Mercurial > hg > octave-kai > gnulib-hg
view lib/memmem.c @ 9543:42242ade9225
Add more comments about Knuth-Morris-Pratt algorithm.
author | Bruno Haible <bruno@clisp.org> |
---|---|
date | Wed, 26 Dec 2007 16:10:15 +0100 |
parents | 43d9769bf4d0 |
children | ae875e538d30 |
line wrap: on
line source
/* Copyright (C) 1991,92,93,94,96,97,98,2000,2004,2007 Free Software Foundation, Inc. This file is part of the GNU C Library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #ifndef _LIBC # include <config.h> #endif #include <stddef.h> #include <string.h> #include <stdbool.h> #include "malloca.h" #ifndef _LIBC # define __builtin_expect(expr, val) (expr) #endif /* Knuth-Morris-Pratt algorithm. See http://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm Return a boolean indicating success. */ static bool knuth_morris_pratt (const char *haystack, const char *last_haystack, const char *needle, size_t m, const char **resultp) { /* Allocate the table. */ size_t *table = (size_t *) malloca (m * sizeof (size_t)); if (table == NULL) return false; /* Fill the table. For 0 < i < m: 0 < table[i] <= i is defined such that forall 0 < x < table[i]: needle[x..i-1] != needle[0..i-1-x], and table[i] is as large as possible with this property. This implies: 1) For 0 < i < m: If table[i] < i, needle[table[i]..i-1] = needle[0..i-1-table[i]]. 2) For 0 < i < m: rhaystack[0..i-1] == needle[0..i-1] and exists h, i <= h < m: rhaystack[h] != needle[h] implies forall 0 <= x < table[i]: rhaystack[x..x+m-1] != needle[0..m-1]. table[0] remains uninitialized. */ { size_t i, j; /* i = 1: Nothing to verify for x = 0. */ table[1] = 1; j = 0; for (i = 2; i < m; i++) { /* Here: j = i-1 - table[i-1]. The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold for x < table[i-1], by induction. Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */ unsigned char b = (unsigned char) needle[i - 1]; for (;;) { /* Invariants: The inequality needle[x..i-1] != needle[0..i-1-x] is known to hold for x < i-1-j. Furthermore, if j>0: needle[i-1-j..i-2] = needle[0..j-1]. */ if (b == (unsigned char) needle[j]) { /* Set table[i] := i-1-j. */ table[i] = i - ++j; break; } /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds for x = i-1-j, because needle[i-1] != needle[j] = needle[i-1-x]. */ if (j == 0) { /* The inequality holds for all possible x. */ table[i] = i; break; } /* The inequality needle[x..i-1] != needle[0..i-1-x] also holds for i-1-j < x < i-1-j+table[j], because for these x: needle[x..i-2] = needle[x-(i-1-j)..j-1] != needle[0..j-1-(x-(i-1-j))] (by definition of table[j]) = needle[0..i-2-x], hence needle[x..i-1] != needle[0..i-1-x]. Furthermore needle[i-1-j+table[j]..i-2] = needle[table[j]..j-1] = needle[0..j-1-table[j]] (by definition of table[j]). */ j = j - table[j]; } /* Here: j = i - table[i]. */ } } /* Search, using the table to accelerate the processing. */ { size_t j; const char *rhaystack; const char *phaystack; *resultp = NULL; j = 0; rhaystack = haystack; phaystack = haystack; /* Invariant: phaystack = rhaystack + j. */ while (phaystack != last_haystack) if ((unsigned char) needle[j] == (unsigned char) *phaystack) { j++; phaystack++; if (j == m) { /* The entire needle has been found. */ *resultp = rhaystack; break; } } else if (j > 0) { /* Found a match of needle[0..j-1], mismatch at needle[j]. */ rhaystack += table[j]; j -= table[j]; } else { /* Found a mismatch at needle[0] already. */ rhaystack++; phaystack++; } } freea (table); return true; } /* Return the first occurrence of NEEDLE in HAYSTACK. Return HAYSTACK if NEEDLE_LEN is 0, otherwise NULL if NEEDLE is not found in HAYSTACK. */ void * memmem (const void *haystack, size_t haystack_len, const void *needle, size_t needle_len) { /* Operating with void * is awkward. */ const char *Haystack = (const char *) haystack; const char *Needle = (const char *) needle; const char *last_haystack = Haystack + haystack_len; const char *last_needle = Needle + needle_len; if (needle_len == 0) /* The first occurrence of the empty string is deemed to occur at the beginning of the string. */ return (void *) haystack; /* Sanity check, otherwise the loop might search through the whole memory. */ if (__builtin_expect (haystack_len < needle_len, 0)) return NULL; /* Use optimizations in memchr when possible. */ if (__builtin_expect (needle_len == 1, 0)) return memchr (haystack, (unsigned char) *Needle, haystack_len); /* Minimizing the worst-case complexity: Let n = haystack_len, m = needle_len. The naïve algorithm is O(n*m) worst-case. The Knuth-Morris-Pratt algorithm is O(n) worst-case but it needs a memory allocation. To achieve linear complexity and yet amortize the cost of the memory allocation, we activate the Knuth-Morris-Pratt algorithm only once the naïve algorithm has already run for some time; more precisely, when - the outer loop count is >= 10, - the average number of comparisons per outer loop is >= 5, - the total number of comparisons is >= m. But we try it only once. If the memory allocation attempt failed, we don't retry it. */ { bool try_kmp = true; size_t outer_loop_count = 0; size_t comparison_count = 0; /* Speed up the following searches of needle by caching its first byte. */ char b = *Needle++; for (;; Haystack++) { if (Haystack == last_haystack) /* No match. */ return NULL; /* See whether it's advisable to use an asymptotically faster algorithm. */ if (try_kmp && outer_loop_count >= 10 && comparison_count >= 5 * outer_loop_count) { /* See if needle + comparison_count now reaches the end of needle. */ if (comparison_count >= needle_len) { /* Try the Knuth-Morris-Pratt algorithm. */ const char *result; if (knuth_morris_pratt (Haystack, last_haystack, Needle - 1, needle_len, &result)) return (void *) result; try_kmp = false; } } outer_loop_count++; comparison_count++; if (*Haystack == b) /* The first byte matches. */ { const char *rhaystack = Haystack + 1; const char *rneedle = Needle; for (;; rhaystack++, rneedle++) { if (rneedle == last_needle) /* Found a match. */ return (void *) Haystack; if (rhaystack == last_haystack) /* No match. */ return NULL; comparison_count++; if (*rhaystack != *rneedle) /* Nothing in this round. */ break; } } } } return NULL; }