view lib/gl_array_oset.c @ 17463:203c036eb0c6

bootstrap: support checksum utils without a --status option * build-aux/bootstrap: Only look for sha1sum if updating po files. Add sha1 to the list of supported checksum utils since it's now supported through adjustments below. (update_po_files): Remove the use of --status in a way that will suppress all error messages, but since this is only used to minimize updates, it shouldn't cause an issue. Exit early if there is a problem updating the po file checksums. (find_tool): Remove the check for --version support as this is optional as per commit 86186b17. Don't even check for the presence of the command as if that is needed, it's supported through configuring prerequisites in bootstrap.conf. Prompt that when a tool isn't found, one can define an environment variable to add to the hardcoded search list.
author Pádraig Brady <P@draigBrady.com>
date Thu, 08 Aug 2013 11:08:49 +0100 (2013-08-08)
parents e542fd46ad6f
children
line wrap: on
line source
/* Ordered set data type implemented by an array.
   Copyright (C) 2006-2007, 2009-2013 Free Software Foundation, Inc.
   Written by Bruno Haible <bruno@clisp.org>, 2006.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>

/* Specification.  */
#include "gl_array_oset.h"

#include <stdlib.h>

/* Checked size_t computations.  */
#include "xsize.h"

/* -------------------------- gl_oset_t Data Type -------------------------- */

/* Concrete gl_oset_impl type, valid for this file only.  */
struct gl_oset_impl
{
  struct gl_oset_impl_base base;
  /* An array of ALLOCATED elements, of which the first COUNT are used.
     0 <= COUNT <= ALLOCATED.  */
  const void **elements;
  size_t count;
  size_t allocated;
};

static gl_oset_t
gl_array_nx_create_empty (gl_oset_implementation_t implementation,
                          gl_setelement_compar_fn compar_fn,
                          gl_setelement_dispose_fn dispose_fn)
{
  struct gl_oset_impl *set =
    (struct gl_oset_impl *) malloc (sizeof (struct gl_oset_impl));

  if (set == NULL)
    return NULL;

  set->base.vtable = implementation;
  set->base.compar_fn = compar_fn;
  set->base.dispose_fn = dispose_fn;
  set->elements = NULL;
  set->count = 0;
  set->allocated = 0;

  return set;
}

static size_t
gl_array_size (gl_oset_t set)
{
  return set->count;
}

static size_t
gl_array_indexof (gl_oset_t set, const void *elt)
{
  size_t count = set->count;

  if (count > 0)
    {
      gl_setelement_compar_fn compar = set->base.compar_fn;
      size_t low = 0;
      size_t high = count;

      /* At each loop iteration, low < high; for indices < low the values
         are smaller than ELT; for indices >= high the values are greater
         than ELT.  So, if the element occurs in the list, it is at
         low <= position < high.  */
      do
        {
          size_t mid = low + (high - low) / 2; /* low <= mid < high */
          int cmp = (compar != NULL
                     ? compar (set->elements[mid], elt)
                     : (set->elements[mid] > elt ? 1 :
                        set->elements[mid] < elt ? -1 : 0));

          if (cmp < 0)
            low = mid + 1;
          else if (cmp > 0)
            high = mid;
          else /* cmp == 0 */
            /* We have an element equal to ELT at index MID.  */
            return mid;
        }
      while (low < high);
    }
  return (size_t)(-1);
}

static bool
gl_array_search (gl_oset_t set, const void *elt)
{
  return gl_array_indexof (set, elt) != (size_t)(-1);
}

static bool
gl_array_search_atleast (gl_oset_t set,
                         gl_setelement_threshold_fn threshold_fn,
                         const void *threshold,
                         const void **eltp)
{
  size_t count = set->count;

  if (count > 0)
    {
      size_t low = 0;
      size_t high = count;

      /* At each loop iteration, low < high; for indices < low the values are
         smaller than THRESHOLD; for indices >= high the values are nonexistent.
         So, if an element >= THRESHOLD occurs in the list, it is at
         low <= position < high.  */
      do
        {
          size_t mid = low + (high - low) / 2; /* low <= mid < high */

          if (! threshold_fn (set->elements[mid], threshold))
            low = mid + 1;
          else
            {
              /* We have an element >= THRESHOLD at index MID.  But we need the
                 minimal such index.  */
              high = mid;
              /* At each loop iteration, low <= high and
                   compar (list->elements[high], value) >= 0,
                 and we know that the first occurrence of the element is at
                 low <= position <= high.  */
              while (low < high)
                {
                  size_t mid2 = low + (high - low) / 2; /* low <= mid2 < high */

                  if (! threshold_fn (set->elements[mid2], threshold))
                    low = mid2 + 1;
                  else
                    high = mid2;
                }
              *eltp = set->elements[low];
              return true;
            }
        }
      while (low < high);
    }
  return false;
}

