view lib/gl_array_list.c @ 17463:203c036eb0c6

bootstrap: support checksum utils without a --status option * build-aux/bootstrap: Only look for sha1sum if updating po files. Add sha1 to the list of supported checksum utils since it's now supported through adjustments below. (update_po_files): Remove the use of --status in a way that will suppress all error messages, but since this is only used to minimize updates, it shouldn't cause an issue. Exit early if there is a problem updating the po file checksums. (find_tool): Remove the check for --version support as this is optional as per commit 86186b17. Don't even check for the presence of the command as if that is needed, it's supported through configuring prerequisites in bootstrap.conf. Prompt that when a tool isn't found, one can define an environment variable to add to the hardcoded search list.
author Pádraig Brady <P@draigBrady.com>
date Thu, 08 Aug 2013 11:08:49 +0100
parents e542fd46ad6f
children
line wrap: on
line source

/* Sequential list data type implemented by an array.
   Copyright (C) 2006-2013 Free Software Foundation, Inc.
   Written by Bruno Haible <bruno@clisp.org>, 2006.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>

/* Specification.  */
#include "gl_array_list.h"

#include <stdlib.h>
/* Get memcpy.  */
#include <string.h>

/* Checked size_t computations.  */
#include "xsize.h"

#ifndef uintptr_t
# define uintptr_t unsigned long
#endif

/* -------------------------- gl_list_t Data Type -------------------------- */

/* Concrete gl_list_impl type, valid for this file only.  */
struct gl_list_impl
{
  struct gl_list_impl_base base;
  /* An array of ALLOCATED elements, of which the first COUNT are used.
     0 <= COUNT <= ALLOCATED.  */
  const void **elements;
  size_t count;
  size_t allocated;
};

/* struct gl_list_node_impl doesn't exist here.  The pointers are actually
   indices + 1.  */
#define INDEX_TO_NODE(index) (gl_list_node_t)(uintptr_t)(size_t)((index) + 1)
#define NODE_TO_INDEX(node) ((uintptr_t)(node) - 1)

static gl_list_t
gl_array_nx_create_empty (gl_list_implementation_t implementation,
                          gl_listelement_equals_fn equals_fn,
                          gl_listelement_hashcode_fn hashcode_fn,
                          gl_listelement_dispose_fn dispose_fn,
                          bool allow_duplicates)
{
  struct gl_list_impl *list =
    (struct gl_list_impl *) malloc (sizeof (struct gl_list_impl));

  if (list == NULL)
    return NULL;

  list->base.vtable = implementation;
  list->base.equals_fn = equals_fn;
  list->base.hashcode_fn = hashcode_fn;
  list->base.dispose_fn = dispose_fn;
  list->base.allow_duplicates = allow_duplicates;
  list->elements = NULL;
  list->count = 0;
  list->allocated = 0;

  return list;
}

static gl_list_t
gl_array_nx_create (gl_list_implementation_t implementation,
                    gl_listelement_equals_fn equals_fn,
                    gl_listelement_hashcode_fn hashcode_fn,
                    gl_listelement_dispose_fn dispose_fn,
                    bool allow_duplicates,
                    size_t count, const void **contents)
{
  struct gl_list_impl *list =
    (struct gl_list_impl *) malloc (sizeof (struct gl_list_impl));

  if (list == NULL)
    return NULL;

  list->base.vtable = implementation;
  list->base.equals_fn = equals_fn;
  list->base.hashcode_fn = hashcode_fn;
  list->base.dispose_fn = dispose_fn;
  list->base.allow_duplicates = allow_duplicates;
  if (count > 0)
    {
      if (size_overflow_p (xtimes (count, sizeof (const void *))))
        goto fail;
      list->elements = (const void **) malloc (count * sizeof (const void *));
      if (list->elements == NULL)
        goto fail;
      memcpy (list->elements, contents, count * sizeof (const void *));
    }
  else
    list->elements = NULL;
  list->count = count;
  list->allocated = count;

  return list;

 fail:
  free (list);
  return NULL;
}

static size_t
gl_array_size (gl_list_t list)
{
  return list->count;
}

static const void *
gl_array_node_value (gl_list_t list, gl_list_node_t node)
{
  uintptr_t index = NODE_TO_INDEX (node);
  if (!(index < list->count))
    /* Invalid argument.  */
    abort ();
  return list->elements[index];
}

static int
gl_array_node_nx_set_value (gl_list_t list, gl_list_node_t node,
                            const void *elt)
{
  uintptr_t index = NODE_TO_INDEX (node);
  if (!(index < list->count))
    /* Invalid argument.  */
    abort ();
  list->elements[index] = elt;
  return 0;
}

