view lib/trigl.c @ 17463:203c036eb0c6

bootstrap: support checksum utils without a --status option * build-aux/bootstrap: Only look for sha1sum if updating po files. Add sha1 to the list of supported checksum utils since it's now supported through adjustments below. (update_po_files): Remove the use of --status in a way that will suppress all error messages, but since this is only used to minimize updates, it shouldn't cause an issue. Exit early if there is a problem updating the po file checksums. (find_tool): Remove the check for --version support as this is optional as per commit 86186b17. Don't even check for the presence of the command as if that is needed, it's supported through configuring prerequisites in bootstrap.conf. Prompt that when a tool isn't found, one can define an environment variable to add to the hardcoded search list.
author Pádraig Brady <P@draigBrady.com>
date Thu, 08 Aug 2013 11:08:49 +0100
parents e542fd46ad6f
children
line wrap: on
line source

/* Quad-precision floating point argument reduction.
   Copyright (C) 1999, 2007, 2009-2013 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   Contributed by Jakub Jelinek <jj@ultra.linux.cz>

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>

/* Specification.  */
#include "trigl.h"

#include <float.h>
#include <math.h>

/* Code based on glibc/sysdeps/ieee754/ldbl-128/e_rem_pio2l.c
   and           glibc/sysdeps/ieee754/dbl-64/k_rem_pio2.c.  */

