view lib/exp2.c @ 17463:203c036eb0c6

bootstrap: support checksum utils without a --status option * build-aux/bootstrap: Only look for sha1sum if updating po files. Add sha1 to the list of supported checksum utils since it's now supported through adjustments below. (update_po_files): Remove the use of --status in a way that will suppress all error messages, but since this is only used to minimize updates, it shouldn't cause an issue. Exit early if there is a problem updating the po file checksums. (find_tool): Remove the check for --version support as this is optional as per commit 86186b17. Don't even check for the presence of the command as if that is needed, it's supported through configuring prerequisites in bootstrap.conf. Prompt that when a tool isn't found, one can define an environment variable to add to the hardcoded search list.
author Pádraig Brady <P@draigBrady.com>
date Thu, 08 Aug 2013 11:08:49 +0100 (2013-08-08)
parents e542fd46ad6f
children
line wrap: on
line source
/* Exponential base 2 function.
   Copyright (C) 2012-2013 Free Software Foundation, Inc.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>

/* Specification.  */
#include <math.h>

#include <float.h>

/* Best possible approximation of log(2) as a 'double'.  */
#define LOG2 0.693147180559945309417232121458176568075

/* Best possible approximation of 1/log(2) as a 'double'.  */
#define LOG2_INVERSE 1.44269504088896340735992468100189213743

/* Best possible approximation of log(2)/256 as a 'double'.  */
#define LOG2_BY_256 0.00270760617406228636491106297444600221904

/* Best possible approximation of 256/log(2) as a 'double'.  */
#define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181

double
exp2 (double x)
{
  /* exp2(x) = exp(x*log(2)).
     If we would compute it like this, there would be rounding errors for
     integer or near-integer values of x.  To avoid these, we inline the
     algorithm for exp(), and the multiplication with log(2) cancels a
     division by log(2).  */

  if (isnand (x))
    return x;

  if (x > (double) DBL_MAX_EXP)
    /* x > DBL_MAX_EXP
       hence exp2(x) > 2^DBL_MAX_EXP, overflows to Infinity.  */
    return HUGE_VAL;

  if (x < (double) (DBL_MIN_EXP - 1 - DBL_MANT_DIG))
    /* x < (DBL_MIN_EXP - 1 - DBL_MANT_DIG)
       hence exp2(x) < 2^(DBL_MIN_EXP-1-DBL_MANT_DIG),
       underflows to zero.  */
    return 0.0;

  /* Decompose x into
       x = n + m/256 + y/log(2)
     where
       n is an integer,
       m is an integer, -128 <= m <= 128,
       y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
     Then
       exp2(x) = 2^n * exp(m * log(2)/256) * exp(y)
     The first factor is an ldexpl() call.
     The second factor is a table lookup.
     The third factor is computed
     - either as sinh(y) + cosh(y)
       where sinh(y) is computed through the power series:
         sinh(y) = y + y^3/3! + y^5/5! + ...
       and cosh(y) is computed as hypot(1, sinh(y)),
     - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z))
       where z = y/2
       and tanh(z) is computed through its power series:
         tanh(z) = z
                   - 1/3 * z^3
                   + 2/15 * z^5
                   - 17/315 * z^7
                   + 62/2835 * z^9
                   - 1382/155925 * z^11
                   + 21844/6081075 * z^13
                   - 929569/638512875 * z^15
                   + ...
       Since |z| <= log(2)/1024 < 0.0007, the relative contribution of the
       z^7 term is < 0.0007^6 < 2^-60 <= 2^-DBL_MANT_DIG, therefore we can
       truncate the series after the z^5 term.  */

  {
    double nm = round (x * 256.0); /* = 256 * n + m */
    double z = (x * 256.0 - nm) * (LOG2_BY_256 * 0.5);

