Mercurial > hg > octave-lojdl
view src/DLD-FUNCTIONS/syl.cc @ 5536:f16c05db6250 ss-2-9-4
[project @ 2005-11-11 19:53:51 by jwe]
author | jwe |
---|---|
date | Fri, 11 Nov 2005 19:53:52 +0000 |
parents | 4c8a2e4e0717 |
children | 080c08b192d8 |
line wrap: on
line source
/* Copyright (C) 1996, 1997 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ // Author: A. S. Hodel <scotte@eng.auburn.edu> #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (syl, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {@var{x} =} syl (@var{a}, @var{b}, @var{c})\n\ Solve the Sylvester equation\n\ @iftex\n\ @tex\n\ $$\n\ A X + X B + C = 0\n\ $$\n\ @end tex\n\ @end iftex\n\ @ifinfo\n\ \n\ @example\n\ A X + X B + C = 0\n\ @end example\n\ @end ifinfo\n\ using standard @sc{Lapack} subroutines. For example,\n\ \n\ @example\n\ @group\n\ syl ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])\n\ @result{} [ -0.50000, -0.66667; -0.66667, -0.50000 ]\n\ @end group\n\ @end example\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin != 3 || nargout > 1) { print_usage ("syl"); return retval; } octave_value arg_a = args(0); octave_value arg_b = args(1); octave_value arg_c = args(2); octave_idx_type a_nr = arg_a.rows (); octave_idx_type a_nc = arg_a.columns (); octave_idx_type b_nr = arg_b.rows (); octave_idx_type b_nc = arg_b.columns (); octave_idx_type c_nr = arg_c.rows (); octave_idx_type c_nc = arg_c.columns (); int arg_a_is_empty = empty_arg ("syl", a_nr, a_nc); int arg_b_is_empty = empty_arg ("syl", b_nr, b_nc); int arg_c_is_empty = empty_arg ("syl", c_nr, c_nc); if (arg_a_is_empty > 0 && arg_b_is_empty > 0 && arg_c_is_empty > 0) return octave_value (Matrix ()); else if (arg_a_is_empty || arg_b_is_empty || arg_c_is_empty) return retval; // Arguments are not empty, so check for correct dimensions. if (a_nr != a_nc || b_nr != b_nc) { gripe_square_matrix_required ("syl: first two parameters:"); return retval; } else if (a_nr != c_nr || b_nr != c_nc) { gripe_nonconformant (); return retval; } // Dimensions look o.k., let's solve the problem. if (arg_a.is_complex_type () || arg_b.is_complex_type () || arg_c.is_complex_type ()) { // Do everything in complex arithmetic; ComplexMatrix ca = arg_a.complex_matrix_value (); if (error_state) return retval; ComplexMatrix cb = arg_b.complex_matrix_value (); if (error_state) return retval; ComplexMatrix cc = arg_c.complex_matrix_value (); if (error_state) return retval; retval = Sylvester (ca, cb, cc); } else { // Do everything in real arithmetic. Matrix ca = arg_a.matrix_value (); if (error_state) return retval; Matrix cb = arg_b.matrix_value (); if (error_state) return retval; Matrix cc = arg_c.matrix_value (); if (error_state) return retval; retval = Sylvester (ca, cb, cc); } return retval; } /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */