Mercurial > hg > octave-kai > gnulib-hg
annotate lib/regex.c @ 475:7e3e0dd559c7
(isnumber): Rename to is_number.
(parse_user_spec): Rename uses, too.
author | Jim Meyering <jim@meyering.net> |
---|---|
date | Sat, 05 Aug 1995 03:13:16 +0000 (1995-08-05) |
parents | 5e68a303679e |
children | 9fa9a76cc2e7 |
rev | line source |
---|---|
14 | 1 /* Extended regular expression matching and search library, |
80 | 2 version 0.12. |
14 | 3 (Implements POSIX draft P10003.2/D11.2, except for |
4 internationalization features.) | |
5 | |
440 | 6 Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. |
14 | 7 |
8 This program is free software; you can redistribute it and/or modify | |
9 it under the terms of the GNU General Public License as published by | |
10 the Free Software Foundation; either version 2, or (at your option) | |
11 any later version. | |
12 | |
13 This program is distributed in the hope that it will be useful, | |
14 but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 GNU General Public License for more details. | |
17 | |
18 You should have received a copy of the GNU General Public License | |
19 along with this program; if not, write to the Free Software | |
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
21 | |
22 /* AIX requires this to be the first thing in the file. */ | |
23 #if defined (_AIX) && !defined (REGEX_MALLOC) | |
24 #pragma alloca | |
25 #endif | |
26 | |
27 #define _GNU_SOURCE | |
28 | |
127 | 29 #ifdef HAVE_CONFIG_H |
30 #include <config.h> | |
31 #endif | |
32 | |
14 | 33 /* We need this for `regex.h', and perhaps for the Emacs include files. */ |
34 #include <sys/types.h> | |
35 | |
440 | 36 /* This is for other GNU distributions with internationalized messages. */ |
37 #if HAVE_LIBINTL_H || defined (_LIBC) | |
389 | 38 # include <libintl.h> |
39 #else | |
40 # define gettext(msgid) (msgid) | |
41 #endif | |
42 | |
14 | 43 /* The `emacs' switch turns on certain matching commands |
44 that make sense only in Emacs. */ | |
45 #ifdef emacs | |
46 | |
47 #include "lisp.h" | |
48 #include "buffer.h" | |
49 #include "syntax.h" | |
50 | |
51 #else /* not emacs */ | |
52 | |
415 | 53 /* If we are not linking with Emacs proper, |
54 we can't use the relocating allocator | |
55 even if config.h says that we can. */ | |
56 #undef REL_ALLOC | |
57 | |
440 | 58 #if defined (STDC_HEADERS) || defined (_LIBC) |
103 | 59 #include <stdlib.h> |
60 #else | |
61 char *malloc (); | |
62 char *realloc (); | |
63 #endif | |
64 | |
458 | 65 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. |
66 If nothing else has been done, use the method below. */ | |
67 #ifdef INHIBIT_STRING_HEADER | |
68 #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) | |
69 #if !defined (bzero) && !defined (bcopy) | |
70 #undef INHIBIT_STRING_HEADER | |
71 #endif | |
72 #endif | |
73 #endif | |
74 | |
75 /* This is the normal way of making sure we have a bcopy and a bzero. | |
76 This is used in most programs--a few other programs avoid this | |
77 by defining INHIBIT_STRING_HEADER. */ | |
217 | 78 #ifndef INHIBIT_STRING_HEADER |
461 | 79 #if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC) |
14 | 80 #include <string.h> |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
81 #ifndef bcmp |
14 | 82 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
83 #endif |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
84 #ifndef bcopy |
14 | 85 #define bcopy(s, d, n) memcpy ((d), (s), (n)) |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
86 #endif |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
87 #ifndef bzero |
14 | 88 #define bzero(s, n) memset ((s), 0, (n)) |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
89 #endif |
14 | 90 #else |
91 #include <strings.h> | |
92 #endif | |
217 | 93 #endif |
14 | 94 |
95 /* Define the syntax stuff for \<, \>, etc. */ | |
96 | |
97 /* This must be nonzero for the wordchar and notwordchar pattern | |
98 commands in re_match_2. */ | |
99 #ifndef Sword | |
100 #define Sword 1 | |
101 #endif | |
102 | |
389 | 103 #ifdef SWITCH_ENUM_BUG |
104 #define SWITCH_ENUM_CAST(x) ((int)(x)) | |
105 #else | |
106 #define SWITCH_ENUM_CAST(x) (x) | |
107 #endif | |
108 | |
14 | 109 #ifdef SYNTAX_TABLE |
110 | |
111 extern char *re_syntax_table; | |
112 | |
113 #else /* not SYNTAX_TABLE */ | |
114 | |
115 /* How many characters in the character set. */ | |
116 #define CHAR_SET_SIZE 256 | |
117 | |
118 static char re_syntax_table[CHAR_SET_SIZE]; | |
119 | |
120 static void | |
121 init_syntax_once () | |
122 { | |
123 register int c; | |
124 static int done = 0; | |
125 | |
126 if (done) | |
127 return; | |
128 | |
129 bzero (re_syntax_table, sizeof re_syntax_table); | |
130 | |
131 for (c = 'a'; c <= 'z'; c++) | |
132 re_syntax_table[c] = Sword; | |
133 | |
134 for (c = 'A'; c <= 'Z'; c++) | |
135 re_syntax_table[c] = Sword; | |
136 | |
