof (*(RE_TRANSLATE_TYPE)0)); |
5338 if (preg->translate == NULL) | 6074 if (preg->translate == NULL) |
5339 return (int) REG_ESPACE; | 6075 return (int) REG_ESPACE; |
5340 | 6076 |
5341 /* Map uppercase characters to corresponding lowercase ones. */ | 6077 /* Map uppercase characters to corresponding lowercase ones. */ |
5342 for (i = 0; i < CHAR_SET_SIZE; i++) | 6078 for (i = 0; i < CHAR_SET_SIZE; i++) |
5343 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; | 6079 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; |
5344 } | 6080 } |
5345 else | 6081 else |
5346 preg->translate = NULL; | 6082 preg->translate = NULL; |
5347 | 6083 |
5348 /* If REG_NEWLINE is set, newlines are treated differently. */ | 6084 /* If REG_NEWLINE is set, newlines are treated differently. */ |
5349 if (cflags & REG_NEWLINE) | 6085 if (cflags & REG_NEWLINE) |
5350 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | 6086 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ |
5351 syntax &= ~RE_DOT_NEWLINE; | 6087 syntax &= ~RE_DOT_NEWLINE; |
5352 syntax |= RE_HAT_LISTS_NOT_NEWLINE; | 6088 syntax |= RE_HAT_LISTS_NOT_NEWLINE; |
5353 /* It also changes the matching behavior. */ | 6089 /* It also changes the matching behavior. */ |
5354 preg->newline_anchor = 1; | 6090 preg->newline_anchor = 1; |
5355 } | 6091 } |
5356 else | 6092 else |
5357 preg->newline_anchor = 0; | 6093 preg->newline_anchor = 0; |
5358 | 6094 |
5372 | 6108 |
5373 /* regexec searches for a given pattern, specified by PREG, in the | 6109 /* regexec searches for a given pattern, specified by PREG, in the |
5374 string STRING. | 6110 string STRING. |
5375 | 6111 |
5376 If NMATCH is zero or REG_NOSUB was set in the cflags argument to | 6112 If NMATCH is zero or REG_NOSUB was set in the cflags argument to |
5377 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | 6113 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at |
5378 least NMATCH elements, and we set them to the offsets of the | 6114 least NMATCH elements, and we set them to the offsets of the |
5379 corresponding matched substrings. | 6115 corresponding matched substrings. |
5380 | 6116 |
5381 EFLAGS specifies `execution flags' which affect matching: if | 6117 EFLAGS specifies `execution flags' which affect matching: if |
5382 REG_NOTBOL is set, then ^ does not match at the beginning of the | 6118 REG_NOTBOL is set, then ^ does not match at the beginning of the |
5403 private_preg.not_bol = !!(eflags & REG_NOTBOL); | 6139 private_preg.not_bol = !!(eflags & REG_NOTBOL); |
5404 private_preg.not_eol = !!(eflags & REG_NOTEOL); | 6140 private_preg.not_eol = !!(eflags & REG_NOTEOL); |
5405 | 6141 |
5406 /* The user has told us exactly how many registers to return | 6142 /* The user has told us exactly how many registers to return |
5407 information about, via `nmatch'. We have to pass that on to the | 6143 information about, via `nmatch'. We have to pass that on to the |
5408 matching routines. */ | 6144 matching routines. */ |
5409 private_preg.regs_allocated = REGS_FIXED; | 6145 private_preg.regs_allocated = REGS_FIXED; |
5410 | 6146 |
5411 if (want_reg_info) | 6147 if (want_reg_info) |
5412 { | 6148 { |
5413 regs.num_regs = nmatch; | 6149 regs.num_regs = nmatch; |
5414 regs.start = TALLOC (nmatch, regoff_t); | 6150 regs.start = TALLOC (nmatch, regoff_t); |