/* Table of constants for 2/pi, 5628 hexadecimal digits of 2/pi */
static const int two_over_pi[] = {
  0xa2f983, 0x6e4e44, 0x1529fc, 0x2757d1, 0xf534dd, 0xc0db62,
  0x95993c, 0x439041, 0xfe5163, 0xabdebb, 0xc561b7, 0x246e3a,
  0x424dd2, 0xe00649, 0x2eea09, 0xd1921c, 0xfe1deb, 0x1cb129,
  0xa73ee8, 0x8235f5, 0x2ebb44, 0x84e99c, 0x7026b4, 0x5f7e41,
  0x3991d6, 0x398353, 0x39f49c, 0x845f8b, 0xbdf928, 0x3b1ff8,
  0x97ffde, 0x05980f, 0xef2f11, 0x8b5a0a, 0x6d1f6d, 0x367ecf,
  0x27cb09, 0xb74f46, 0x3f669e, 0x5fea2d, 0x7527ba, 0xc7ebe5,
  0xf17b3d, 0x0739f7, 0x8a5292, 0xea6bfb, 0x5fb11f, 0x8d5d08,
  0x560330, 0x46fc7b, 0x6babf0, 0xcfbc20, 0x9af436, 0x1da9e3,
  0x91615e, 0xe61b08, 0x659985, 0x5f14a0, 0x68408d, 0xffd880,
  0x4d7327, 0x310606, 0x1556ca, 0x73a8c9, 0x60e27b, 0xc08c6b,
  0x47c419, 0xc367cd, 0xdce809, 0x2a8359, 0xc4768b, 0x961ca6,
  0xddaf44, 0xd15719, 0x053ea5, 0xff0705, 0x3f7e33, 0xe832c2,
  0xde4f98, 0x327dbb, 0xc33d26, 0xef6b1e, 0x5ef89f, 0x3a1f35,
  0xcaf27f, 0x1d87f1, 0x21907c, 0x7c246a, 0xfa6ed5, 0x772d30,
  0x433b15, 0xc614b5, 0x9d19c3, 0xc2c4ad, 0x414d2c, 0x5d000c,
  0x467d86, 0x2d71e3, 0x9ac69b, 0x006233, 0x7cd2b4, 0x97a7b4,
  0xd55537, 0xf63ed7, 0x1810a3, 0xfc764d, 0x2a9d64, 0xabd770,
  0xf87c63, 0x57b07a, 0xe71517, 0x5649c0, 0xd9d63b, 0x3884a7,
  0xcb2324, 0x778ad6, 0x23545a, 0xb91f00, 0x1b0af1, 0xdfce19,
  0xff319f, 0x6a1e66, 0x615799, 0x47fbac, 0xd87f7e, 0xb76522,
  0x89e832, 0x60bfe6, 0xcdc4ef, 0x09366c, 0xd43f5d, 0xd7de16,
  0xde3b58, 0x929bde, 0x2822d2, 0xe88628, 0x4d58e2, 0x32cac6,
  0x16e308, 0xcb7de0, 0x50c017, 0xa71df3, 0x5be018, 0x34132e,
  0x621283, 0x014883, 0x5b8ef5, 0x7fb0ad, 0xf2e91e, 0x434a48,
  0xd36710, 0xd8ddaa, 0x425fae, 0xce616a, 0xa4280a, 0xb499d3,
  0xf2a606, 0x7f775c, 0x83c2a3, 0x883c61, 0x78738a, 0x5a8caf,
  0xbdd76f, 0x63a62d, 0xcbbff4, 0xef818d, 0x67c126, 0x45ca55,
  0x36d9ca, 0xd2a828, 0x8d61c2, 0x77c912, 0x142604, 0x9b4612,
  0xc459c4, 0x44c5c8, 0x91b24d, 0xf31700, 0xad43d4, 0xe54929,
  0x10d5fd, 0xfcbe00, 0xcc941e, 0xeece70, 0xf53e13, 0x80f1ec,
  0xc3e7b3, 0x28f8c7, 0x940593, 0x3e71c1, 0xb3092e, 0xf3450b,
  0x9c1288, 0x7b20ab, 0x9fb52e, 0xc29247, 0x2f327b, 0x6d550c,
  0x90a772, 0x1fe76b, 0x96cb31, 0x4a1679, 0xe27941, 0x89dff4,
  0x9794e8, 0x84e6e2, 0x973199, 0x6bed88, 0x365f5f, 0x0efdbb,
  0xb49a48, 0x6ca467, 0x427271, 0x325d8d, 0xb8159f, 0x09e5bc,
  0x25318d, 0x3974f7, 0x1c0530, 0x010c0d, 0x68084b, 0x58ee2c,
  0x90aa47, 0x02e774, 0x24d6bd, 0xa67df7, 0x72486e, 0xef169f,
