Mercurial > hg > octave-kai > gnulib-hg
view lib/fmod.c @ 17463:203c036eb0c6
bootstrap: support checksum utils without a --status option
* build-aux/bootstrap: Only look for sha1sum if updating po files.
Add sha1 to the list of supported checksum utils since it's now
supported through adjustments below.
(update_po_files): Remove the use of --status
in a way that will suppress all error messages, but since this is
only used to minimize updates, it shouldn't cause an issue.
Exit early if there is a problem updating the po file checksums.
(find_tool): Remove the check for --version support as this
is optional as per commit 86186b17. Don't even check for the
presence of the command as if that is needed, it's supported
through configuring prerequisites in bootstrap.conf.
Prompt that when a tool isn't found, one can define an environment
variable to add to the hardcoded search list.
author | Pádraig Brady <P@draigBrady.com> |
---|---|
date | Thu, 08 Aug 2013 11:08:49 +0100 (2013-08-08) |
parents | e542fd46ad6f |
children |
line wrap: on
line source
/* Remainder. Copyright (C) 2011-2013 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #if ! defined USE_LONG_DOUBLE # include <config.h> #endif /* Specification. */ #include <math.h> #include <float.h> #include <stdlib.h> #ifdef USE_LONG_DOUBLE # define FMOD fmodl # define DOUBLE long double # define MANT_DIG LDBL_MANT_DIG # define L_(literal) literal##L # define FREXP frexpl # define LDEXP ldexpl # define FABS fabsl # define TRUNC truncl # define ISNAN isnanl #else # define FMOD fmod # define DOUBLE double # define MANT_DIG DBL_MANT_DIG # define L_(literal) literal # define FREXP frexp # define LDEXP ldexp # define FABS fabs # define TRUNC trunc # define ISNAN isnand #endif /* MSVC with option -fp:strict refuses to compile constant initializers that contain floating-point operations. Pacify this compiler. */ #ifdef _MSC_VER # pragma fenv_access (off) #endif #undef NAN #if defined _MSC_VER static DOUBLE zero; # define NAN (zero / zero) #else # define NAN (L_(0.0) / L_(0.0)) #endif /* To avoid rounding errors during the computation of x - q * y, there are three possibilities: - Use fma (- q, y, x). - Have q be a single bit at a time, and compute x - q * y through a subtraction. - Have q be at most MANT_DIG/2 bits at a time, and compute x - q * y by splitting y into two halves: y = y1 * 2^(MANT_DIG/2) + y0 x - q * y = (x - q * y1 * 2^MANT_DIG/2) - q * y0. The latter is probably the most efficient. */ /* Number of bits in a limb. */ #define LIMB_BITS (MANT_DIG / 2) /* 2^LIMB_BITS. */ static const DOUBLE TWO_LIMB_BITS = /* Assume LIMB_BITS <= 3 * 31. Use the identity n = floor(n/3) + floor((n+1)/3) + floor((n+2)/3). */ (DOUBLE) (1U << (LIMB_BITS / 3)) * (DOUBLE) (1U << ((LIMB_BITS + 1) / 3)) * (DOUBLE) (1U << ((LIMB_BITS + 2) / 3)); /* 2^-LIMB_BITS. */ static const DOUBLE