/* Coefficients of the power series for tanh(z).  */
#define TANH_COEFF_1   1.0
#define TANH_COEFF_3  -0.333333333333333333333333333333333333334
#define TANH_COEFF_5   0.133333333333333333333333333333333333334
#define TANH_COEFF_7  -0.053968253968253968253968253968253968254
#define TANH_COEFF_9   0.0218694885361552028218694885361552028218
#define TANH_COEFF_11 -0.00886323552990219656886323552990219656886
#define TANH_COEFF_13  0.00359212803657248101692546136990581435026
#define TANH_COEFF_15 -0.00145583438705131826824948518070211191904

    double z2 = z * z;
    double tanh_z =
      ((TANH_COEFF_5
        * z2 + TANH_COEFF_3)
       * z2 + TANH_COEFF_1)
      * z;

    double exp_y = (1.0 + tanh_z) / (1.0 - tanh_z);

    int n = (int) round (nm * (1.0 / 256.0));
    int m = (int) nm - 256 * n;

    /* exp_table[i] = exp((i - 128) * log(2)/256).
       Computed in GNU clisp through
         (setf (long-float-digits) 128)
         (setq a 0L0)
         (setf (long-float-digits) 256)
         (dotimes (i 257)
           (format t "        ~D,~%"
                   (float (exp (* (/ (- i 128) 256) (log 2L0))) a)))  */
    static const double exp_table[257] =
      {
        0.707106781186547524400844362104849039284,
        0.709023942160207598920563322257676190836,
        0.710946301084582779904674297352120049962,
        0.71287387205274715340350157671438300618,
        0.714806669195985005617532889137569953044,
        0.71674470668389442125974978427737336719,
        0.71868799872449116280161304224785251353,
        0.720636559564312831364255957304947586072,
        0.72259040348852331001850312073583545284,
        0.724549544821017490259402705487111270714,
        0.726513997924526282423036245842287293786,
        0.728483777200721910815451524818606761737,
        0.730458897090323494325651445155310766577,
        0.732439372073202913296664682112279175616,
        0.734425216668490963430822513132890712652,
        0.736416445434683797507470506133110286942,
        0.738413072969749655693453740187024961962,
        0.740415113911235885228829945155951253966,
        0.742422582936376250272386395864403155277,
        0.744435494762198532693663597314273242753,
        0.746453864145632424600321765743336770838,
        0.748477705883617713391824861712720862423,
        0.750507034813212760132561481529764324813,
        0.752541865811703272039672277899716132493,
        0.75458221379671136988300977551659676571,
        0.756628093726304951096818488157633113612,
        0.75867952059910734940489114658718937343,
        0.760736509454407291763130627098242426467,
        0.762799075372269153425626844758470477304,
        0.76486723347364351194254345936342587308,
        0.766940998920478000900300751753859329456,
        0.769020386915828464216738479594307884331,
        0.771105412703970411806145931045367420652,
        0.773196091570510777431255778146135325272,
        0.77529243884249997956151370535341912283,
        0.777394469888544286059157168801667390437,
        0.779502200118918483516864044737428940745,
        0.781615644985678852072965367573877941354,
        0.783734819982776446532455855478222575498,
        0.78585974064617068462428149076570281356,
        0.787990422553943243227635080090952504452,
        0.790126881326412263402248482007960521995,
        0.79226913262624686505993407346567890838,
        0.794417192158581972116898048814333564685,
        0.796571075671133448968624321559534367934,
        0.798730798954313549131410147104316569576,
        0.800896377841346676896923120795476813684,
        0.803067828208385462848443946517563571584,
        0.805245165974627154089760333678700291728,
        0.807428407102430320039984581575729114268,
        0.809617567597431874649880866726368203972,
        0.81181266350866441589760797777344082227,
        0.814013710928673883424109261007007338614,
        0.816220725993637535170713864466769240053,
        0.818433724883482243883852017078007231025,
        0.82065272382200311435413206848451310067,
        0.822877739076982422259378362362911222833,
        0.825108786960308875483586738272485101678,
        0.827345883828097198786118571797909120834,
        0.829589046080808042697824787210781231927,
        0.831838290163368217523168228488195222638,
        0.834093632565291253329796170708536192903,
        0.836355089820798286809404612069230711295,
        0.83862267850893927589613232455870870518,
        0.84089641525371454303112547623321489504,
        0.84317631672419664796432298771385230143,
        0.84546239963465259098692866759361830709,
        0.84775468074466634749045860363936420312,
        0.850053176859261734750681286748751167545,
        0.852357904829025611837203530384718316326,