137 for (c = '0'; c <= '9'; c++) | |
138 re_syntax_table[c] = Sword; | |
139 | |
140 re_syntax_table['_'] = Sword; | |
141 | |
142 done = 1; | |
143 } | |
144 | |
145 #endif /* not SYNTAX_TABLE */ | |
146 | |
147 #define SYNTAX(c) re_syntax_table[c] | |
148 | |
149 #endif /* not emacs */ | |
150 | |
151 /* Get the interface, including the syntax bits. */ | |
152 #include "regex.h" | |
153 | |
154 /* isalpha etc. are used for the character classes. */ | |
155 #include <ctype.h> | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
156 |
80 | 157 /* Jim Meyering writes: |
158 | |
159 "... Some ctype macros are valid only for character codes that | |
160 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | |
161 using /bin/cc or gcc but without giving an ansi option). So, all | |
162 ctype uses should be through macros like ISPRINT... If | |
163 STDC_HEADERS is defined, then autoconf has verified that the ctype | |
164 macros don't need to be guarded with references to isascii. ... | |
165 Defining isascii to 1 should let any compiler worth its salt | |
166 eliminate the && through constant folding." */ | |
175 | 167 |
168 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) | |
169 #define ISASCII(c) 1 | |
170 #else | |
171 #define ISASCII(c) isascii(c) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
172 #endif |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
173 |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
174 #ifdef isblank |
175 | 175 #define ISBLANK(c) (ISASCII (c) && isblank (c)) |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
176 #else |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
177 #define ISBLANK(c) ((c) == ' ' || (c) == '\t') |
14 | 178 #endif |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
179 #ifdef isgraph |
175 | 180 #define ISGRAPH(c) (ISASCII (c) && isgraph (c)) |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
181 #else |
175 | 182 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) |
14 | 183 #endif |
184 | |
175 | 185 #define ISPRINT(c) (ISASCII (c) && isprint (c)) |
186 #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) | |
187 #define ISALNUM(c) (ISASCII (c) && isalnum (c)) | |
188 #define ISALPHA(c) (ISASCII (c) && isalpha (c)) | |
189 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) | |
190 #define ISLOWER(c) (ISASCII (c) && islower (c)) | |
191 #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) | |
192 #define ISSPACE(c) (ISASCII (c) && isspace (c)) | |
193 #define ISUPPER(c) (ISASCII (c) && isupper (c)) | |
194 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
195 |
14 | 196 #ifndef NULL |
448 | 197 #define NULL (void *)0 |
14 | 198 #endif |
199 | |
200 /* We remove any previous definition of `SIGN_EXTEND_CHAR', | |
201 since ours (we hope) works properly with all combinations of | |
202 machines, compilers, `char' and `unsigned char' argument types. | |
203 (Per Bothner suggested the basic approach.) */ | |
204 #undef SIGN_EXTEND_CHAR | |
205 #if __STDC__ | |
206 #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
207 #else /* not __STDC__ */ |
14 | 208 /* As in Harbison and Steele. */ |
209 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) | |
210 #endif | |
211 | |
212 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | |
213 use `alloca' instead of `malloc'. This is because using malloc in | |
214 re_search* or re_match* could cause memory leaks when C-g is used in | |
215 Emacs; also, malloc is slower and causes storage fragmentation. On | |
216 the other hand, malloc is more portable, and easier to debug. | |
217 | |
218 Because we sometimes use alloca, some routines have to be macros, | |
219 not functions -- `alloca'-allocated space disappears at the end of the | |
220 function it is called in. */ | |
221 | |
222 #ifdef REGEX_MALLOC | |
223 | |
224 #define REGEX_ALLOCATE malloc | |
225 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) | |
405 | 226 #define REGEX_FREE free |
14 | 227 |
228 #else /* not REGEX_MALLOC */ | |
229 | |
230 /* Emacs already defines alloca, sometimes. */ | |
231 #ifndef alloca | |
232 | |
233 /* Make alloca work the best possible way. */ | |
234 #ifdef __GNUC__ | |
235 #define alloca __builtin_alloca | |
236 #else /* not __GNUC__ */ | |
237 #if HAVE_ALLOCA_H | |
238 #include <alloca.h> | |
239 #else /* not __GNUC__ or HAVE_ALLOCA_H */ | |
240 #ifndef _AIX /* Already did AIX, up at the top. */ | |
457
19d0cf487aa0
Alloca fix for ConvexOS-11.0.
Jim Meyering <jim@meyering.net>
parents:
453
diff
changeset
|
241 #if defined (__STDC__) && __STDC__ |
453
b7ccfad22df9
Use void* alloca, not char*. The latter lost on convexOS.
Jim Meyering <jim@meyering.net>
parents:
450
diff
changeset
|
242 void *alloca (); |
457
19d0cf487aa0
Alloca fix for ConvexOS-11.0.
Jim Meyering <jim@meyering.net>
parents:
453
diff
changeset
|
243 #else |
19d0cf487aa0
Alloca fix for ConvexOS-11.0.
