Mercurial > hg > octave-kai > gnulib-hg
view lib/strcasestr.c @ 9558:c487592d112a
Protect against integer overflow in malloca() calls.
author | Bruno Haible <bruno@clisp.org> |
---|---|
date | Mon, 31 Dec 2007 11:53:40 +0100 |
parents | 42242ade9225 |
children | d722bd5e44bd |
line wrap: on
line source
/* Case-insensitive searching in a string. Copyright (C) 2005-2007 Free Software Foundation, Inc. Written by Bruno Haible <bruno@clisp.org>, 2005. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> /* Specification. */ #include <string.h> #include <ctype.h> #include <stdbool.h> #include <stddef.h> /* for NULL, in case a nonstandard string.h lacks it */ #include "malloca.h" #define TOLOWER(Ch) (isupper (Ch) ? tolower (Ch) : (Ch)) /* Knuth-Morris-Pratt algorithm. See http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm Return a boolean indicating success. */ static bool knuth_morris_pratt (const char *haystack, const char *needle, const char **resultp) { size_t m = strlen (needle); /* Allocate the table. */ size_t *table = (size_t *) nmalloca (m, sizeof (size_t)); if (table == NULL) return false; /* Fill the table. For 0 < i < m: 0 < table[i] <= i is defined such that forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x], and table[i] is as large as possible with this property. This implies: 1) For 0 < i < m: If table[i] < i, needle[table[i]..i-1] = needle[0..i-1-table[i]]. 2) For 0 < i < m: rhaystack[0..i-1] == needle[0..i-1] and exists h, i <= h < m: rhaystack[h] != needle[h] implies forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1]. table[0] remains uninitialized. */ { size_t i, j; /* i = 1: Nothing to verify for x = 0. */ table[1] = 1; j = 0; for (i = 2; i < m; i++) { /* Here: j = i-1 - table[i-1]. The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold for x < table[i-1], by induction. Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */ unsigned char b = TOLOWER ((unsigned char) needle[i - 1]); for (;;) { /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold for x < i-1-j. Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */ if (b == TOLOWER ((unsigned char) needle[j])) { /* Set table[i] := i-1-j. */ table[i] = i - ++j; break; } /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds for x = i-1-j, because needle[i-1] != needle[j] = needle[i-1-x]. */ if (j == 0) { /* The inequality holds for all possible x. */ table[i] = i; break; } /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds for i-1-j < x < i-1-j+table[j], because for these x: needle[x..i-2] = needle[x-(i-1-j)..j-1] != needle[0..j-1-(x-(i-1-j))] (by definition of table[j]) = needle[0..i-2-x], hence needle[x..i-1] != needle[0..i-1-x]. Furthermore needle[i-1-j+table[j]..i-2] = needle[table[j]..j-1] = needle[0..j-1-table[j]] (by definition of table[j]). */ j = j - table[j]; } /* Here: j = i - table[i]. */ } } /* Search, using the table to accelerate the processing. */ { size_t j; const char *rhaystack; const char *phaystack; *resultp = NULL; j = 0; rhaystack = haystack; phaystack = haystack; /* Invariant: phaystack = rhaystack + j. */ while (*phaystack != '\0') if (TOLOWER ((unsigned char) needle[j]) == TOLOWER ((unsigned char) *phaystack)) { j++; phaystack++; if (j == m) { /* The entire needle has been found. */ *resultp = rhaystack; break; } } else if (j > 0) { /* Found a match of needle[0..j-1], mismatch at needle[j]. */ rhaystack += table[j]; j -= table[j]; } else { /* Found a mismatch at needle[0] already. */ rhaystack++; phaystack++; } } freea (table); return true; } /* Find the first occurrence of NEEDLE in HAYSTACK, using case-insensitive comparison. Note: This function may, in multibyte locales, return success even if strlen (haystack) < strlen (needle) ! */ char * strcasestr (const char *haystack, const char *needle) { if (*needle != '\0') { /* Minimizing the worst-case complexity: Let n = strlen(haystack), m = strlen(needle). The naïve algorithm is O(n*m) worst-case. The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a memory allocation. To achieve linear complexity and yet amortize the cost of the memory allocation, we activate the Knuth-Morris-Pratt algorithm only once the naïve algorithm has already run for some time; more precisely, when - the outer loop count is >= 10, - the average number of comparisons per outer loop is >= 5, - the total number of comparisons is >= m. But we try it only once. If the memory allocation attempt failed, we don't retry it. */ bool try_kmp = true; size_t outer_loop_count = 0; size_t comparison_count = 0; size_t last_ccount = 0; /* last comparison count */ const char *needle_last_ccount = needle; /* = needle + last_ccount */ /* Speed up the following searches of needle by caching its first character. */ unsigned char b = TOLOWER ((unsigned char) *needle); needle++; for (;; haystack++) { if (*haystack == '\0') /* No match. */ return NULL; /* See whether it's advisable to use an asymptotically faster algorithm. */ if (try_kmp && outer_loop_count >= 10 && comparison_count >= 5 * outer_loop_count) { /* See if needle + comparison_count now reaches the end of needle. */ if (needle_last_ccount != NULL) { needle_last_ccount += strnlen (needle_last_ccount, comparison_count - last_ccount); if (*needle_last_ccount == '\0') needle_last_ccount = NULL; last_ccount = comparison_count; } if (needle_last_ccount == NULL) { /* Try the Knuth-Morris-Pratt algorithm. */ const char *result; bool success = knuth_morris_pratt (haystack, needle - 1, &result); if (success) return (char *) result; try_kmp = false; } } outer_loop_count++; comparison_count++; if (TOLOWER ((unsigned char) *haystack) == b) /* The first character matches. */ { const char *rhaystack = haystack + 1; const char *rneedle = needle; for (;; rhaystack++, rneedle++) { if (*rneedle == '\0') /* Found a match. */ return (char *) haystack; if (*rhaystack == '\0') /* No match. */ return NULL; comparison_count++; if (TOLOWER ((unsigned char) *rhaystack) != TOLOWER ((unsigned char) *rneedle)) /* Nothing in this round. */ break; } } } } else return (char *) haystack; }