Mercurial > hg > octave-kai > gnulib-hg
view lib/expl.c @ 17463:203c036eb0c6
bootstrap: support checksum utils without a --status option
* build-aux/bootstrap: Only look for sha1sum if updating po files.
Add sha1 to the list of supported checksum utils since it's now
supported through adjustments below.
(update_po_files): Remove the use of --status
in a way that will suppress all error messages, but since this is
only used to minimize updates, it shouldn't cause an issue.
Exit early if there is a problem updating the po file checksums.
(find_tool): Remove the check for --version support as this
is optional as per commit 86186b17. Don't even check for the
presence of the command as if that is needed, it's supported
through configuring prerequisites in bootstrap.conf.
Prompt that when a tool isn't found, one can define an environment
variable to add to the hardcoded search list.
author | Pádraig Brady <P@draigBrady.com> |
---|---|
date | Thu, 08 Aug 2013 11:08:49 +0100 |
parents | e542fd46ad6f |
children |
line wrap: on
line source
/* Exponential function. Copyright (C) 2011-2013 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <config.h> /* Specification. */ #include <math.h> #if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE long double expl (long double x) { return exp (x); } #else # include <float.h> /* gl_expl_table[i] = exp((i - 128) * log(2)/256). */ extern const long double gl_expl_table[257]; /* A value slightly larger than log(2). */ #define LOG2_PLUS_EPSILON 0.6931471805599454L /* Best possible approximation of log(2) as a 'long double'. */ #define LOG2 0.693147180559945309417232121458176568075L /* Best possible approximation of 1/log(2) as a 'long double'. */ #define LOG2_INVERSE 1.44269504088896340735992468100189213743L /* Best possible approximation of log(2)/256 as a 'long double'. */ #define LOG2_BY_256 0.00270760617406228636491106297444600221904L /* Best possible approximation of 256/log(2) as a 'long double'. */ #define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L /* The upper 32 bits of log(2)/256. */ #define LOG2_BY_256_HI_PART 0.0027076061733168899081647396087646484375L /* log(2)/256 - LOG2_HI_PART. */ #define LOG2_BY_256_LO_PART \ 0.000000000000745396456746323365681353781544922399845L long double expl (long double x) { if (isnanl (x)) return x; if (x >= (long double) LDBL_MAX_EXP * LOG2_PLUS_EPSILON) /* x > LDBL_MAX_EXP * log(2) hence exp(x) > 2^LDBL_MAX_EXP, overflows to Infinity. */ return HUGE_VALL; if (x <= (long double) (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG) * LOG2_PLUS_EPSILON) /* x < (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG) * log(2) hence exp(x) < 2^(LDBL_MIN_EXP-1-LDBL_MANT_DIG), underflows to zero. */ return 0.0L; /* Decompose x into x = n * log(2) + m * log(2)/256 + y where n is an integer, m is an integer, -128 <= m <= 128, y is a number, |y| <= log(2)/512 + epsilon = 0.00135... Then exp(x) = 2^n * exp(m * log(2)/256) * exp(y) The first factor is an ldexpl() call. The second factor is a table lookup. The third factor is computed - either as sinh(y) + cosh(y) where sinh(y) is computed through the power series: sinh(y) = y + y^3/3! + y^5/5! + ... and cosh(y) is computed as hypot(1, sinh(y)), - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z)) where z = y/2 and tanh(z) is computed through its power series: tanh(z) = z - 1/3 * z^3 + 2/15 * z^5 - 17/315 * z^7 + 62/2835 * z^9 - 1382/155925 * z^11 + 21844/6081075 * z^13 - 929569/638512875 * z^15 + ... Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the z^13 term is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we can truncate the series after the z^11 term. Given the usual bounds LDBL_MAX_EXP <= 16384, LDBL_MIN_EXP >= -16381, LDBL_MANT_DIG <= 120, we can estimate x: -11440 <= x <= 11357. This means, when dividing x by log(2), where we want x mod log(2) to be precise to LDBL_MANT_DIG bits, we have to use an approximation to log(2) that has 14+LDBL_MANT_DIG bits. */ { long double nm = roundl (x * LOG2_BY_256_INVERSE); /* = 256 * n + m */ /* n has at most 15 bits, nm therefore has at most 23 bits, therefore n * LOG2_HI_PART is computed exactly, and n * LOG2_LO_PART is computed with an absolute error < 2^15 * 2e-10 * 2^-LDBL_MANT_DIG. */ long double y_tmp = x - nm * LOG2_BY_256_HI_PART; long double y = y_tmp - nm * LOG2_BY_256_LO_PART; long double z = 0.5L * y; /* Coefficients of the power series for tanh(z). */ #define TANH_COEFF_1 1.0L #define TANH_COEFF_3 -0.333333333333333333333333333333333333334L #define TANH_COEFF_5 0.133333333333333333333333333333333333334L #define TANH_COEFF_7 -0.053968253968253968253968253968253968254L #define TANH_COEFF_9 0.0218694885361552028218694885361552028218L #define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L #define TANH_COEFF_13 0.00359212803657248101692546136990581435026L #define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L long double z2 = z * z; long double tanh_z = (((((TANH_COEFF_11 * z2 + TANH_COEFF_9) * z2 + TANH_COEFF_7) * z2 + TANH_COEFF_5) * z2 + TANH_COEFF_3) * z2 + TANH_COEFF_1) * z; long double exp_y = (1.0L + tanh_z) / (1.0L - tanh_z); int n = (int) roundl (nm * (1.0L / 256.0L)); int m = (int) nm - 256 * n; return ldexpl (gl_expl_table[128 + m] * exp_y, n); } } #endif