  0xa6948e, 0xf691b4, 0x5153d1, 0xf20acf, 0x339820, 0x7e4bf5,
  0x6863b2, 0x5f3edd, 0x035d40, 0x7f8985, 0x295255, 0xc06437,
  0x10d86d, 0x324832, 0x754c5b, 0xd4714e, 0x6e5445, 0xc1090b,
  0x69f52a, 0xd56614, 0x9d0727, 0x50045d, 0xdb3bb4, 0xc576ea,
  0x17f987, 0x7d6b49, 0xba271d, 0x296996, 0xacccc6, 0x5414ad,
  0x6ae290, 0x89d988, 0x50722c, 0xbea404, 0x940777, 0x7030f3,
  0x27fc00, 0xa871ea, 0x49c266, 0x3de064, 0x83dd97, 0x973fa3,
  0xfd9443, 0x8c860d, 0xde4131, 0x9d3992, 0x8c70dd, 0xe7b717,
  0x3bdf08, 0x2b3715, 0xa0805c, 0x93805a, 0x921110, 0xd8e80f,
  0xaf806c, 0x4bffdb, 0x0f9038, 0x761859, 0x15a562, 0xbbcb61,
  0xb989c7, 0xbd4010, 0x04f2d2, 0x277549, 0xf6b6eb, 0xbb22db,
  0xaa140a, 0x2f2689, 0x768364, 0x333b09, 0x1a940e, 0xaa3a51,
  0xc2a31d, 0xaeedaf, 0x12265c, 0x4dc26d, 0x9c7a2d, 0x9756c0,
  0x833f03, 0xf6f009, 0x8c402b, 0x99316d, 0x07b439, 0x15200c,
  0x5bc3d8, 0xc492f5, 0x4badc6, 0xa5ca4e, 0xcd37a7, 0x36a9e6,
  0x9492ab, 0x6842dd, 0xde6319, 0xef8c76, 0x528b68, 0x37dbfc,
  0xaba1ae, 0x3115df, 0xa1ae00, 0xdafb0c, 0x664d64, 0xb705ed,
  0x306529, 0xbf5657, 0x3aff47, 0xb9f96a, 0xf3be75, 0xdf9328,
  0x3080ab, 0xf68c66, 0x15cb04, 0x0622fa, 0x1de4d9, 0xa4b33d,
  0x8f1b57, 0x09cd36, 0xe9424e, 0xa4be13, 0xb52333, 0x1aaaf0,
  0xa8654f, 0xa5c1d2, 0x0f3f0b, 0xcd785b, 0x76f923, 0x048b7b,
  0x721789, 0x53a6c6, 0xe26e6f, 0x00ebef, 0x584a9b, 0xb7dac4,
  0xba66aa, 0xcfcf76, 0x1d02d1, 0x2df1b1, 0xc1998c, 0x77adc3,
  0xda4886, 0xa05df7, 0xf480c6, 0x2ff0ac, 0x9aecdd, 0xbc5c3f,
  0x6dded0, 0x1fc790, 0xb6db2a, 0x3a25a3, 0x9aaf00, 0x9353ad,
  0x0457b6, 0xb42d29, 0x7e804b, 0xa707da, 0x0eaa76, 0xa1597b,
  0x2a1216, 0x2db7dc, 0xfde5fa, 0xfedb89, 0xfdbe89, 0x6c76e4,
  0xfca906, 0x70803e, 0x156e85, 0xff87fd, 0x073e28, 0x336761,
  0x86182a, 0xeabd4d, 0xafe7b3, 0x6e6d8f, 0x396795, 0x5bbf31,
  0x48d784, 0x16df30, 0x432dc7, 0x356125, 0xce70c9, 0xb8cb30,
  0xfd6cbf, 0xa200a4, 0xe46c05, 0xa0dd5a, 0x476f21, 0xd21262,
  0x845cb9, 0x496170, 0xe0566b, 0x015299, 0x375550, 0xb7d51e,
  0xc4f133, 0x5f6e13, 0xe4305d, 0xa92e85, 0xc3b21d, 0x3632a1,
  0xa4b708, 0xd4b1ea, 0x21f716, 0xe4698f, 0x77ff27, 0x80030c,
  0x2d408d, 0xa0cd4f, 0x99a520, 0xd3a2b3, 0x0a5d2f, 0x42f9b4,
  0xcbda11, 0xd0be7d, 0xc1db9b, 0xbd17ab, 0x81a2ca, 0x5c6a08,
  0x17552e, 0x550027, 0xf0147f, 0x8607e1, 0x640b14, 0x8d4196,
  0xdebe87, 0x2afdda, 0xb6256b, 0x34897b, 0xfef305, 0x9ebfb9,
  0x4f6a68, 0xa82a4a, 0x5ac44f, 0xbcf82d, 0x985ad7, 0x95c7f4,
