Mercurial > hg > octave-lojdl
view doc/interpreter/optim.texi @ 2333:b1a56412c385
[project @ 1996-07-19 02:20:16 by jwe]
Initial revision
author | jwe |
---|---|
date | Fri, 19 Jul 1996 02:26:23 +0000 |
parents | |
children | 31d5588dbb61 |
line wrap: on
line source
@c Copyright (C) 1996 John W. Eaton @c This is part of the Octave manual. @c For copying conditions, see the file gpl.texi. @node Optimization, Quadrature, Differential Equations, Top @chapter Optimization @menu * Quadratic Programming:: * Nonlinear Programming:: * Linear Least Squares:: @end menu @c @cindex linear programming @cindex quadratic programming @cindex nonlinear programming @cindex optimization @cindex LP @cindex QP @cindex NLP @node Quadratic Programming, Nonlinear Programming, Optimization, Optimization @section Quadratic Programming @ftable @code @item qpsol @example [x, obj, info, lambda] = qpsol (x, H, c, lb, ub, lb, A, ub) @end example Solve quadratic programs using Gill and Murray's QPSOL. Because QPSOL is not freely redistributable, this function is only available if you have obtained your own copy of QPSOL. @xref{Installation}. @end ftable @findex qpsol_options Tolerances and other options for @code{qpsol} may be specified using the function @code{qpsol_options}. @node Nonlinear Programming, Linear Least Squares, Quadratic Programming, Optimization @section Nonlinear Programming @ignore @ftable @code @item fsqp @example fsqp () @end example @findex fsqp_options Tolerances and other options for @code{fsqp} may be specified using the function @code{fsqp_options}. Sorry, this hasn't been implemented yet. @end ignore @ftable @code @item npsol @example [x, obj, info, lambda] = npsol (x, 'phi', lb, ub, lb, A, ub, lb, 'g', ub) @end example Solve nonlinear programs using Gill and Murray's NPSOL. Because NPSOL is not freely redistributable, this function is only available if you have obtained your own copy of NPSOL. @xref{Installation}. The second argument is a string containing the name of the objective function to call. The objective function must be of the form @example y = phi (x) @end example @noindent where x is a vector and y is a scalar. @end ftable @findex npsol_options Tolerances and other options for @code{npsol} may be specified using the function @code{npsol_options}. @node Linear Least Squares, , Nonlinear Programming, Optimization @section Linear Least Squares @ftable @code @item gls (@var{Y}, @var{X}, @var{O}) Generalized least squares (GLS) estimation for the multivariate model @example Y = X * B + E, mean(E) = 0, cov(vec(E)) = (s^2)*O @end example @noindent with @example Y an T x p matrix X an T x k matrix B an k x p matrix E an T x p matrix O an Tp x Tp matrix @end example @noindent Each row of Y and X is an observation and each column a variable. Returns BETA, v, and, R, where BETA is the GLS estimator for B, v is the GLS estimator for s^2, and R = Y - X*BETA is the matrix of GLS residuals. @item ols (@var{Y}, @var{X}) Ordinary Least Squares (OLS) estimation for the multivariate model @example Y = X*B + E, mean (E) = 0, cov (vec (E)) = kron (S, I) @end example @noindent with @example Y an T x p matrix X an T x k matrix B an k x p matrix E an T x p matrix @end example @noindent Each row of Y and X is an observation and each column a variable. Returns BETA, SIGMA, and R, where BETA is the OLS estimator for B, i.e. @example BETA = pinv(X)*Y, @end example @noindent where pinv(X) denotes the pseudoinverse of X, SIGMA is the OLS estimator for the matrix S, i.e. @example SIGMA = (Y - X*BETA)'*(Y - X*BETA) / (T - rank(X)) @end example and R = Y - X*BETA is the matrix of OLS residuals. @end ftable