        0.854668881550231413551897437515331498025,
        0.856986123964963019301812477839166009452,
        0.859309649061238957814672188228156252257,
        0.861639473873136948607517116872358729753,
        0.863975615480918781121524414614366207052,
        0.866318091011155532438509953514163469652,
        0.868666917636853124497101040936083380124,
        0.871022112577578221729056715595464682243,
        0.873383693099584470038708278290226842228,
        0.875751676515939078050995142767930296012,
        0.878126080186649741556080309687656610647,
        0.880506921518791912081045787323636256171,
        0.882894217966636410521691124969260937028,
        0.885287987031777386769987907431242017412,
        0.88768824626326062627527960009966160388,
        0.89009501325771220447985955243623523504,
        0.892508305659467490072110281986409916153,
        0.8949281411607004980029443898876582985,
        0.897354537501553593213851621063890907178,
        0.899787512470267546027427696662514569756,
        0.902227083903311940153838631655504844215,
        0.904673269685515934269259325789226871994,
        0.907126087750199378124917300181170171233,
        0.909585556079304284147971563828178746372,
        0.91205169270352665549806275316460097744,
        0.914524515702448671545983912696158354092,
        0.91700404320467123174354159479414442804,
        0.919490293387946858856304371174663918816,
        0.921983284479312962533570386670938449637,
        0.92448303475522546419252726694739603678,
        0.92698956254169278419622653516884831976,
        0.929502886214410192307650717745572682403,
        0.932023024198894522404814545597236289343,
        0.934549994970619252444512104439799143264,
        0.93708381705514995066499947497722326722,
        0.93962450902828008902058735120448448827,
        0.942172089516167224843810351983745154882,
        0.944726577195469551733539267378681531548,
        0.947287990793482820670109326713462307376,
        0.949856349088277632361251759806996099924,
        0.952431670908837101825337466217860725517,
        0.955013975135194896221170529572799135168,
        0.957603280698573646936305635147915443924,
        0.960199606581523736948607188887070611744,
        0.962802971818062464478519115091191368377,
        0.965413395493813583952272948264534783197,
        0.968030896746147225299027952283345762418,
        0.970655494764320192607710617437589705184,
        0.973287208789616643172102023321302921373,
        0.97592605811548914795551023340047499377,
        0.978572062087700134509161125813435745597,
        0.981225240104463713381244885057070325016,
        0.983885611616587889056366801238014683926,
        0.98655319612761715646797006813220671315,
        0.989228013193975484129124959065583667775,
        0.99191008242510968492991311132615581644,
        0.994599423483633175652477686222166314457,
        0.997296056085470126257659913847922601123,
        1.0,
        1.00271127505020248543074558845036204047,
        1.0054299011128028213513839559347998147,
        1.008155898118417515783094890817201039276,
        1.01088928605170046002040979056186052439,
        1.013630084951489438840258929063939929597,
        1.01637831491095303794049311378629406276,
        1.0191339960777379496848780958207928794,
        1.02189714865411667823448013478329943978,
        1.02466779289713564514828907627081492763,
        1.0274459491187636965388611939222137815,
        1.030231637686041012871707902453904567093,
        1.033024879021228422500108283970460918086,
        1.035825693601957120029983209018081371844,
        1.03863410196137879061243669795463973258,
        1.04145012468831614126454607901189312648,
        1.044273782427413840321966478739929008784,
        1.04710509587928986612990725022711224056,
        1.04994408580068726608203812651590790906,
        1.05279077300462632711989120298074630319,
        1.05564517836055715880834132515293865216,
        1.058507322794512690105772109683716645074,
        1.061377227289262080950567678003883726294,
        1.06425491288446454978861125700158022068,
        1.06714040067682361816952112099280916261,
        1.0700337118202417735424119367576235685,
        1.072934867525975551385035450873827585343,
        1.075843889062791037803228648476057074063,
        1.07876079775711979374068003743848295849,
        1.081685614993215201942115594422531125643,
        1.08461836221330923781610517190661434161,
        1.087559060917769665346797830944039707867,
        1.09050773266525765920701065576070797899,
        1.09346439907288585422822014625044716208,
        1.096429081816376823386138295859248481766,
        1.09940180263022198546369696823882990404,