  0x8d4d0d, 0xa63a20, 0x5f57a4, 0xb13f14, 0x953880, 0x0120cc,
  0x86dd71, 0xb6dec9, 0xf560bf, 0x11654d, 0x6b0701, 0xacb08c,
  0xd0c0b2, 0x485551, 0x0efb1e, 0xc37295, 0x3b06a3, 0x3540c0,
  0x7bdc06, 0xcc45e0, 0xfa294e, 0xc8cad6, 0x41f3e8, 0xde647c,
  0xd8649b, 0x31bed9, 0xc397a4, 0xd45877, 0xc5e369, 0x13daf0,
  0x3c3aba, 0x461846, 0x5f7555, 0xf5bdd2, 0xc6926e, 0x5d2eac,
  0xed440e, 0x423e1c, 0x87c461, 0xe9fd29, 0xf3d6e7, 0xca7c22,
  0x35916f, 0xc5e008, 0x8dd7ff, 0xe26a6e, 0xc6fdb0, 0xc10893,
  0x745d7c, 0xb2ad6b, 0x9d6ecd, 0x7b723e, 0x6a11c6, 0xa9cff7,
  0xdf7329, 0xbac9b5, 0x5100b7, 0x0db2e2, 0x24ba74, 0x607de5,
  0x8ad874, 0x2c150d, 0x0c1881, 0x94667e, 0x162901, 0x767a9f,
  0xbefdfd, 0xef4556, 0x367ed9, 0x13d9ec, 0xb9ba8b, 0xfc97c4,
  0x27a831, 0xc36ef1, 0x36c594, 0x56a8d8, 0xb5a8b4, 0x0ecccf,
  0x2d8912, 0x34576f, 0x89562c, 0xe3ce99, 0xb920d6, 0xaa5e6b,
  0x9c2a3e, 0xcc5f11, 0x4a0bfd, 0xfbf4e1, 0x6d3b8e, 0x2c86e2,
  0x84d4e9, 0xa9b4fc, 0xd1eeef, 0xc9352e, 0x61392f, 0x442138,
  0xc8d91b, 0x0afc81, 0x6a4afb, 0xd81c2f, 0x84b453, 0x8c994e,
  0xcc2254, 0xdc552a, 0xd6c6c0, 0x96190b, 0xb8701a, 0x649569,
  0x605a26, 0xee523f, 0x0f117f, 0x11b5f4, 0xf5cbfc, 0x2dbc34,
  0xeebc34, 0xcc5de8, 0x605edd, 0x9b8e67, 0xef3392, 0xb817c9,
  0x9b5861, 0xbc57e1, 0xc68351, 0x103ed8, 0x4871dd, 0xdd1c2d,
  0xa118af, 0x462c21, 0xd7f359, 0x987ad9, 0xc0549e, 0xfa864f,
  0xfc0656, 0xae79e5, 0x362289, 0x22ad38, 0xdc9367, 0xaae855,
  0x382682, 0x9be7ca, 0xa40d51, 0xb13399, 0x0ed7a9, 0x480569,
  0xf0b265, 0xa7887f, 0x974c88, 0x36d1f9, 0xb39221, 0x4a827b,
  0x21cf98, 0xdc9f40, 0x5547dc, 0x3a74e1, 0x42eb67, 0xdf9dfe,
  0x5fd45e, 0xa4677b, 0x7aacba, 0xa2f655, 0x23882b, 0x55ba41,
  0x086e59, 0x862a21, 0x834739, 0xe6e389, 0xd49ee5, 0x40fb49,
  0xe956ff, 0xca0f1c, 0x8a59c5, 0x2bfa94, 0xc5c1d3, 0xcfc50f,
  0xae5adb, 0x86c547, 0x624385, 0x3b8621, 0x94792c, 0x876110,
  0x7b4c2a, 0x1a2c80, 0x12bf43, 0x902688, 0x893c78, 0xe4c4a8,
  0x7bdbe5, 0xc23ac4, 0xeaf426, 0x8a67f7, 0xbf920d, 0x2ba365,
  0xb1933d, 0x0b7cbd, 0xdc51a4, 0x63dd27, 0xdde169, 0x19949a,
  0x9529a8, 0x28ce68, 0xb4ed09, 0x209f44, 0xca984e, 0x638270,
  0x237c7e, 0x32b90f, 0x8ef5a7, 0xe75614, 0x08f121, 0x2a9db5,
  0x4d7e6f, 0x5119a5, 0xabf9b5, 0xd6df82, 0x61dd96, 0x023616,
  0x9f3ac4, 0xa1a283, 0x6ded72, 0x7a8d39, 0xa9b882, 0x5c326b,
  0x5b2746, 0xed3400, 0x7700d2, 0x55f4fc, 0x4d5901, 0x8071e0,
  0xe13f89, 0xb295f3, 0x64a8f1, 0xaea74b, 0x38fc4c, 0xeab2bb,
  0x47270b, 0xabc3a7, 0x34ba60, 0x52dd34, 0xf8563a, 0xeb7e8a,