Jim Meyering <jim@meyering.net>
parents:
453
diff
changeset
|
244 char *alloca (); |
19d0cf487aa0
Alloca fix for ConvexOS-11.0.
Jim Meyering <jim@meyering.net>
parents:
453
diff
changeset
|
245 #endif |
14 | 246 #endif /* not _AIX */ |
247 #endif /* not HAVE_ALLOCA_H */ | |
248 #endif /* not __GNUC__ */ | |
249 | |
250 #endif /* not alloca */ | |
251 | |
252 #define REGEX_ALLOCATE alloca | |
253 | |
254 /* Assumes a `char *destination' variable. */ | |
255 #define REGEX_REALLOCATE(source, osize, nsize) \ | |
256 (destination = (char *) alloca (nsize), \ | |
257 bcopy (source, destination, osize), \ | |
258 destination) | |
259 | |
405 | 260 /* No need to do anything to free, after alloca. */ |
440 | 261 #define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ |
405 | 262 |
14 | 263 #endif /* not REGEX_MALLOC */ |
264 | |
405 | 265 /* Define how to allocate the failure stack. */ |
266 | |
267 #ifdef REL_ALLOC | |
268 #define REGEX_ALLOCATE_STACK(size) \ | |
269 r_alloc (&failure_stack_ptr, (size)) | |
270 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | |
271 r_re_alloc (&failure_stack_ptr, (nsize)) | |
272 #define REGEX_FREE_STACK(ptr) \ | |
273 r_alloc_free (&failure_stack_ptr) | |
274 | |
275 #else /* not REL_ALLOC */ | |
276 | |
277 #ifdef REGEX_MALLOC | |
278 | |
279 #define REGEX_ALLOCATE_STACK malloc | |
280 #define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) | |
281 #define REGEX_FREE_STACK free | |
282 | |
283 #else /* not REGEX_MALLOC */ | |
284 | |
285 #define REGEX_ALLOCATE_STACK alloca | |
286 | |
287 #define REGEX_REALLOCATE_STACK(source, osize, nsize) \ | |
288 REGEX_REALLOCATE (source, osize, nsize) | |
289 /* No need to explicitly free anything. */ | |
290 #define REGEX_FREE_STACK(arg) | |
291 | |
292 #endif /* not REGEX_MALLOC */ | |
293 #endif /* not REL_ALLOC */ | |
294 | |
14 | 295 |
296 /* True if `size1' is non-NULL and PTR is pointing anywhere inside | |
297 `string1' or just past its end. This works if PTR is NULL, which is | |
298 a good thing. */ | |
299 #define FIRST_STRING_P(ptr) \ | |
300 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | |
301 | |
302 /* (Re)Allocate N items of type T using malloc, or fail. */ | |
303 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) | |
304 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | |
90 | 305 #define RETALLOC_IF(addr, n, t) \ |
306 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) | |
14 | 307 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) |
308 | |
309 #define BYTEWIDTH 8 /* In bits. */ | |
310 | |
311 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) | |
312 | |
198 | 313 #undef MAX |
314 #undef MIN | |
14 | 315 #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
316 #define MIN(a, b) ((a) < (b) ? (a) : (b)) | |
317 | |
318 typedef char boolean; | |
319 #define false 0 | |
320 #define true 1 | |
198 | 321 |
322 static int re_match_2_internal (); | |
14 | 323 |
324 /* These are the command codes that appear in compiled regular | |
325 expressions. Some opcodes are followed by argument bytes. A | |
326 command code can specify any interpretation whatsoever for its | |
332 | 327 arguments. Zero bytes may appear in the compiled regular expression. */ |
14 | 328 |
329 typedef enum | |
330 { | |
331 no_op = 0, | |
332 | |
389 | 333 /* Succeed right away--no more backtracking. */ |
334 succeed, | |
335 | |
14 | 336 /* Followed by one byte giving n, then by n literal bytes. */ |
332 | 337 exactn, |
14 | 338 |
339 /* Matches any (more or less) character. */ | |
340 anychar, | |
341 | |
342 /* Matches any one char belonging to specified set. First | |
343 following byte is number of bitmap bytes. Then come bytes | |
344 for a bitmap saying which chars are in. Bits in each byte | |
345 are ordered low-bit-first. A character is in the set if its | |
346 bit is 1. A character too large to have a bit in the map is | |
347 automatically not in the set. */ | |
348 charset, | |
349 | |
350 /* Same parameters as charset, but match any character that is | |
351 not one of those specified. */ | |
352 charset_not, | |
353 | |
354 /* Start remembering the text that is matched, for storing in a | |
355 register. Followed by one byte with the register number, in | |
356 the range 0 to one less than the pattern buffer's re_nsub | |
357 field. Then followed by one byte with the number of groups | |
358 inner to this one. (This last has to be part of the | |
359 start_memory only because we need it in the on_failure_jump | |
360 of re_match_2.) */ | |
361 start_memory, | |
362 | |
363 /* Stop remembering the text that is matched and store it in a | |