static gl_list_node_t
gl_array_next_node (gl_list_t list, gl_list_node_t node)
{
  uintptr_t index = NODE_TO_INDEX (node);
  if (!(index < list->count))
    /* Invalid argument.  */
    abort ();
  index++;
  if (index < list->count)
    return INDEX_TO_NODE (index);
  else
    return NULL;
}

static gl_list_node_t
gl_array_previous_node (gl_list_t list, gl_list_node_t node)
{
  uintptr_t index = NODE_TO_INDEX (node);
  if (!(index < list->count))
    /* Invalid argument.  */
    abort ();
  if (index > 0)
    return INDEX_TO_NODE (index - 1);
  else
    return NULL;
}

static const void *
gl_array_get_at (gl_list_t list, size_t position)
{
  size_t count = list->count;

  if (!(position < count))
    /* Invalid argument.  */
    abort ();
  return list->elements[position];
}

static gl_list_node_t
gl_array_nx_set_at (gl_list_t list, size_t position, const void *elt)
{
  size_t count = list->count;

  if (!(position < count))
    /* Invalid argument.  */
    abort ();
  list->elements[position] = elt;
  return INDEX_TO_NODE (position);
}

static size_t
gl_array_indexof_from_to (gl_list_t list, size_t start_index, size_t end_index,
                          const void *elt)
{
  size_t count = list->count;

  if (!(start_index <= end_index && end_index <= count))
    /* Invalid arguments.  */
    abort ();

  if (start_index < end_index)
    {
      gl_listelement_equals_fn equals = list->base.equals_fn;
      if (equals != NULL)
        {
          size_t i;

          for (i = start_index;;)
            {
              if (equals (elt, list->elements[i]))
                return i;
              i++;
              if (i == end_index)
                break;
            }
        }
      else
        {
          size_t i;

          for (i = start_index;;)
            {
              if (elt == list->elements[i])
                return i;
              i++;
              if (i == end_index)
                break;
            }
        }
    }
  return (size_t)(-1);
}

static gl_list_node_t
gl_array_search_from_to (gl_list_t list, size_t start_index, size_t end_index,
                         const void *elt)
{
  size_t index = gl_array_indexof_from_to (list, start_index, end_index, elt);
  return INDEX_TO_NODE (index);
}

/* Ensure that list->allocated > list->count.
   Return 0 upon success, -1 upon out-of-memory.  */
static int
grow (gl_list_t list)
{
  size_t new_allocated;
  size_t memory_size;
  const void **memory;

  new_allocated = xtimes (list->allocated, 2);
  new_allocated = xsum (new_allocated, 1);
  memory_size = xtimes (new_allocated, sizeof (const void *));
  if (size_overflow_p (memory_size))
    /* Overflow, would lead to out of memory.  */
    return -1;
  memory = (const void **) realloc (list->elements, memory_size);
  if (memory == NULL)
    /* Out of memory.  */
    return -1;
  list->elements = memory;
  list->allocated = new_allocated;
  return 0;
}

static gl_list_node_t
gl_array_nx_add_first (gl_list_t list, const void *elt)
{
  size_t count = list->count;
  const void **elements;
  size_t i;

  if (count == list->allocated)
    if (grow (list) < 0)
      return NULL;
  elements = list->elements;
  for (i = count; i > 0; i--)
    elements[i] = elements[i - 1];
  elements[0] = elt;
  list->count = count + 1;
  return INDEX_TO_NODE (0);
}

static gl_list_node_t
gl_array_nx_add_last (gl_list_t list, const void *elt)
{
  size_t count = list->count;

  if (count == list->allocated)
    if (grow (list) < 0)
      return NULL;
  list->elements[count] = elt;
  list->count = count + 1;
  return INDEX_TO_NODE (count);
}

static gl_list_node_t
gl_array_nx_add_before (gl_list_t list, gl_list_node_t node, const void *elt)
{
  size_t count = list->count;
  uintptr_t index = NODE_TO_INDEX (node);
  size_t position;
  const void **elements;
  size_t i;

  if (!(index < count))
    /* Invalid argument.  */
    abort ();
  position = index;
  if (count == list->allocated)
    if (grow (list) < 0)
      return NULL;
  elements = list->elements;
  for (i = count; i > position; i--)
    elements[i] = elements[i - 1];
  elements[position] = elt;
  list->count = count + 1;
  return INDEX_TO_NODE (position);
}

static gl_list_node_t
gl_array_nx_add_after (gl_list_t list, gl_list_node_t node, const void *elt)
{
  size_t count = list->count;
  uintptr_t index = NODE_TO_INDEX (node);
  size_t position;
  const void **elements;
  size_t i;

