diff lib/exp2l.c @ 16620:4a578c3945b8

New module 'exp2l'. * lib/math.in.h (exp2l): New declaration. * lib/exp2l.c: New file. * lib/expl-table.c: New file, extracted from lib/expl.c. * lib/expl.c (gl_expl_table): New declaration. (expl): Remove expl_table. Update reference. * m4/exp2l.m4: New file. * m4/math_h.m4 (gl_MATH_H): Test whether exp2l is declared. (gl_MATH_H_DEFAULTS): Initialize GNULIB_EXP2L, HAVE_DECL_EXP2L. * modules/math (Makefile.am): Substitute GNULIB_EXP2L, HAVE_DECL_EXP2L. * modules/exp2l: New file. * modules/expl (Files): Add lib/expl-table.c. (configure.ac): Compile also expl-table.c. * tests/test-math-c++.cc: Check the declaration of exp2l. * doc/posix-functions/exp2l.texi: Mention the new module and the IRIX problem.
author Bruno Haible <bruno@clisp.org>
date Fri, 09 Mar 2012 01:13:40 +0100
parents
children 6c0da1a4068d
line wrap: on
line diff
new file mode 100644
--- /dev/null
+++ b/lib/exp2l.c
@@ -0,0 +1,136 @@
+/* Exponential base 2 function.
+   Copyright (C) 2011-2012 Free Software Foundation, Inc.
+
+   This program is free software: you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 3 of the License, or
+   (at your option) any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
+
+#include <config.h>
+
+/* Specification.  */
+#include <math.h>
+
+#if HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
+
+long double
+exp2l (long double x)
+{
+  return exp2 (x);
+}
+
+#else
+
+# include <float.h>
+
+/* gl_expl_table[i] = exp((i - 128) * log(2)/256).  */
+extern const long double gl_expl_table[257];
+
+/* Best possible approximation of log(2) as a 'long double'.  */
+#define LOG2 0.693147180559945309417232121458176568075L
+
+/* Best possible approximation of 1/log(2) as a 'long double'.  */
+#define LOG2_INVERSE 1.44269504088896340735992468100189213743L
+
+/* Best possible approximation of log(2)/256 as a 'long double'.  */
+#define LOG2_BY_256 0.00270760617406228636491106297444600221904L
+
+/* Best possible approximation of 256/log(2) as a 'long double'.  */
+#define LOG2_BY_256_INVERSE 369.329930467574632284140718336484387181L
+
+long double
+exp2l (long double x)
+{
+  /* exp2(x) = exp(x*log(2)).
+     If we would compute it like this, there would be rounding errors for
+     integer or near-integer values of x.  To avoid these, we inline the
+     algorithm for exp(), and the multiplication with log(2) cancels a
+     division by log(2).  */
+
+  if (isnanl (x))
+    return x;
+
+  if (x > (long double) LDBL_MAX_EXP)
+    /* x > LDBL_MAX_EXP
+       hence exp2(x) > 2^LDBL_MAX_EXP, overflows to Infinity.  */
+    return HUGE_VALL;
+
+  if (x < (long double) (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG))
+    /* x < (LDBL_MIN_EXP - 1 - LDBL_MANT_DIG)
+       hence exp2(x) < 2^(LDBL_MIN_EXP-1-LDBL_MANT_DIG),
+       underflows to zero.  */
+    return 0.0L;
+
+  /* Decompose x into
+       x = n + m/256 + y/log(2)
+     where
+       n is an integer,
+       m is an integer, -128 <= m <= 128,
+       y is a number, |y| <= log(2)/512 + epsilon = 0.00135...
+     Then
+       exp2(x) = 2^n * exp(m * log(2)/256) * exp(y)
+     The first factor is an ldexpl() call.
+     The second factor is a table lookup.
+     The third factor is computed
+     - either as sinh(y) + cosh(y)
+       where sinh(y) is computed through the power series:
+         sinh(y) = y + y^3/3! + y^5/5! + ...
+       and cosh(y) is computed as hypot(1, sinh(y)),
+     - or as exp(2*z) = (1 + tanh(z)) / (1 - tanh(z))
+       where z = y/2
+       and tanh(z) is computed through its power series:
+         tanh(z) = z
+                   - 1/3 * z^3
+                   + 2/15 * z^5
+                   - 17/315 * z^7
+                   + 62/2835 * z^9
+                   - 1382/155925 * z^11
+                   + 21844/6081075 * z^13
+                   - 929569/638512875 * z^15
+                   + ...
+       Since |z| <= log(2)/1024 < 0.0007, the relative error of the z^13 term
+       is < 0.0007^12 < 2^-120 <= 2^-LDBL_MANT_DIG, therefore we can truncate
+       the series after the z^11 term.  */
+
+  {
+    long double nm = roundl (x * 256.0L); /* = 256 * n + m */
+    long double z = (x * 256.0L - nm) * (LOG2_BY_256 * 0.5L);
+
+/* Coefficients of the power series for tanh(z).  */
+#define TANH_COEFF_1   1.0L
+#define TANH_COEFF_3  -0.333333333333333333333333333333333333334L
+#define TANH_COEFF_5   0.133333333333333333333333333333333333334L
+#define TANH_COEFF_7  -0.053968253968253968253968253968253968254L
+#define TANH_COEFF_9   0.0218694885361552028218694885361552028218L
+#define TANH_COEFF_11 -0.00886323552990219656886323552990219656886L
+#define TANH_COEFF_13  0.00359212803657248101692546136990581435026L
+#define TANH_COEFF_15 -0.00145583438705131826824948518070211191904L
+
+    long double z2 = z * z;
+    long double tanh_z =
+      (((((TANH_COEFF_11
+           * z2 + TANH_COEFF_9)
+          * z2 + TANH_COEFF_7)
+         * z2 + TANH_COEFF_5)
+        * z2 + TANH_COEFF_3)
+       * z2 + TANH_COEFF_1)
+      * z;
+
+    long double exp_y = (1.0L + tanh_z) / (1.0L - tanh_z);
+
+    int n = (int) roundl (nm * (1.0L / 256.0L));
+    int m = (int) nm - 256 * n;
+
+    return ldexpl (gl_expl_table[128 + m] * exp_y, n);
+  }
+}
+
+#endif