364 memory register. Followed by one byte with the register | |
365 number, in the range 0 to one less than `re_nsub' in the | |
366 pattern buffer, and one byte with the number of inner groups, | |
367 just like `start_memory'. (We need the number of inner | |
368 groups here because we don't have any easy way of finding the | |
369 corresponding start_memory when we're at a stop_memory.) */ | |
370 stop_memory, | |
371 | |
372 /* Match a duplicate of something remembered. Followed by one | |
373 byte containing the register number. */ | |
374 duplicate, | |
375 | |
376 /* Fail unless at beginning of line. */ | |
377 begline, | |
378 | |
379 /* Fail unless at end of line. */ | |
380 endline, | |
381 | |
382 /* Succeeds if at beginning of buffer (if emacs) or at beginning | |
383 of string to be matched (if not). */ | |
384 begbuf, | |
385 | |
386 /* Analogously, for end of buffer/string. */ | |
387 endbuf, | |
388 | |
389 /* Followed by two byte relative address to which to jump. */ | |
390 jump, | |
391 | |
392 /* Same as jump, but marks the end of an alternative. */ | |
393 jump_past_alt, | |
394 | |
395 /* Followed by two-byte relative address of place to resume at | |
396 in case of failure. */ | |
397 on_failure_jump, | |
398 | |
399 /* Like on_failure_jump, but pushes a placeholder instead of the | |
400 current string position when executed. */ | |
401 on_failure_keep_string_jump, | |
402 | |
403 /* Throw away latest failure point and then jump to following | |
404 two-byte relative address. */ | |
405 pop_failure_jump, | |
406 | |
407 /* Change to pop_failure_jump if know won't have to backtrack to | |
408 match; otherwise change to jump. This is used to jump | |
409 back to the beginning of a repeat. If what follows this jump | |
410 clearly won't match what the repeat does, such that we can be | |
411 sure that there is no use backtracking out of repetitions | |
412 already matched, then we change it to a pop_failure_jump. | |
413 Followed by two-byte address. */ | |
414 maybe_pop_jump, | |
415 | |
416 /* Jump to following two-byte address, and push a dummy failure | |
417 point. This failure point will be thrown away if an attempt | |
418 is made to use it for a failure. A `+' construct makes this | |
419 before the first repeat. Also used as an intermediary kind | |
420 of jump when compiling an alternative. */ | |
421 dummy_failure_jump, | |
422 | |
423 /* Push a dummy failure point and continue. Used at the end of | |
424 alternatives. */ | |
425 push_dummy_failure, | |
426 | |
427 /* Followed by two-byte relative address and two-byte number n. | |
428 After matching N times, jump to the address upon failure. */ | |
429 succeed_n, | |
430 | |
431 /* Followed by two-byte relative address, and two-byte number n. | |
432 Jump to the address N times, then fail. */ | |
433 jump_n, | |
434 | |
435 /* Set the following two-byte relative address to the | |
436 subsequent two-byte number. The address *includes* the two | |
437 bytes of number. */ | |
438 set_number_at, | |
439 | |
440 wordchar, /* Matches any word-constituent character. */ | |
441 notwordchar, /* Matches any char that is not a word-constituent. */ | |
442 | |
443 wordbeg, /* Succeeds if at word beginning. */ | |
444 wordend, /* Succeeds if at word end. */ | |
445 | |
446 wordbound, /* Succeeds if at a word boundary. */ | |
447 notwordbound /* Succeeds if not at a word boundary. */ | |
448 | |
449 #ifdef emacs | |
450 ,before_dot, /* Succeeds if before point. */ | |
451 at_dot, /* Succeeds if at point. */ | |
452 after_dot, /* Succeeds if after point. */ | |
453 | |
454 /* Matches any character whose syntax is specified. Followed by | |
455 a byte which contains a syntax code, e.g., Sword. */ | |
456 syntaxspec, | |
457 | |
458 /* Matches any character whose syntax is not that specified. */ | |
459 notsyntaxspec | |
460 #endif /* emacs */ | |
461 } re_opcode_t; | |
462 | |
463 /* Common operations on the compiled pattern. */ | |
464 | |
465 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | |
466 | |
467 #define STORE_NUMBER(destination, number) \ | |
468 do { \ | |
469 (destination)[0] = (number) & 0377; \ | |
470 (destination)[1] = (number) >> 8; \ | |
471 } while (0) | |
472 | |
473 /* Same as STORE_NUMBER, except increment DESTINATION to | |
474 the byte after where the number is stored. Therefore, DESTINATION | |
475 must be an lvalue. */ | |
476 | |
477 #define STORE_NUMBER_AND_INCR(destination, number) \ | |
478 do { \ | |
479 STORE_NUMBER (destination, number); \ | |
480 (destination) += 2; \ | |
481 } while (0) | |
482 | |