  if (!(index < count))
    /* Invalid argument.  */
    abort ();
  position = index + 1;
  if (count == list->allocated)
    if (grow (list) < 0)
      return NULL;
  elements = list->elements;
  for (i = count; i > position; i--)
    elements[i] = elements[i - 1];
  elements[position] = elt;
  list->count = count + 1;
  return INDEX_TO_NODE (position);
}

static gl_list_node_t
gl_array_nx_add_at (gl_list_t list, size_t position, const void *elt)
{
  size_t count = list->count;
  const void **elements;
  size_t i;

  if (!(position <= count))
    /* Invalid argument.  */
    abort ();
  if (count == list->allocated)
    if (grow (list) < 0)
      return NULL;
  elements = list->elements;
  for (i = count; i > position; i--)
    elements[i] = elements[i - 1];
  elements[position] = elt;
  list->count = count + 1;
  return INDEX_TO_NODE (position);
}

static bool
gl_array_remove_node (gl_list_t list, gl_list_node_t node)
{
  size_t count = list->count;
  uintptr_t index = NODE_TO_INDEX (node);
  size_t position;
  const void **elements;
  size_t i;

  if (!(index < count))
    /* Invalid argument.  */
    abort ();
  position = index;
  elements = list->elements;
  if (list->base.dispose_fn != NULL)
    list->base.dispose_fn (elements[position]);
  for (i = position + 1; i < count; i++)
    elements[i - 1] = elements[i];
  list->count = count - 1;
  return true;
}

static bool
gl_array_remove_at (gl_list_t list, size_t position)
{
  size_t count = list->count;
  const void **elements;
  size_t i;

  if (!(position < count))
    /* Invalid argument.  */
    abort ();
  elements = list->elements;
  if (list->base.dispose_fn != NULL)
    list->base.dispose_fn (elements[position]);
  for (i = position + 1; i < count; i++)
    elements[i - 1] = elements[i];
  list->count = count - 1;
  return true;
}

static bool
gl_array_remove (gl_list_t list, const void *elt)
{
  size_t position = gl_array_indexof_from_to (list, 0, list->count, elt);
  if (position == (size_t)(-1))
    return false;
  else
    return gl_array_remove_at (list, position);
}

static void
gl_array_list_free (gl_list_t list)
{
  if (list->elements != NULL)
    {
      if (list->base.dispose_fn != NULL)
        {
          size_t count = list->count;

          if (count > 0)
            {
              gl_listelement_dispose_fn dispose = list->base.dispose_fn;
              const void **elements = list->elements;

              do
                dispose (*elements++);
              while (--count > 0);
            }
        }
      free (list->elements);
    }
  free (list);
}

/* --------------------- gl_list_iterator_t Data Type --------------------- */

static gl_list_iterator_t
gl_array_iterator (gl_list_t list)
{
  gl_list_iterator_t result;

  result.vtable = list->base.vtable;
  result.list = list;
  result.count = list->count;
  result.p = list->elements + 0;
  result.q = list->elements + list->count;
#ifdef lint
  result.i = 0;
  result.j = 0;
#endif

  return result;
}

static gl_list_iterator_t
gl_array_iterator_from_to (gl_list_t list, size_t start_index, size_t end_index)
{
  gl_list_iterator_t result;

  if (!(start_index <= end_index && end_index <= list->count))
    /* Invalid arguments.  */
    abort ();
  result.vtable = list->base.vtable;
  result.list = list;
  result.count = list->count;
  result.p = list->elements + start_index;
  result.q = list->elements + end_index;
#ifdef lint
  result.i = 0;
  result.j = 0;
#endif

  return result;
}

static bool
gl_array_iterator_next (gl_list_iterator_t *iterator,
                        const void **eltp, gl_list_node_t *nodep)
{
  gl_list_t list = iterator->list;
  if (iterator->count != list->count)
    {
      if (iterator->count != list->count + 1)
        /* Concurrent modifications were done on the list.  */
        abort ();
      /* The last returned element was removed.  */
      iterator->count--;
      iterator->p = (const void **) iterator->p - 1;
      iterator->q = (const void **) iterator->q - 1;
    }
  if (iterator->p < iterator->q)
    {
      const void **p = (const void **) iterator->p;
      *eltp = *p;
      if (nodep != NULL)
        *nodep = INDEX_TO_NODE (p - list->elements);
      iterator->p = p + 1;
      return true;
    }
  else
    return false;
}