  0x31bb36, 0x5895b7, 0x47f7a9, 0x94c3aa, 0xd39225, 0x1e7f3e,
  0xd8974e, 0xbba94f, 0xd8ae01, 0xe661b4, 0x393d8e, 0xa523aa,
  0x33068e, 0x1633b5, 0x3bb188, 0x1d3a9d, 0x4013d0, 0xcc1be5,
  0xf862e7, 0x3bf28f, 0x39b5bf, 0x0bc235, 0x22747e, 0xa247c0,
  0xd52d1f, 0x19add3, 0x9094df, 0x9311d0, 0xb42b25, 0x496db2,
  0xe264b2, 0x5ef135, 0x3bc6a4, 0x1a4ad0, 0xaac92e, 0x64e886,
  0x573091, 0x982cfb, 0x311b1a, 0x08728b, 0xbdcee1, 0x60e142,
  0xeb641d, 0xd0bba3, 0xe559d4, 0x597b8c, 0x2a4483, 0xf332ba,
  0xf84867, 0x2c8d1b, 0x2fa9b0, 0x50f3dd, 0xf9f573, 0xdb61b4,
  0xfe233e, 0x6c41a6, 0xeea318, 0x775a26, 0xbc5e5c, 0xcea708,
  0x94dc57, 0xe20196, 0xf1e839, 0xbe4851, 0x5d2d2f, 0x4e9555,
  0xd96ec2, 0xe7d755, 0x6304e0, 0xc02e0e, 0xfc40a0, 0xbbf9b3,
  0x7125a7, 0x222dfb, 0xf619d8, 0x838c1c, 0x6619e6, 0xb20d55,
  0xbb5137, 0x79e809, 0xaf9149, 0x0d73de, 0x0b0da5, 0xce7f58,
  0xac1934, 0x724667, 0x7a1a13, 0x9e26bc, 0x4555e7, 0x585cb5,
  0x711d14, 0x486991, 0x480d60, 0x56adab, 0xd62f64, 0x96ee0c,
  0x212ff3, 0x5d6d88, 0xa67684, 0x95651e, 0xab9e0a, 0x4ddefe,
  0x571010, 0x836a39, 0xf8ea31, 0x9e381d, 0xeac8b1, 0xcac96b,
  0x37f21e, 0xd505e9, 0x984743, 0x9fc56c, 0x0331b7, 0x3b8bf8,
  0x86e56a, 0x8dc343, 0x6230e7, 0x93cfd5, 0x6a8f2d, 0x733005,
  0x1af021, 0xa09fcb, 0x7415a1, 0xd56b23, 0x6ff725, 0x2f4bc7,
  0xb8a591, 0x7fac59, 0x5c55de, 0x212c38, 0xb13296, 0x5cff50,
  0x366262, 0xfa7b16, 0xf4d9a6, 0x2acfe7, 0xf07403, 0xd4d604,
  0x6fd916, 0x31b1bf, 0xcbb450, 0x5bd7c8, 0x0ce194, 0x6bd643,
  0x4fd91c, 0xdf4543, 0x5f3453, 0xe2b5aa, 0xc9aec8, 0x131485,
  0xf9d2bf, 0xbadb9e, 0x76f5b9, 0xaf15cf, 0xca3182, 0x14b56d,
  0xe9fe4d, 0x50fc35, 0xf5aed5, 0xa2d0c1, 0xc96057, 0x192eb6,
  0xe91d92, 0x07d144, 0xaea3c6, 0x343566, 0x26d5b4, 0x3161e2,
  0x37f1a2, 0x209eff, 0x958e23, 0x493798, 0x35f4a6, 0x4bdc02,
  0xc2be13, 0xbe80a0, 0x0b72a3, 0x115c5f, 0x1e1bd1, 0x0db4d3,
  0x869e85, 0x96976b, 0x2ac91f, 0x8a26c2, 0x3070f0, 0x041412,
  0xfc9fa5, 0xf72a38, 0x9c6878, 0xe2aa76, 0x50cfe1, 0x559274,
  0x934e38, 0x0a92f7, 0x5533f0, 0xa63db4, 0x399971, 0xe2b755,
  0xa98a7c, 0x008f19, 0xac54d2, 0x2ea0b4, 0xf5f3e0, 0x60c849,
  0xffd269, 0xae52ce, 0x7a5fdd, 0xe9ce06, 0xfb0ae8, 0xa50cce,
  0xea9d3e, 0x3766dd, 0xb834f5, 0x0da090, 0x846f88, 0x4ae3d5,
  0x099a03, 0x2eae2d, 0xfcb40a, 0xfb9b33, 0xe281dd, 0x1b16ba,
  0xd8c0af, 0xd96b97, 0xb52dc9, 0x9c277f, 0x5951d5, 0x21ccd6,
  0xb6496b, 0x584562, 0xb3baf2, 0xa1a5c4, 0x7ca2cf, 0xa9b93d,
  0x7b7b89, 0x483d38,
};