483 /* Put into DESTINATION a number stored in two contiguous bytes starting | |
484 at SOURCE. */ | |
485 | |
486 #define EXTRACT_NUMBER(destination, source) \ | |
487 do { \ | |
488 (destination) = *(source) & 0377; \ | |
489 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ | |
490 } while (0) | |
491 | |
492 #ifdef DEBUG | |
493 static void | |
494 extract_number (dest, source) | |
495 int *dest; | |
496 unsigned char *source; | |
497 { | |
498 int temp = SIGN_EXTEND_CHAR (*(source + 1)); | |
499 *dest = *source & 0377; | |
500 *dest += temp << 8; | |
501 } | |
502 | |
503 #ifndef EXTRACT_MACROS /* To debug the macros. */ | |
504 #undef EXTRACT_NUMBER | |
505 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | |
506 #endif /* not EXTRACT_MACROS */ | |
507 | |
508 #endif /* DEBUG */ | |
509 | |
510 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | |
511 SOURCE must be an lvalue. */ | |
512 | |
513 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | |
514 do { \ | |
515 EXTRACT_NUMBER (destination, source); \ | |
516 (source) += 2; \ | |
517 } while (0) | |
518 | |
519 #ifdef DEBUG | |
520 static void | |
521 extract_number_and_incr (destination, source) | |
522 int *destination; | |
523 unsigned char **source; | |
524 { | |
525 extract_number (destination, *source); | |
526 *source += 2; | |
527 } | |
528 | |
529 #ifndef EXTRACT_MACROS | |
530 #undef EXTRACT_NUMBER_AND_INCR | |
531 #define EXTRACT_NUMBER_AND_INCR(dest, src) \ | |
532 extract_number_and_incr (&dest, &src) | |
533 #endif /* not EXTRACT_MACROS */ | |
534 | |
535 #endif /* DEBUG */ | |
536 | |
537 /* If DEBUG is defined, Regex prints many voluminous messages about what | |
538 it is doing (if the variable `debug' is nonzero). If linked with the | |
539 main program in `iregex.c', you can enter patterns and strings | |
540 interactively. And if linked with the main program in `main.c' and | |
541 the other test files, you can run the already-written tests. */ | |
542 | |
543 #ifdef DEBUG | |
544 | |
545 /* We use standard I/O for debugging. */ | |
546 #include <stdio.h> | |
547 | |
548 /* It is useful to test things that ``must'' be true when debugging. */ | |
549 #include <assert.h> | |
550 | |
551 static int debug = 0; | |
552 | |
553 #define DEBUG_STATEMENT(e) e | |
554 #define DEBUG_PRINT1(x) if (debug) printf (x) | |
555 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | |
556 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
557 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) |
14 | 558 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ |
559 if (debug) print_partial_compiled_pattern (s, e) | |
560 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | |
561 if (debug) print_double_string (w, s1, sz1, s2, sz2) | |
562 | |
563 | |
564 /* Print the fastmap in human-readable form. */ | |
565 | |
566 void | |
567 print_fastmap (fastmap) | |
568 char *fastmap; | |
569 { | |
570 unsigned was_a_range = 0; | |
571 unsigned i = 0; | |
572 | |
573 while (i < (1 << BYTEWIDTH)) | |
574 { | |
575 if (fastmap[i++]) | |
576 { | |
577 was_a_range = 0; | |
389 | 578 putchar (i - 1); |
14 | 579 while (i < (1 << BYTEWIDTH) && fastmap[i]) |
580 { | |
581 was_a_range = 1; | |
582 i++; | |
583 } | |
584 if (was_a_range) | |
585 { | |
586 printf ("-"); | |
389 | 587 putchar (i - 1); |
14 | 588 } |
589 } | |
590 } | |
591 putchar ('\n'); | |
592 } | |
593 | |
594 | |
595 /* Print a compiled pattern string in human-readable form, starting at | |
596 the START pointer into it and ending just before the pointer END. */ | |
597 | |
598 void | |
599 print_partial_compiled_pattern (start, end) | |
600 unsigned char *start; | |
601 unsigned char *end; | |
602 { | |
603 int mcnt, mcnt2; | |
604 unsigned char *p = start; | |
605 unsigned char *pend = end; | |
606 | |
607 if (start == NULL) | |
608 { | |
609 printf ("(null)\n"); | |
610 return; | |
611 } | |
612 | |
613 /* Loop over pattern commands. */ | |
614 while (p < pend) | |
615 { | |
81 | 616 printf ("%d:\t", p - start); |
617 | |
14 | 618 switch ((re_opcode_t) *p++) |
619 { | |
620 case no_op: | |
621 printf ("/no_op"); | |
622 break; | |
623 | |
624 case exactn: | |
625 mcnt = *p++; | |
626 printf ("/exactn/%d", mcnt); | |
627 do | |
628 { | |
629 putchar ('/'); | |
389 | 630 putchar (*p++); |
14 | 631 } |
632 while (--mcnt); | |
633 break; | |
634 | |
635 case start_memory: | |
636 mcnt = *p++; | |
637 printf ("/start_memory/%d/%d", mcnt, *p++); | |
638 break; | |
639 | |
640 case stop_memory: | |
641 mcnt = *p++; | |
642 printf ("/stop_memory/%d/%d", mcnt, *p++); | |
643 break; | |
644 | |