5415 regs.end = TALLOC (nmatch, regoff_t); | 6151 regs.end = TALLOC (nmatch, regoff_t); |
5416 if (regs.start == NULL || regs.end == NULL) | 6152 if (regs.start == NULL || regs.end == NULL) |
5417 return (int) REG_NOMATCH; | 6153 return (int) REG_NOMATCH; |
5418 } | 6154 } |
5419 | 6155 |
5420 /* Perform the searching operation. */ | 6156 /* Perform the searching operation. */ |
5421 ret = re_search (&private_preg, string, len, | 6157 ret = re_search (&private_preg, string, len, |
5422 /* start: */ 0, /* range: */ len, | 6158 /* start: */ 0, /* range: */ len, |
5423 want_reg_info ? ®s : (struct re_registers *) 0); | 6159 want_reg_info ? ®s : (struct re_registers *) 0); |
5424 | 6160 |
5425 /* Copy the register information to the POSIX structure. */ | 6161 /* Copy the register information to the POSIX structure. */ |
5426 if (want_reg_info) | 6162 if (want_reg_info) |
5427 { | 6163 { |
5428 if (ret >= 0) | 6164 if (ret >= 0) |
5429 { | 6165 { |
5430 unsigned r; | 6166 unsigned r; |
5431 | 6167 |
5432 for (r = 0; r < nmatch; r++) | 6168 for (r = 0; r < nmatch; r++) |
5433 { | 6169 { |
5434 pmatch[r].rm_so = regs.start[r]; | 6170 pmatch[r].rm_so = regs.start[r]; |
5435 pmatch[r].rm_eo = regs.end[r]; | 6171 pmatch[r].rm_eo = regs.end[r]; |
5436 } | 6172 } |
5437 } | 6173 } |
5438 | 6174 |
5439 /* If we needed the temporary register info, free the space now. */ | 6175 /* If we needed the temporary register info, free the space now. */ |
5440 free (regs.start); | 6176 free (regs.start); |
5441 free (regs.end); | 6177 free (regs.end); |
5442 } | 6178 } |
5443 | 6179 |
5444 /* We want zero return to mean success, unlike `re_search'. */ | 6180 /* We want zero return to mean success, unlike `re_search'. */ |
5460 size_t msg_size; | 6196 size_t msg_size; |
5461 | 6197 |
5462 if (errcode < 0 | 6198 if (errcode < 0 |
5463 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) | 6199 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) |
5464 /* Only error codes returned by the rest of the code should be passed | 6200 /* Only error codes returned by the rest of the code should be passed |
5465 to this routine. If we are given anything else, or if other regex | 6201 to this routine. If we are given anything else, or if other regex |
5466 code generates an invalid error code, then the program has a bug. | 6202 code generates an invalid error code, then the program has a bug. |
5467 Dump core so we can fix it. */ | 6203 Dump core so we can fix it. */ |
5468 abort (); | 6204 abort (); |
5469 | 6205 |
5470 msg = gettext (re_error_msgid[errcode]); | 6206 msg = gettext (re_error_msgid[errcode]); |
5472 msg_size = strlen (msg) + 1; /* Includes the null. */ | 6208 msg_size = strlen (msg) + 1; /* Includes the null. */ |
5473 | 6209 |
5474 if (errbuf_size != 0) | 6210 if (errbuf_size != 0) |
5475 { | 6211 { |
5476 if (msg_size > errbuf_size) | 6212 if (msg_size > errbuf_size) |
5477 { | 6213 { |
5478 strncpy (errbuf, msg, errbuf_size - 1); | 6214 strncpy (errbuf, msg, errbuf_size - 1); |
5479 errbuf[errbuf_size - 1] = 0; | 6215 errbuf[errbuf_size - 1] = 0; |
5480 } | 6216 } |
5481 else | 6217 else |
5482 strcpy (errbuf, msg); | 6218 strcpy (errbuf, msg); |
5483 } | 6219 } |
5484 | 6220 |
5485 return msg_size; | 6221 return msg_size; |
5486 } | 6222 } |
5487 | 6223 |