Mercurial > hg > octave-lojdl
view libinterp/corefcn/fftn.cc @ 16424:ad052cdc89ad
use signal for octave_link::edit_file
* main-window.h, main-window.cc
(main_window::handle_edit_file_request): Delete.
(main_window::construct): Delete signal connection from
_octave_qt_event_listener::edit_file_signal to
main_window::handle_edit_file_request.
Connect _octave_qt_link::edit_file_signal to
_file_editor::handle_edit_file_request.
* qt-event-listener.h, qt-event-listener.cc
(octave_qt_event_listener::edit_file): Delete.
(octave_qt_event_listener::edit_file_signal): Delete.
* octave-qt-link.cc (octave_qt_link::do_edit_file): Emit signal
instead of using event listener.
* octave-qt-link.h (octave_qt_link::edit_file_signal): New signal.
* octave-event-listener.h (octave_event_listener::edit_file): Delete.
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 04 Apr 2013 01:43:18 -0400 |
parents | 2fc554ffbc28 |
children |
line wrap: on
line source
/* Copyright (C) 2004-2012 David Bateman This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-mappers.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" // This function should be merged with Fifft. #if defined (HAVE_FFTW) #define FFTSRC "@sc{fftw}" #else #define FFTSRC "@sc{fftpack}" #endif static octave_value do_fftn (const octave_value_list &args, const char *fcn, int type) { octave_value retval; int nargin = args.length (); if (nargin < 1 || nargin > 2) { print_usage (); return retval; } octave_value arg = args(0); dim_vector dims = arg.dims (); for (int i = 0; i < dims.length (); i++) if (dims(i) < 0) return retval; if (nargin > 1) { Matrix val = args(1).matrix_value (); if (val.rows () > val.columns ()) val = val.transpose (); if (error_state || val.columns () != dims.length () || val.rows () != 1) error ("%s: SIZE must be a vector of length dim", fcn); else { for (int i = 0; i < dims.length (); i++) { if (xisnan (val(i,0))) error ("%s: SIZE has invalid NaN entries", fcn); else if (NINTbig (val(i,0)) < 0) error ("%s: all dimensions in SIZE must be greater than zero", fcn); else { dims(i) = NINTbig(val(i,0)); } } } } if (error_state) return retval; if (dims.all_zero ()) { if (arg.is_single_type ()) return octave_value (FloatMatrix ()); else return octave_value (Matrix ()); } if (arg.is_single_type ()) { if (arg.is_real_type ()) { FloatNDArray nda = arg.float_array_value (); if (! error_state) { nda.resize (dims, 0.0); retval = (type != 0 ? nda.ifourierNd () : nda.fourierNd ()); } } else { FloatComplexNDArray cnda = arg.float_complex_array_value (); if (! error_state) { cnda.resize (dims, 0.0); retval = (type != 0 ? cnda.ifourierNd () : cnda.fourierNd ()); } } } else { if (arg.is_real_type ()) { NDArray nda = arg.array_value (); if (! error_state) { nda.resize (dims, 0.0); retval = (type != 0 ? nda.ifourierNd () : nda.fourierNd ()); } } else if (arg.is_complex_type ()) { ComplexNDArray cnda = arg.complex_array_value (); if (! error_state) { cnda.resize (dims, 0.0); retval = (type != 0 ? cnda.ifourierNd () : cnda.fourierNd ()); } } else { gripe_wrong_type_arg (fcn, arg); } } return retval; } DEFUN (fftn, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} fftn (@var{A})\n\ @deftypefnx {Built-in Function} {} fftn (@var{A}, @var{size})\n\ Compute the N-dimensional discrete Fourier transform of @var{A} using\n\ a Fast Fourier Transform (FFT) algorithm.\n\ \n\ The optional vector argument @var{size} may be used specify the\n\ dimensions of the array to be used. If an element of @var{size} is\n\ smaller than the corresponding dimension of @var{A}, then the dimension of\n\ @var{A} is truncated prior to performing the FFT@. Otherwise, if an element\n\ of @var{size} is larger than the corresponding dimension then @var{A}\n\ is resized and padded with zeros.\n\ @seealso{ifftn, fft, fft2, fftw}\n\ @end deftypefn") { return do_fftn (args, "fftn", 0); } DEFUN (ifftn, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} ifftn (@var{A})\n\ @deftypefnx {Built-in Function} {} ifftn (@var{A}, @var{size})\n\ Compute the inverse N-dimensional discrete Fourier transform of @var{A}\n\ using a Fast Fourier Transform (FFT) algorithm.\n\ \n\ The optional vector argument @var{size} may be used specify the\n\ dimensions of the array to be used. If an element of @var{size} is\n\ smaller than the corresponding dimension of @var{A}, then the dimension of\n\ @var{A} is truncated prior to performing the inverse FFT@. Otherwise, if an\n\ element of @var{size} is larger than the corresponding dimension then @var{A}\n\ is resized and padded with zeros.\n\ @seealso{fftn, ifft, ifft2, fftw}\n\ @end deftypefn") { return do_fftn (args, "ifftn", 1); }