645 case duplicate: | |
646 printf ("/duplicate/%d", *p++); | |
647 break; | |
648 | |
649 case anychar: | |
650 printf ("/anychar"); | |
651 break; | |
652 | |
653 case charset: | |
654 case charset_not: | |
655 { | |
81 | 656 register int c, last = -100; |
657 register int in_range = 0; | |
658 | |
659 printf ("/charset [%s", | |
660 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | |
14 | 661 |
662 assert (p + *p < pend); | |
663 | |
81 | 664 for (c = 0; c < 256; c++) |
665 if (c / 8 < *p | |
666 && (p[1 + (c/8)] & (1 << (c % 8)))) | |
667 { | |
668 /* Are we starting a range? */ | |
669 if (last + 1 == c && ! in_range) | |
670 { | |
671 putchar ('-'); | |
672 in_range = 1; | |
673 } | |
674 /* Have we broken a range? */ | |
675 else if (last + 1 != c && in_range) | |
14 | 676 { |
389 | 677 putchar (last); |
81 | 678 in_range = 0; |
679 } | |
14 | 680 |
81 | 681 if (! in_range) |
389 | 682 putchar (c); |
81 | 683 |
684 last = c; | |
14 | 685 } |
81 | 686 |
687 if (in_range) | |
389 | 688 putchar (last); |
81 | 689 |
690 putchar (']'); | |
691 | |
14 | 692 p += 1 + *p; |
693 } | |
81 | 694 break; |
14 | 695 |
696 case begline: | |
697 printf ("/begline"); | |
698 break; | |
699 | |
700 case endline: | |
701 printf ("/endline"); | |
702 break; | |
703 | |
704 case on_failure_jump: | |
705 extract_number_and_incr (&mcnt, &p); | |
81 | 706 printf ("/on_failure_jump to %d", p + mcnt - start); |
14 | 707 break; |
708 | |
709 case on_failure_keep_string_jump: | |
710 extract_number_and_incr (&mcnt, &p); | |
81 | 711 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); |
14 | 712 break; |
713 | |
714 case dummy_failure_jump: | |
715 extract_number_and_incr (&mcnt, &p); | |
81 | 716 printf ("/dummy_failure_jump to %d", p + mcnt - start); |
14 | 717 break; |
718 | |
719 case push_dummy_failure: | |
720 printf ("/push_dummy_failure"); | |
721 break; | |
722 | |
723 case maybe_pop_jump: | |
724 extract_number_and_incr (&mcnt, &p); | |
81 | 725 printf ("/maybe_pop_jump to %d", p + mcnt - start); |
14 | 726 break; |
727 | |
728 case pop_failure_jump: | |
729 extract_number_and_incr (&mcnt, &p); | |
81 | 730 printf ("/pop_failure_jump to %d", p + mcnt - start); |
14 | 731 break; |
732 | |
733 case jump_past_alt: | |
734 extract_number_and_incr (&mcnt, &p); | |
81 | 735 printf ("/jump_past_alt to %d", p + mcnt - start); |
14 | 736 break; |
737 | |
738 case jump: | |
739 extract_number_and_incr (&mcnt, &p); | |
81 | 740 printf ("/jump to %d", p + mcnt - start); |
14 | 741 break; |
742 | |
743 case succeed_n: | |
744 extract_number_and_incr (&mcnt, &p); | |
745 extract_number_and_incr (&mcnt2, &p); | |
81 | 746 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); |
14 | 747 break; |
748 | |
749 case jump_n: | |
750 extract_number_and_incr (&mcnt, &p); | |
751 extract_number_and_incr (&mcnt2, &p); | |
81 | 752 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); |
14 | 753 break; |
754 | |
755 case set_number_at: | |
756 extract_number_and_incr (&mcnt, &p); | |
757 extract_number_and_incr (&mcnt2, &p); | |
81 | 758 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); |
14 | 759 break; |
760 | |
761 case wordbound: | |
762 printf ("/wordbound"); | |
763 break; | |
764 | |
765 case notwordbound: | |
766 printf ("/notwordbound"); | |
767 break; | |
768 | |
769 case wordbeg: | |
770 printf ("/wordbeg"); | |
771 break; | |
772 | |
773 case wordend: | |
774 printf ("/wordend"); | |
775 | |
776 #ifdef emacs | |
777 case before_dot: | |
778 printf ("/before_dot"); | |
779 break; | |
780 | |
781 case at_dot: | |
782 printf ("/at_dot"); | |
783 break; | |
784 | |
785 case after_dot: | |
786 printf ("/after_dot"); | |
787 break; | |
788 | |
789 case syntaxspec: | |
790 printf ("/syntaxspec"); | |
791 mcnt = *p++; | |
792 printf ("/%d", mcnt); | |
793 break; | |
794 | |
795 case notsyntaxspec: | |
796 printf ("/notsyntaxspec"); | |
797 mcnt = *p++; | |
798 printf ("/%d", mcnt); | |
799 break; | |
800 #endif /* emacs */ | |
801 | |
802 case wordchar: | |
803 printf ("/wordchar"); | |
804 break; | |
805 | |
806 case notwordchar: | |
807 printf ("/notwordchar"); | |
808 break; | |
809 | |
810 case begbuf: | |
811 printf ("/begbuf"); | |
812 break; | |
813 | |
814 case endbuf: | |
815 printf ("/endbuf"); | |
816 break; | |
817 | |
818 default: | |
819 printf ("?%d", *(p-1)); | |
820 } | |
81 | 821 |
822 putchar ('\n'); | |
14 | 823 } |
81 | 824 |
825 printf ("%d:\tend of pattern.\n", p - start); | |
14 | 826 } |
827 | |
828 | |
829 void | |
830 print_compiled_pattern (bufp) | |
831 struct re_pattern_buffer *bufp; | |
832 { | |
833 unsigned char *buffer = bufp->buffer; | |