        1.10238258330784094355641420942564685751,
        1.10537144570174125558827469625695031104,
        1.108368411723678638009423649426619850137,
        1.111373503344817603850149254228916637444,
        1.1143867425958925363088129569196030678,
        1.11740815156736919905457996308578026665,
        1.12043775240960668442900387986631301277,
        1.123475567333019800733729739775321431954,
        1.12652161860824189979479864378703477763,
        1.129575928566288145997264988840249825907,
        1.13263851959871922798707372367762308438,
        1.13570941415780551424039033067611701343,
        1.13878863475669165370383028384151125472,
        1.14187620396956162271229760828788093894,
        1.14497214443180421939441388822291589579,
        1.14807647884017900677879966269734268003,
        1.15118922995298270581775963520198253612,
        1.154310420590216039548221528724806960684,
        1.157440073633751029613085766293796821106,
        1.16057821202749874636945947257609098625,
        1.16372485877757751381357359909218531234,
        1.166880036952481570555516298414089287834,
        1.170043769683250188080259035792738573,
        1.17321608016363724753480435451324538889,
        1.176396991650281276284645728483848641054,
        1.17958652746287594548610056676944051898,
        1.182784710984341029924457204693850757966,
        1.18599156566099383137126564953421556374,
        1.18920711500272106671749997056047591529,
        1.19243138258315122214272755814543101148,
        1.195664392039827374583837049865451975705,
        1.19890616707438048177030255797630020695,
        1.202156731452703142096396957497765876003,
        1.205416109005123825604211432558411335666,
        1.208684323626581577354792255889216998484,
        1.21196139927680119446816891773249304545,
        1.215247359980468878116520251338798457624,
        1.218542229827408361758207148117394510724,
        1.221846032972757516903891841911570785836,
        1.225158793637145437709464594384845353707,
        1.22848053610687000569400895779278184036,
        1.2318112847340759358845566532127948166,
        1.235151063936933305692912507415415760294,
        1.238499898199816567833368865859612431545,
        1.24185781207348404859367746872659560551,
        1.24522483017525793277520496748615267417,
        1.24860097718920473662176609730249554519,
        1.25198627786631627006020603178920359732,
        1.255380757024691089579390657442301194595,
        1.25878443954971644307786044181516261876,
        1.26219735039425070801401025851841645967,
        1.265619514578806324196273999873453036296,
        1.26905095719173322255441908103233800472,
        1.27249170338940275123669204418460217677,
        1.27594177839639210038120243475928938891,
        1.27940120750566922691358797002785254596,
        1.28287001607877828072666978102151405111,
        1.286348229546025533601482208069738348355,
        1.28983587340666581223274729549155218968,
        1.293332973229089436725559789048704304684,
        1.296839554651009665933754117792451159835,
        1.30035564337965065101414056707091779129,
        1.30388126519193589857452364895199736833,
        1.30741644593467724479715157747196172848,
        1.310961211524764341922991786330755849366,
        1.314515587949354658485983613383997794965,
        1.318079601266063994690185647066116617664,
        1.32165327760315751432651181233060922616,
        1.32523664315974129462953709549872167411,
        1.32882972420595439547865089632866510792,
        1.33243254708316144935164337949073577407,
        1.33604513820414577344262790437186975929,
        1.33966752405330300536003066972435257602,
        1.34329973118683526382421714618163087542,
        1.346941786232945835788173713229537282075,
        1.35059371589203439140852219606013396004,
        1.35425554693689272829801474014070280434,
        1.357927306212901046494536695671766697446,
        1.36160902063822475558553593883194147464,
        1.36530071720401181543069836033754285543,
        1.36900242297459061192960113298219283217,
        1.37271416508766836928499785714471721579,
        1.37643597075453010021632280551868696026,
        1.380167867260238095581945274358283464697,
        1.383909881963831954872659527265192818,
        1.387662042298529159042861017950775988896,
        1.39142437577192618714983552956624344668,
        1.395196909966200178275574599249220994716,
        1.398979672538311140209528136715194969206,
        1.40277269122020470637471352433337881711,
        1.40657599381901544248361973255451684411,
        1.410389608217270704414375128268675481145,
        1.41421356237309504880168872420969807857
      };

    return ldexp (exp_table[128 + m] * exp_y, n);
  }
}