static const long double c[] = {
/* 93 bits of pi/2 */
#define PI_2_1 c[0]
  1.57079632679489661923132169155131424e+00L,   /* 3fff921fb54442d18469898cc5100000 */

/* pi/2 - PI_2_1 */
#define PI_2_1t c[1]
  8.84372056613570112025531863263659260e-29L,   /* 3fa1c06e0e68948127044533e63a0106 */
};

static int kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec,
                            const int *ipio2);

int
ieee754_rem_pio2l (long double x, long double *y)
{
  long double z, w, t;
  double tx[8];
  int exp, n;

  if (x >= -0.78539816339744830961566084581987572104929234984377
      && x <= 0.78539816339744830961566084581987572104929234984377)
    /* x in <-pi/4, pi/4> */
    {
      y[0] = x;
      y[1] = 0;
      return 0;
    }

  if (x > 0 && x < 2.35619449019234492884698253745962716314787704953131)
      {
        /* 113 + 93 bit PI is ok */
        z = x - PI_2_1;
        y[0] = z - PI_2_1t;
        y[1] = (z - y[0]) - PI_2_1t;
        return 1;
      }

  if (x < 0 && x > -2.35619449019234492884698253745962716314787704953131)
      {
        /* 113 + 93 bit PI is ok */
        z = x + PI_2_1;
        y[0] = z + PI_2_1t;
        y[1] = (z - y[0]) + PI_2_1t;
        return -1;
      }

  if (x + x == x)       /* x is ±oo */
    {
      y[0] = x - x;
      y[1] = y[0];
      return 0;
    }

  /* Handle large arguments.
     We split the 113 bits of the mantissa into 5 24bit integers
     stored in a double array.  */
  z = frexp (x, &exp);
  tx[0] = floorl (z *= 16777216.0);
  z -= tx[0];
  tx[1] = floorl (z *= 16777216.0);
  z -= tx[1];
  tx[2] = floorl (z *= 16777216.0);
  z -= tx[2];
  tx[3] = floorl (z *= 16777216.0);
  z -= tx[3];
  tx[4] = floorl (z *= 16777216.0);

  n = kernel_rem_pio2 (tx, tx + 5, exp - 24, tx[4] ? 5 : 4, 3, two_over_pi);

  /* The result is now stored in 3 double values, we need to convert it into
     two long double values.  */
  t = (long double) tx[6] + (long double) tx[7];
  w = (long double) tx[5];

  if (x > 0)
    {
      y[0] = w + t;
      y[1] = t - (y[0] - w);
      return n;
    }
  else
    {
      y[0] = -(w + t);
      y[1] = -t - (y[0] + w);
      return -n;
    }
}

/* @(#)k_rem_pio2.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] =
  "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
#endif