834 | |
835 print_partial_compiled_pattern (buffer, buffer + bufp->used); | |
399 | 836 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); |
14 | 837 |
838 if (bufp->fastmap_accurate && bufp->fastmap) | |
839 { | |
840 printf ("fastmap: "); | |
841 print_fastmap (bufp->fastmap); | |
842 } | |
843 | |
844 printf ("re_nsub: %d\t", bufp->re_nsub); | |
845 printf ("regs_alloc: %d\t", bufp->regs_allocated); | |
846 printf ("can_be_null: %d\t", bufp->can_be_null); | |
847 printf ("newline_anchor: %d\n", bufp->newline_anchor); | |
848 printf ("no_sub: %d\t", bufp->no_sub); | |
849 printf ("not_bol: %d\t", bufp->not_bol); | |
850 printf ("not_eol: %d\t", bufp->not_eol); | |
851 printf ("syntax: %d\n", bufp->syntax); | |
852 /* Perhaps we should print the translate table? */ | |
853 } | |
854 | |
855 | |
856 void | |
857 print_double_string (where, string1, size1, string2, size2) | |
858 const char *where; | |
859 const char *string1; | |
860 const char *string2; | |
861 int size1; | |
862 int size2; | |
863 { | |
864 unsigned this_char; | |
865 | |
866 if (where == NULL) | |
867 printf ("(null)"); | |
868 else | |
869 { | |
870 if (FIRST_STRING_P (where)) | |
871 { | |
872 for (this_char = where - string1; this_char < size1; this_char++) | |
389 | 873 putchar (string1[this_char]); |
14 | 874 |
875 where = string2; | |
876 } | |
877 | |
878 for (this_char = where - string2; this_char < size2; this_char++) | |
389 | 879 putchar (string2[this_char]); |
14 | 880 } |
881 } | |
882 | |
883 #else /* not DEBUG */ | |
884 | |
885 #undef assert | |
886 #define assert(e) | |
887 | |
888 #define DEBUG_STATEMENT(e) | |
889 #define DEBUG_PRINT1(x) | |
890 #define DEBUG_PRINT2(x1, x2) | |
891 #define DEBUG_PRINT3(x1, x2, x3) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
892 #define DEBUG_PRINT4(x1, x2, x3, x4) |
14 | 893 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) |
894 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | |
895 | |
896 #endif /* not DEBUG */ | |
897 | |
898 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | |
899 also be assigned to arbitrarily: each pattern buffer stores its own | |
900 syntax, so it can be changed between regex compilations. */ | |
389 | 901 /* This has no initializer because initialized variables in Emacs |
902 become read-only after dumping. */ | |
903 reg_syntax_t re_syntax_options; | |
14 | 904 |
905 | |
906 /* Specify the precise syntax of regexps for compilation. This provides | |
907 for compatibility for various utilities which historically have | |
908 different, incompatible syntaxes. | |
909 | |
910 The argument SYNTAX is a bit mask comprised of the various bits | |
911 defined in regex.h. We return the old syntax. */ | |
912 | |
913 reg_syntax_t | |
914 re_set_syntax (syntax) | |
915 reg_syntax_t syntax; | |
916 { | |
917 reg_syntax_t ret = re_syntax_options; | |
918 | |
919 re_syntax_options = syntax; | |
920 return ret; | |
921 } | |
922 | |
923 /* This table gives an error message for each of the error codes listed | |
389 | 924 in regex.h. Obviously the order here has to be same as there. |
925 POSIX doesn't require that we do anything for REG_NOERROR, | |
926 but why not be nice? */ | |
927 | |
928 static const char *re_error_msgid[] = | |
929 { "Success", /* REG_NOERROR */ | |
14 | 930 "No match", /* REG_NOMATCH */ |
931 "Invalid regular expression", /* REG_BADPAT */ | |
932 "Invalid collation character", /* REG_ECOLLATE */ | |
933 "Invalid character class name", /* REG_ECTYPE */ | |
934 "Trailing backslash", /* REG_EESCAPE */ | |
935 "Invalid back reference", /* REG_ESUBREG */ | |
936 "Unmatched [ or [^", /* REG_EBRACK */ | |
937 "Unmatched ( or \\(", /* REG_EPAREN */ | |
938 "Unmatched \\{", /* REG_EBRACE */ | |
939 "Invalid content of \\{\\}", /* REG_BADBR */ | |
940 "Invalid range end", /* REG_ERANGE */ | |
941 "Memory exhausted", /* REG_ESPACE */ | |
942 "Invalid preceding regular expression", /* REG_BADRPT */ | |
943 "Premature end of regular expression", /* REG_EEND */ | |
944 "Regular expression too big", /* REG_ESIZE */ | |
945 "Unmatched ) or \\)", /* REG_ERPAREN */ | |
946 }; | |
947 | |
90 | 948 /* Avoiding alloca during matching, to placate r_alloc. */ |
949 | |
217 | 950 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the |
90 | 951 searching and matching functions should not call alloca. On some |
952 systems, alloca is implemented in terms of malloc, and if we're | |
953 using the relocating allocator routines, then malloc could cause a | |
954 relocation, which might (if the strings being searched are in the | |