static void
gl_array_iterator_free (gl_list_iterator_t *iterator)
{
}

/* ---------------------- Sorted gl_list_t Data Type ---------------------- */

static size_t
gl_array_sortedlist_indexof_from_to (gl_list_t list,
                                     gl_listelement_compar_fn compar,
                                     size_t low, size_t high,
                                     const void *elt)
{
  if (!(low <= high && high <= list->count))
    /* Invalid arguments.  */
    abort ();
  if (low < high)
    {
      /* At each loop iteration, low < high; for indices < low the values
         are smaller than ELT; for indices >= high the values are greater
         than ELT.  So, if the element occurs in the list, it is at
         low <= position < high.  */
      do
        {
          size_t mid = low + (high - low) / 2; /* low <= mid < high */
          int cmp = compar (list->elements[mid], elt);

          if (cmp < 0)
            low = mid + 1;
          else if (cmp > 0)
            high = mid;
          else /* cmp == 0 */
            {
              /* We have an element equal to ELT at index MID.  But we need
                 the minimal such index.  */
              high = mid;
              /* At each loop iteration, low <= high and
                   compar (list->elements[high], elt) == 0,
                 and we know that the first occurrence of the element is at
                 low <= position <= high.  */
              while (low < high)
                {
                  size_t mid2 = low + (high - low) / 2; /* low <= mid2 < high */
                  int cmp2 = compar (list->elements[mid2], elt);

                  if (cmp2 < 0)
                    low = mid2 + 1;
                  else if (cmp2 > 0)
                    /* The list was not sorted.  */
                    abort ();
                  else /* cmp2 == 0 */
                    {
                      if (mid2 == low)
                        break;
                      high = mid2 - 1;
                    }
                }
              return low;
            }
        }
      while (low < high);
      /* Here low == high.  */
    }
  return (size_t)(-1);
}

static size_t
gl_array_sortedlist_indexof (gl_list_t list, gl_listelement_compar_fn compar,
                             const void *elt)
{
  return gl_array_sortedlist_indexof_from_to (list, compar, 0, list->count,
                                              elt);
}

static gl_list_node_t
gl_array_sortedlist_search_from_to (gl_list_t list,
                                    gl_listelement_compar_fn compar,
                                    size_t low, size_t high,
                                    const void *elt)
{
  size_t index =
    gl_array_sortedlist_indexof_from_to (list, compar, low, high, elt);
  return INDEX_TO_NODE (index);
}

static gl_list_node_t
gl_array_sortedlist_search (gl_list_t list, gl_listelement_compar_fn compar,
                            const void *elt)
{
  size_t index =
    gl_array_sortedlist_indexof_from_to (list, compar, 0, list->count, elt);
  return INDEX_TO_NODE (index);
}

static gl_list_node_t
gl_array_sortedlist_nx_add (gl_list_t list, gl_listelement_compar_fn compar,
                            const void *elt)
{
  size_t count = list->count;
  size_t low = 0;
  size_t high = count;

  /* At each loop iteration, low <= high; for indices < low the values are
     smaller than ELT; for indices >= high the values are greater than ELT.  */
  while (low < high)
    {
      size_t mid = low + (high - low) / 2; /* low <= mid < high */
      int cmp = compar (list->elements[mid], elt);

      if (cmp < 0)
        low = mid + 1;
      else if (cmp > 0)
        high = mid;
      else /* cmp == 0 */
        {
          low = mid;
          break;
        }
    }
  return gl_array_nx_add_at (list, low, elt);
}

static bool
gl_array_sortedlist_remove (gl_list_t list, gl_listelement_compar_fn compar,
                            const void *elt)
{
  size_t index = gl_array_sortedlist_indexof (list, compar, elt);
  if (index == (size_t)(-1))
    return false;
  else
    return gl_array_remove_at (list, index);
}


const struct gl_list_implementation gl_array_list_implementation =
  {
    gl_array_nx_create_empty,
    gl_array_nx_create,
    gl_array_size,
    gl_array_node_value,
    gl_array_node_nx_set_value,
    gl_array_next_node,
    gl_array_previous_node,
    gl_array_get_at,
    gl_array_nx_set_at,
    gl_array_search_from_to,
    gl_array_indexof_from_to,
    gl_array_nx_add_first,
    gl_array_nx_add_last,
    gl_array_nx_add_before,
    gl_array_nx_add_after,
    gl_array_nx_add_at,
    gl_array_remove_node,
    gl_array_remove_at,
    gl_array_remove,
    gl_array_list_free,
    gl_array_iterator,
    gl_array_iterator_from_to,
    gl_array_iterator_next,
    gl_array_iterator_free,
    gl_array_sortedlist_search,
    gl_array_sortedlist_search_from_to,
    gl_array_sortedlist_indexof,
    gl_array_sortedlist_indexof_from_to,
    gl_array_sortedlist_nx_add,
    gl_array_sortedlist_remove
  };