/*
 * kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 * double x[],y[]; int e0,nx,prec; int ipio2[];
 *
 * kernel_rem_pio2 return the last three digits of N with
 *              y = x - N*pi/2
 * so that |y| < pi/2.
 *
 * The method is to compute the integer (mod 8) and fraction parts of
 * (2/pi)*x without doing the full multiplication. In general we
 * skip the part of the product that are known to be a huge integer (
 * more accurately, = 0 mod 8 ). Thus the number of operations are
 * independent of the exponent of the input.
 *
 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
 *
 * Input parameters:
 *      x[]     The input value (must be positive) is broken into nx
 *              pieces of 24-bit integers in double precision format.
 *              x[i] will be the i-th 24 bit of x. The scaled exponent
 *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
 *              match x's up to 24 bits.
 *
 *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
 *                      e0 = ilogb(z)-23
 *                      z  = scalbn(z,-e0)
 *              for i = 0,1,2
 *                      x[i] = floor(z)
 *                      z    = (z-x[i])*2**24
 *
 *
 *      y[]     ouput result in an array of double precision numbers.
 *              The dimension of y[] is:
 *                      24-bit  precision       1
 *                      53-bit  precision       2
 *                      64-bit  precision       2
 *                      113-bit precision       3
 *              The actual value is the sum of them. Thus for 113-bit
 *              precision, one may have to do something like:
 *
 *              long double t,w,r_head, r_tail;
 *              t = (long double)y[2] + (long double)y[1];
 *              w = (long double)y[0];
 *              r_head = t+w;
 *              r_tail = w - (r_head - t);
 *
 *      e0      The exponent of x[0]
 *
 *      nx      dimension of x[]
 *
 *      prec    an integer indicating the precision:
 *                      0       24  bits (single)
 *                      1       53  bits (double)
 *                      2       64  bits (extended)
 *                      3       113 bits (quad)
 *
 *      ipio2[]
 *              integer array, contains the (24*i)-th to (24*i+23)-th
 *              bit of 2/pi after binary point. The corresponding
 *              floating value is
 *
 *                      ipio2[i] * 2^(-24(i+1)).
 *
 * External function:
 *      double scalbn(), floor();
 *
 *
 * Here is the description of some local variables:
 *
 *      jk      jk+1 is the initial number of terms of ipio2[] needed
 *              in the computation. The recommended value is 2,3,4,
 *              6 for single, double, extended,and quad.
 *
 *      jz      local integer variable indicating the number of
 *              terms of ipio2[] used.
 *
 *      jx      nx - 1
 *
 *      jv      index for pointing to the suitable ipio2[] for the
 *              computation. In general, we want
 *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 *              is an integer. Thus
 *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 *              Hence jv = max(0,(e0-3)/24).
 *
 *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
 *
 *      q[]     double array with integral value, representing the
 *              24-bits chunk of the product of x and 2/pi.
 *
 *      q0      the corresponding exponent of q[0]. Note that the
 *              exponent for q[i] would be q0-24*i.
 *
 *      PIo2[]  double precision array, obtained by cutting pi/2
 *              into 24 bits chunks.
 *
 *      f[]     ipio2[] in floating point
 *
 *      iq[]    integer array by breaking up q[] in 24-bits chunk.
 *
 *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
 *
 *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
 *              it also indicates the *sign* of the result.
 *
 */


/*
 * Constants:
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

static const int init_jk[] = { 2, 3, 4, 6 };    /* initial value for jk */
static const double PIo2[] = {
  1.57079625129699707031e+00,   /* 0x3FF921FB, 0x40000000 */
  7.54978941586159635335e-08,   /* 0x3E74442D, 0x00000000 */
  5.39030252995776476554e-15,   /* 0x3CF84698, 0x80000000 */
  3.28200341580791294123e-22,   /* 0x3B78CC51, 0x60000000 */
  1.27065575308067607349e-29,   /* 0x39F01B83, 0x80000000 */
  1.22933308981111328932e-36,   /* 0x387A2520, 0x40000000 */
  2.73370053816464559624e-44,   /* 0x36E38222, 0x80000000 */
  2.16741683877804819444e-51,   /* 0x3569F31D, 0x00000000 */
};

static const double zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07,  /* 0x41700000, 0x00000000 */
  twon24 = 5.96046447753906250000e-08;  /* 0x3E700000, 0x00000000 */

static int
kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec,
                 const int *ipio2)
{
  int jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
  double z, fw, f[20], fq[20], q[20];

  /* initialize jk */
  jk = init_jk[prec];
  jp = jk;

  /* determine jx,jv,q0, note that 3>q0 */
  jx = nx - 1;
  jv = (e0 - 3) / 24;
  if (jv < 0)
    jv = 0;
  q0 = e0 - 24 * (jv + 1);

  /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
  j = jv - jx;
  m = jx + jk;
  for (i = 0; i <= m; i++, j++)
    f[i] = (j < 0) ? zero : (double) ipio2[j];

  /* compute q[0],q[1],...q[jk] */
  for (i = 0; i <= jk; i++)
    {
      for (j = 0, fw = 0.0; j <= jx; j++)
        fw += x[j] * f[jx + i - j];
      q[i] = fw;
    }

  jz = jk;
recompute:
  /* distill q[] into iq[] in reverse order */
  for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
    {
      fw = (double) ((int) (twon24 * z));
      iq[i] = (int) (z - two24 * fw);
      z = q[j - 1] + fw;
    }