/* Ensure that set->allocated > set->count.
   Return 0 upon success, -1 upon out-of-memory.  */
static int
grow (gl_oset_t set)
{
  size_t new_allocated;
  size_t memory_size;
  const void **memory;

  new_allocated = xtimes (set->allocated, 2);
  new_allocated = xsum (new_allocated, 1);
  memory_size = xtimes (new_allocated, sizeof (const void *));
  if (size_overflow_p (memory_size))
    /* Overflow, would lead to out of memory.  */
    return -1;
  memory = (const void **) realloc (set->elements, memory_size);
  if (memory == NULL)
    /* Out of memory.  */
    return -1;
  set->elements = memory;
  set->allocated = new_allocated;
  return 0;
}

/* Add the given element ELT at the given position,
   0 <= position <= gl_oset_size (set).
   Return 1 upon success, -1 upon out-of-memory.  */
static int
gl_array_nx_add_at (gl_oset_t set, size_t position, const void *elt)
{
  size_t count = set->count;
  const void **elements;
  size_t i;

  if (count == set->allocated)
    if (grow (set) < 0)
      return -1;
  elements = set->elements;
  for (i = count; i > position; i--)
    elements[i] = elements[i - 1];
  elements[position] = elt;
  set->count = count + 1;
  return 1;
}

/* Remove the element at the given position,
   0 <= position < gl_oset_size (set).  */
static void
gl_array_remove_at (gl_oset_t set, size_t position)
{
  size_t count = set->count;
  const void **elements;
  size_t i;

  elements = set->elements;
  if (set->base.dispose_fn != NULL)
    set->base.dispose_fn (elements[position]);
  for (i = position + 1; i < count; i++)
    elements[i - 1] = elements[i];
  set->count = count - 1;
}

static int
gl_array_nx_add (gl_oset_t set, const void *elt)
{
  size_t count = set->count;
  size_t low = 0;

  if (count > 0)
    {
      gl_setelement_compar_fn compar = set->base.compar_fn;
      size_t high = count;

      /* At each loop iteration, low < high; for indices < low the values
         are smaller than ELT; for indices >= high the values are greater
         than ELT.  So, if the element occurs in the list, it is at
         low <= position < high.  */
      do
        {
          size_t mid = low + (high - low) / 2; /* low <= mid < high */
          int cmp = (compar != NULL
                     ? compar (set->elements[mid], elt)
                     : (set->elements[mid] > elt ? 1 :
                        set->elements[mid] < elt ? -1 : 0));

          if (cmp < 0)
            low = mid + 1;
          else if (cmp > 0)
            high = mid;
          else /* cmp == 0 */
            return false;
        }
      while (low < high);
    }
  return gl_array_nx_add_at (set, low, elt);
}

static bool
gl_array_remove (gl_oset_t set, const void *elt)
{
  size_t index = gl_array_indexof (set, elt);
  if (index != (size_t)(-1))
    {
      gl_array_remove_at (set, index);
      return true;
    }
  else
    return false;
}

static void
gl_array_free (gl_oset_t set)
{
  if (set->elements != NULL)
    {
      if (set->base.dispose_fn != NULL)
        {
          size_t count = set->count;

          if (count > 0)
            {
              gl_setelement_dispose_fn dispose = set->base.dispose_fn;
              const void **elements = set->elements;

              do
                dispose (*elements++);
              while (--count > 0);
            }
        }
      free (set->elements);
    }
  free (set);
}

/* --------------------- gl_oset_iterator_t Data Type --------------------- */

static gl_oset_iterator_t
gl_array_iterator (gl_oset_t set)
{
  gl_oset_iterator_t result;

  result.vtable = set->base.vtable;
  result.set = set;
  result.count = set->count;
  result.p = set->elements + 0;
  result.q = set->elements + set->count;
#ifdef lint
  result.i = 0;
  result.j = 0;
#endif

  return result;
}

static bool
gl_array_iterator_next (gl_oset_iterator_t *iterator, const void **eltp)
{
  gl_oset_t set = iterator->set;
  if (iterator->count != set->count)
    {
      if (iterator->count != set->count + 1)
        /* Concurrent modifications were done on the set.  */
        abort ();
      /* The last returned element was removed.  */
      iterator->count--;
      iterator->p = (const void **) iterator->p - 1;
      iterator->q = (const void **) iterator->q - 1;
    }
  if (iterator->p < iterator->q)
    {
      const void **p = (const void **) iterator->p;
      *eltp = *p;
      iterator->p = p + 1;
      return true;
    }
  else
    return false;
}

static void
gl_array_iterator_free (gl_oset_iterator_t *iterator)
{
}


const struct gl_oset_implementation gl_array_oset_implementation =
  {
    gl_array_nx_create_empty,
    gl_array_size,
    gl_array_search,
    gl_array_search_atleast,
    gl_array_nx_add,
    gl_array_remove,
    gl_array_free,
    gl_array_iterator,
    gl_array_iterator_next,
    gl_array_iterator_free
  };