TWO_LIMB_BITS_INVERSE = /* Assume LIMB_BITS <= 3 * 31. Use the identity n = floor(n/3) + floor((n+1)/3) + floor((n+2)/3). */ L_(1.0) / ((DOUBLE) (1U << (LIMB_BITS / 3)) * (DOUBLE) (1U << ((LIMB_BITS + 1) / 3)) * (DOUBLE) (1U << ((LIMB_BITS + 2) / 3))); DOUBLE FMOD (DOUBLE x, DOUBLE y) { if (isfinite (x) && isfinite (y) && y != L_(0.0)) { if (x == L_(0.0)) /* Return x, regardless of the sign of y. */ return x; { int negate = ((!signbit (x)) ^ (!signbit (y))); /* Take the absolute value of x and y. */ x = FABS (x); y = FABS (y); /* Trivial case that requires no computation. */ if (x < y) return (negate ? - x : x); { int yexp; DOUBLE ym; DOUBLE y1; DOUBLE y0; int k; DOUBLE x2; DOUBLE x1; DOUBLE x0; /* Write y = 2^yexp * (y1 * 2^-LIMB_BITS + y0 * 2^-(2*LIMB_BITS)) where y1 is an integer, 2^(LIMB_BITS-1) <= y1 < 2^LIMB_BITS, y1 has at most LIMB_BITS bits, 0 <= y0 < 2^LIMB_BITS, y0 has at most (MANT_DIG + 1) / 2 bits. */ ym = FREXP (y, &yexp); ym = ym * TWO_LIMB_BITS; y1 = TRUNC (ym); y0 = (ym - y1) * TWO_LIMB_BITS; /* Write x = 2^(yexp+(k-3)*LIMB_BITS) * (x2 * 2^(2*LIMB_BITS) + x1 * 2^LIMB_BITS + x0) where x2, x1, x0 are each integers >= 0, < 2^LIMB_BITS. */ { int xexp; DOUBLE xm = FREXP (x, &xexp); /* Since we know x >= y, we know xexp >= yexp. */ xexp -= yexp; /* Compute k = ceil(xexp / LIMB_BITS). */ k = (xexp + LIMB_BITS - 1) / LIMB_BITS; /* Note: (k - 1) * LIMB_BITS + 1 <= xexp <= k * LIMB_BITS. */ /* Note: 0.5 <= xm < 1.0. */ xm = LDEXP (xm, xexp - (k - 1) * LIMB_BITS); /* Note: Now xm < 2^(xexp - (k - 1) * LIMB_BITS) <= 2^LIMB_BITS and xm >= 0.5 * 2^(xexp - (k - 1) * LIMB_BITS) >= 1.0 and xm has at most MANT_DIG <= 2*LIMB_BITS+1 bits. */ x2 = TRUNC (xm); x1 = (xm - x2) * TWO_LIMB_BITS; /* Split off x0 from x1 later. */ } /* Test whether [x2,x1,0] >= 2^LIMB_BITS * [y1,y0]. */ if (x2 > y1 || (x2 == y1 && x1 >= y0)) { /* Subtract 2^LIMB_BITS * [y1,y0] from [x2,x1,0]. */ x2 -= y1; x1 -= y0; if (x1 < L_(0.0)) { if (!(x2 >= L_(1.0))) abort (); x2 -= L_(1.0); x1 += TWO_LIMB_BITS; } } /* Split off x0 from x1. */ { DOUBLE x1int = TRUNC (x1); x0 = TRUNC ((x1 - x1int) * TWO_LIMB_BITS); x1 = x1int; } for (; k > 0; k--) { /* Multiprecision division of the limb sequence [x2,x1,x0] by [y1,y0]. */ /* Here [x2,x1,x0] < 2^LIMB_BITS * [y1,y0]. */ /* The first guess takes into account only [x2,x1] and [y1]. By Knuth's theorem, we know that q* = min (floor ([x2,x1] / [y1]), 2^LIMB_BITS - 1) and q = floor ([x2,x1,x0] / [y1,y0]) are not far away: q* - 2 <= q <= q* + 1. Proof: a) q* * y1 <= floor ([x2,x1] / [y1]) * y1 <= [x2,x1]. Hence [x2,x1,x0] - q* * [y1,y0] = 2^LIMB_BITS * ([x2,x1] - q* * [y1]) + x0 - q* * y0 >= x0 - q* * y0 >= - q* * y0 > - 2^(2*LIMB_BITS) >= - 2 * [y1,y0] So [x2,x1,x0] > (q* - 2) * [y1,y0]. b) If q* = floor ([x2,x1] / [y1]), then [x2,x1] < (q* + 1) * y1 Hence [x2,x1,x0] - q* * [y1,y0] = 2^LIMB_BITS * ([x2,x1] - q* * [y1]) + x0 - q* * y0 <= 2^LIMB_BITS * (y1 - 1) + x0 - q* * y0 <= 2^LIMB_BITS * (2^LIMB_BITS-2) + (2^LIMB_BITS-1) - 0 < 2^(2*LIMB_BITS) <= 2 * [y1,y0] So [x2,x1,x0] < (q* + 2) * [y1,y0]. and so q < q* + 2 which implies q <= q* + 1. In the other case, q* = 2^LIMB_BITS - 1. Then trivially q < 2^LIMB_BITS = q* + 1. We know that floor ([x2,x1] / [y1]) >= 2^LIMB_BITS if and only if x2 >= y1. */ DOUBLE q = (x2 >= y1 ? TWO_LIMB_BITS - L_(1.0) : TRUNC ((x2 * TWO_LIMB_BITS + x1) / y1)); if (q > L_(0.0)) { /* Compute [x2,x1,x0] - q* * [y1,y0] = 2^LIMB_BITS * ([x2,x1] - q* * [y1]) + x0 - q* * y0. */ DOUBLE q_y1 = q * y1; /* exact, at most 2*LIMB_BITS bits */ DOUBLE q_y1_1 = TRUNC (q_y1 * TWO_LIMB_BITS_INVERSE); DOUBLE q_y1_0 = q_y1 - q_y1_1 * TWO_LIMB_BITS; DOUBLE q_y0 = q * y0; /* exact, at most MANT_DIG bits */ DOUBLE q_y0_1 = TRUNC (q_y0 * TWO_LIMB_BITS_INVERSE); DOUBLE q_y0_0 = q_y0 - q_y0_1 * TWO_LIMB_BITS; x2 -= q_y1_1; x1 -= q_y1_0; x1 -= q_y0_1; x0 -= q_y0_0; /* Move negative carry from x0 to x1 and from x1 to x2. */ if (x0 < L_(0.0)) { x0 += TWO_LIMB_BITS; x1 -= L_(1.0); } if (x1 < L_(0.0)) { x1 += TWO_LIMB_BITS; x2 -= L_(1.0); if (x1 < L_(0.0)) /* not sure this can happen */ { x1 += TWO_LIMB_BITS; x2 -= L_(1.0); } } if (x2 < L_(0.0)) { /* Reduce q by 1. */ x1 += y1; x0 += y0; /* Move overflow from x0 to x1 and from x1 to x0. */ if (x0 >= TWO_LIMB_BITS) { x0 -= TWO_LIMB_BITS; x1 += L_(1.0); } if (x1 >= TWO_LIMB_BITS) { x1 -= TWO_LIMB_BITS; x2 += L_(1.0); } if (x2 < L_(0.0)) { /* Reduce q by 1 again. */ x1 += y1; x0 += y0; /* Move overflow from x0 to x1 and from x1 to x0. */ if (x0 >= TWO_LIMB_BITS) { x0 -= TWO_LIMB_BITS; x1 += L_(1.0); } if (x1 >= TWO_LIMB_BITS) { x1 -= TWO_LIMB_BITS; x2 += L_(1.0); } if (x2 < L_(0.0)) /* Shouldn't happen, because we proved that q >= q* - 2. */ abort (); } } } if (x2 > L_(0.0) || x1 > y1 || (x1 == y1 && x0 >= y0)) { /* Increase q by 1. */ x1 -= y1; x0 -= y0; /* Move negative carry from x0 to x1 and from x1 to x2. */ if (x0 < L_(0.0)) { x0 += TWO_LIMB_BITS; x1 -= L_(1.0); } if (x1 < L_(0.0)) { x1 += TWO_LIMB_BITS; x2 -= L_(1.0); } if (x2 < L_(0.0)) abort (); if (x2 > L_(0.0) || x1 > y1 || (x1 == y1 && x0 >= y0)) /* Shouldn't happen, because we proved that q <= q* + 1. */ abort (); } /* Here [x2,x1,x0] < [y1,y0]. */ /* Next round. */ x2 = x1; #if (MANT_DIG + 1) / 2 > LIMB_BITS /* y0 can have a fractional bit */ x1 = TRUNC (x0); x0 = (x0 - x1) * TWO_LIMB_BITS; #else x1 = x0; x0 = L_(0.0); #endif /* Here [x2,x1,x0] < 2^LIMB_BITS * [y1,y0]. */ } /* Here k = 0. The result is 2^(yexp-3*LIMB_BITS) * (x2 * 2^(2*LIMB_BITS) + x1 * 2^LIMB_BITS + x0). */ { DOUBLE r = LDEXP ((x2 * TWO_LIMB_BITS + x1) * TWO_LIMB_BITS + x0, yexp - 3 * LIMB_BITS); return (negate ? - r : r); } } } } else { if (ISNAN (x) || ISNAN (y)) return x + y; /* NaN */ else if (isinf (y)) return x; else /* x infinite or y zero */ return NAN; } }