  /* compute n */
  z = ldexp (z, q0);            /* actual value of z */
  z -= 8.0 * floor (z * 0.125); /* trim off integer >= 8 */
  n = (int) z;
  z -= (double) n;
  ih = 0;
  if (q0 > 0)
    {                           /* need iq[jz-1] to determine n */
      i = (iq[jz - 1] >> (24 - q0));
      n += i;
      iq[jz - 1] -= i << (24 - q0);
      ih = iq[jz - 1] >> (23 - q0);
    }
  else if (q0 == 0)
    ih = iq[jz - 1] >> 23;
  else if (z >= 0.5)
    ih = 2;

  if (ih > 0)
    {                           /* q > 0.5 */
      n += 1;
      carry = 0;
      for (i = 0; i < jz; i++)
        {                       /* compute 1-q */
          j = iq[i];
          if (carry == 0)
            {
              if (j != 0)
                {
                  carry = 1;
                  iq[i] = 0x1000000 - j;
                }
            }
          else
            iq[i] = 0xffffff - j;
        }
      if (q0 > 0)
        {                       /* rare case: chance is 1 in 12 */
          switch (q0)
            {
            case 1:
              iq[jz - 1] &= 0x7fffff;
              break;
            case 2:
              iq[jz - 1] &= 0x3fffff;
              break;
            }
        }
      if (ih == 2)
        {
          z = one - z;
          if (carry != 0)
            z -= ldexp (one, q0);
        }
    }

  /* check if recomputation is needed */
  if (z == zero)
    {
      j = 0;
      for (i = jz - 1; i >= jk; i--)
        j |= iq[i];
      if (j == 0)
        {                       /* need recomputation */
          for (k = 1; iq[jk - k] == 0; k++);    /* k = no. of terms needed */

          for (i = jz + 1; i <= jz + k; i++)
            {                   /* add q[jz+1] to q[jz+k] */
              f[jx + i] = (double) ipio2[jv + i];
              for (j = 0, fw = 0.0; j <= jx; j++)
                fw += x[j] * f[jx + i - j];
              q[i] = fw;
            }
          jz += k;
          goto recompute;
        }
    }

  /* chop off zero terms */
  if (z == 0.0)
    {
      jz -= 1;
      q0 -= 24;
      while (iq[jz] == 0)
        {
          jz--;
          q0 -= 24;
        }
    }
  else
    {                           /* break z into 24-bit if necessary */
      z = ldexp (z, -q0);
      if (z >= two24)
        {
          fw = (double) ((int) (twon24 * z));
          iq[jz] = (int) (z - two24 * fw);
          jz += 1;
          q0 += 24;
          iq[jz] = (int) fw;
        }
      else
        iq[jz] = (int) z;
    }

  /* convert integer "bit" chunk to floating-point value */
  fw = ldexp (one, q0);
  for (i = jz; i >= 0; i--)
    {
      q[i] = fw * (double) iq[i];
      fw *= twon24;
    }

  /* compute PIo2[0,...,jp]*q[jz,...,0] */
  for (i = jz; i >= 0; i--)
    {
      for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
        fw += PIo2[k] * q[i + k];
      fq[jz - i] = fw;
    }

  /* compress fq[] into y[] */
  switch (prec)
    {
    case 0:
      fw = 0.0;
      for (i = jz; i >= 0; i--)
        fw += fq[i];
      y[0] = (ih == 0) ? fw : -fw;
      break;
    case 1:
    case 2:
      fw = 0.0;
      for (i = jz; i >= 0; i--)
        fw += fq[i];
      y[0] = (ih == 0) ? fw : -fw;
      fw = fq[0] - fw;
      for (i = 1; i <= jz; i++)
        fw += fq[i];
      y[1] = (ih == 0) ? fw : -fw;
      break;
    case 3:                     /* painful */
      for (i = jz; i > 0; i--)
        {
          fw = fq[i - 1] + fq[i];
          fq[i] += fq[i - 1] - fw;
          fq[i - 1] = fw;
        }
      for (i = jz; i > 1; i--)
        {
          fw = fq[i - 1] + fq[i];
          fq[i] += fq[i - 1] - fw;
          fq[i - 1] = fw;
        }
      for (fw = 0.0, i = jz; i >= 2; i--)
        fw += fq[i];
      if (ih == 0)
        {
          y[0] = fq[0];
          y[1] = fq[1];
          y[2] = fw;
        }
      else
        {
          y[0] = -fq[0];
          y[1] = -fq[1];
          y[2] = -fw;
        }
    }
  return n & 7;
}