Mercurial > hg > octave-kai > gnulib-hg
diff lib/exp2l.c @ 16620:4a578c3945b8
New module 'exp2l'.
* lib/math.in.h (exp2l): New declaration.
* lib/exp2l.c: New file.
* lib/expl-table.c: New file, extracted from lib/expl.c.
* lib/expl.c (gl_expl_table): New declaration.
(expl): Remove expl_table. Update reference.
* m4/exp2l.m4: New file.
* m4/math_h.m4 (gl_MATH_H): Test whether exp2l is declared.
(gl_MATH_H_DEFAULTS): Initialize GNULIB_EXP2L, HAVE_DECL_EXP2L.
* modules/math (Makefile.am): Substitute GNULIB_EXP2L, HAVE_DECL_EXP2L.
* modules/exp2l: New file.
* modules/expl (Files): Add lib/expl-table.c.
(configure.ac): Compile also expl-table.c.
* tests/test-math-c++.cc: Check the declaration of exp2l.
* doc/posix-functions/exp2l.texi: Mention the new module and the IRIX
problem.
author | Bruno Haible <bruno@clisp.org> |
---|---|
date | Fri, 09 Mar 2012 01:13:40 +0100 |
parents | |
children | 6c0da1a4068d |
line wrap: on
line diff
new file mode 100644 --- /dev/null +++ b/lib/exp2l.c @@ -0,0 +1,136 @@ +/* Exponential base 2 function. + Copyright (C) 2011-2012 Free Software Foundation, Inc. + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#include <config.h> + +/* Specification. */ +#include <math.h> + +#if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE + +long double +exp2l (long double x) +{ + return exp2 (x); +} + +#else + +# include <float.h> + +/* gl_expl_table[i] = exp((i - 128) * log(2)/256). */ +extern const long double gl_expl_table[257]; + +/* Best possible approximation of log(2) as a 'long double'. */ +#define LOG2 0.693147180559945309417232121458176568075L + +/* Best possible approximation of 1/log(2) as a 'long double'. */ +#define LOG2_INVERSE 1.44269504088896340735992468100189213743L + +/* Best possible approximation of log(2)/256 as a 'long double'. */ +#define LOG2_BY_256 0.00270760617406228636491106297444600221904L + +/* Best possible approximation of 256/log(2) as a 'long double'. */ +#define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L + +long double +exp2l (long double x) +{ + /* exp2(x) = exp(x*log(2)). + If we would compute it like this, there would be rounding errors for + integer or near-integer values of x. To avoid these, we inline the + algorithm for exp(), and the multiplication with log(2) cancels a + division by log(2). */ + + if (isnanl (x)) + return x; + + if (x > (long double) LDBL_MAX_EXP) + /* x > LDBL_MAX_EXP + hence exp2(x) > 2^LDBL_MAX_EXP, overflows to Infinity. */ + return HUGE_VALL; + + if (x < (long double) (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG)) + /* x < (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG) + hence exp2(x) < 2^(LDBL_MIN_EXP-1-LDBL_MANT_DIG), + underflows to zero. */ + return 0.0L; + + /* Decompose x into + x = n + m/256 + y/log(2) + where + n is an integer, + m is an integer, -128 <= m <= 128, + y is a number, |y| <= log(2)/512 + epsilon = 0.00135... + Then + exp2(x) = 2^n * exp(m * log(2)/256) * exp(y) + The first factor is an ldexpl() call. + The second factor is a table lookup. + The third factor is computed + - either as sinh(y) + cosh(y) + where sinh(y) is computed through the power series: + sinh(y) = y + y^3/3! + y^5/5! + ... + and cosh(y) is computed as hypot(1, sinh(y)), + - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z)) + where z = y/2 + and tanh(z) is computed through its power series: + tanh(z) = z + - 1/3 * z^3 + + 2/15 * z^5 + - 17/315 * z^7 + + 62/2835 * z^9 + - 1382/155925 * z^11 + + 21844/6081075 * z^13 + - 929569/638512875 * z^15 + + ... + Since |z| <= log(2)/1024 < 0.0007, the relative error of the z^13 term + is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we can truncate + the series after the z^11 term. */ + + { + long double nm = roundl (x * 256.0L); /* = 256 * n + m */ + long double z = (x * 256.0L - nm) * (LOG2_BY_256 * 0.5L); + +/* Coefficients of the power series for tanh(z). */ +#define TANH_COEFF_1 1.0L +#define TANH_COEFF_3 -0.333333333333333333333333333333333333334L +#define TANH_COEFF_5 0.133333333333333333333333333333333333334L +#define TANH_COEFF_7 -0.053968253968253968253968253968253968254L +#define TANH_COEFF_9 0.0218694885361552028218694885361552028218L +#define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L +#define TANH_COEFF_13 0.00359212803657248101692546136990581435026L +#define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L + + long double z2 = z * z; + long double tanh_z = + (((((TANH_COEFF_11 + * z2 + TANH_COEFF_9) + * z2 + TANH_COEFF_7) + * z2 + TANH_COEFF_5) + * z2 + TANH_COEFF_3) + * z2 + TANH_COEFF_1) + * z; + + long double exp_y = (1.0L + tanh_z) / (1.0L - tanh_z); + + int n = (int) roundl (nm * (1.0L / 256.0L)); + int m = (int) nm - 256 * n; + + return ldexpl (gl_expl_table[128 + m] * exp_y, n); + } +} + +#endif