view libcruft/linpack/zgesl.f @ 2921:64dd86522a1d

[project @ 1997-05-02 02:52:54 by jwe]
author jwe
date Fri, 02 May 1997 02:52:55 +0000
parents 30c606bec7a8
children
line wrap: on
line source

      subroutine zgesl(a,lda,n,ipvt,b,job)
      integer lda,n,ipvt(1),job
      complex*16 a(lda,1),b(1)
c
c     zgesl solves the complex*16 system
c     a * x = b  or  ctrans(a) * x = b
c     using the factors computed by zgeco or zgefa.
c
c     on entry
c
c        a       complex*16(lda, n)
c                the output from zgeco or zgefa.
c
c        lda     integer
c                the leading dimension of the array  a .
c
c        n       integer
c                the order of the matrix  a .
c
c        ipvt    integer(n)
c                the pivot vector from zgeco or zgefa.
c
c        b       complex*16(n)
c                the right hand side vector.
c
c        job     integer
c                = 0         to solve  a*x = b ,
c                = nonzero   to solve  ctrans(a)*x = b  where
c                            ctrans(a)  is the conjugate transpose.
c
c     on return
c
c        b       the solution vector  x .
c
c     error condition
c
c        a division by zero will occur if the input factor contains a
c        zero on the diagonal.  technically this indicates singularity
c        but it is often caused by improper arguments or improper
c        setting of lda .  it will not occur if the subroutines are
c        called correctly and if zgeco has set rcond .gt. 0.0
c        or zgefa has set info .eq. 0 .
c
c     to compute  inverse(a) * c  where  c  is a matrix
c     with  p  columns
c           call zgeco(a,lda,n,ipvt,rcond,z)
c           if (rcond is too small) go to ...
c           do 10 j = 1, p
c              call zgesl(a,lda,n,ipvt,c(1,j),0)
c        10 continue
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas zaxpy,zdotc
c     fortran dconjg
c
c     internal variables
c
      complex*16 zdotc,t
      integer k,kb,l,nm1
c     double precision dreal,dimag
c     complex*16 zdumr,zdumi
c     dreal(zdumr) = zdumr
c     dimag(zdumi) = (0.0d0,-1.0d0)*zdumi
c
      nm1 = n - 1
      if (job .ne. 0) go to 50
c
c        job = 0 , solve  a * x = b
c        first solve  l*y = b
c
         if (nm1 .lt. 1) go to 30
         do 20 k = 1, nm1
            l = ipvt(k)
            t = b(l)
            if (l .eq. k) go to 10
               b(l) = b(k)
               b(k) = t
   10       continue
            call zaxpy(n-k,t,a(k+1,k),1,b(k+1),1)
   20    continue
   30    continue
c
c        now solve  u*x = y
c
         do 40 kb = 1, n
            k = n + 1 - kb
            b(k) = b(k)/a(k,k)
            t = -b(k)
            call zaxpy(k-1,t,a(1,k),1,b(1),1)
   40    continue
      go to 100
   50 continue
c
c        job = nonzero, solve  ctrans(a) * x = b
c        first solve  ctrans(u)*y = b
c
         do 60 k = 1, n
            t = zdotc(k-1,a(1,k),1,b(1),1)
            b(k) = (b(k) - t)/dconjg(a(k,k))
   60    continue
c
c        now solve ctrans(l)*x = y
c
         if (nm1 .lt. 1) go to 90
         do 80 kb = 1, nm1
            k = n - kb
            b(k) = b(k) + zdotc(n-k,a(k+1,k),1,b(k+1),1)
            l = ipvt(k)
            if (l .eq. k) go to 70
               t = b(l)
               b(l) = b(k)
               b(k) = t
   70       continue
   80    continue
   90    continue
  100 continue
      return
      end