955 ralloc heap) shift the data out from underneath the regexp | |
103 | 956 routines. |
957 | |
318 | 958 Here's another reason to avoid allocation: Emacs |
959 processes input from X in a signal handler; processing X input may | |
103 | 960 call malloc; if input arrives while a matching routine is calling |
961 malloc, then we're scrod. But Emacs can't just block input while | |
962 calling matching routines; then we don't notice interrupts when | |
963 they come in. So, Emacs blocks input around all regexp calls | |
964 except the matching calls, which it leaves unprotected, in the | |
965 faith that they will not malloc. */ | |
90 | 966 |
967 /* Normally, this is fine. */ | |
968 #define MATCH_MAY_ALLOCATE | |
969 | |
405 | 970 /* When using GNU C, we are not REALLY using the C alloca, no matter |
971 what config.h may say. So don't take precautions for it. */ | |
972 #ifdef __GNUC__ | |
973 #undef C_ALLOCA | |
974 #endif | |
975 | |
318 | 976 /* The match routines may not allocate if (1) they would do it with malloc |
415 | 977 and (2) it's not safe for them to use malloc. |
978 Note that if REL_ALLOC is defined, matching would not use malloc for the | |
979 failure stack, but we would still use it for the register vectors; | |
980 so REL_ALLOC should not affect this. */ | |
981 #if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) | |
90 | 982 #undef MATCH_MAY_ALLOCATE |
983 #endif | |
984 | |
985 | |
986 /* Failure stack declarations and macros; both re_compile_fastmap and | |
987 re_match_2 use a failure stack. These have to be macros because of | |
405 | 988 REGEX_ALLOCATE_STACK. */ |
90 | 989 |
990 | |
991 /* Number of failure points for which to initially allocate space | |
992 when matching. If this number is exceeded, we allocate more | |
993 space, so it is not a hard limit. */ | |
994 #ifndef INIT_FAILURE_ALLOC | |
995 #define INIT_FAILURE_ALLOC 5 | |
996 #endif | |
997 | |
998 /* Roughly the maximum number of failure points on the stack. Would be | |
999 exactly that if always used MAX_FAILURE_SPACE each time we failed. | |
1000 This is a variable only so users of regex can assign to it; we never | |
1001 change it ourselves. */ | |
415 | 1002 #if defined (MATCH_MAY_ALLOCATE) |
1003 int re_max_failures = 200000; | |
405 | 1004 #else |
90 | 1005 int re_max_failures = 2000; |
405 | 1006 #endif |
90 | 1007 |
415 | 1008 union fail_stack_elt |
1009 { | |
1010 unsigned char *pointer; | |
1011 int integer; | |
1012 }; | |
1013 | |
1014 typedef union fail_stack_elt fail_stack_elt_t; | |
90 | 1015 |
1016 typedef struct | |
1017 { | |
1018 fail_stack_elt_t *stack; | |
1019 unsigned size; | |
1020 unsigned avail; /* Offset of next open position. */ | |
1021 } fail_stack_type; | |
1022 | |
1023 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) | |
1024 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) | |
1025 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) | |
1026 | |
1027 | |
440 | 1028 /* Define macros to initialize and free the failure stack. |
1029 Do `return -2' if the alloc fails. */ | |
90 | 1030 |
1031 #ifdef MATCH_MAY_ALLOCATE | |
1032 #define INIT_FAIL_STACK() \ | |
1033 do { \ | |
1034 fail_stack.stack = (fail_stack_elt_t *) \ | |
405 | 1035 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ |
90 | 1036 \ |
1037 if (fail_stack.stack == NULL) \ | |
1038 return -2; \ | |
1039 \ | |
1040 fail_stack.size = INIT_FAILURE_ALLOC; \ | |
1041 fail_stack.avail = 0; \ | |
1042 } while (0) | |
440 | 1043 |
1044 #define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) | |
90 | 1045 #else |
1046 #define INIT_FAIL_STACK() \ | |
1047 do { \ | |
1048 fail_stack.avail = 0; \ | |
1049 } while (0) | |
440 | 1050 |
1051 #define RESET_FAIL_STACK() | |
90 | 1052 #endif |
1053 | |
1054 | |
1055 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | |
1056 | |
1057 Return 1 if succeeds, and 0 if either ran out of memory | |
1058 allocating space for it or it was already too large. | |
1059 | |
405 | 1060 REGEX_REALLOCATE_STACK requires `destination' be declared. */ |
90 | 1061 |
1062 #define DOUBLE_FAIL_STACK(fail_stack) \ | |
1063 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | |
1064 ? 0 \ | |
1065 : ((fail_stack).stack = (fail_stack_elt_t *) \ | |
405 | 1066 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ |
90 | 1067 (fail_stack).size * sizeof (fail_stack_elt_t), \ |
1068 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | |
1069 \ | |
1070 (fail_stack).stack == NULL \ | |
1071 ? 0 \ | |
1072 : ((fail_stack).size <<= 1, \ | |
1073 1))) | |
1074 | |
1075 | |
415 | 1076 /* Push pointer POINTER on FAIL_STACK. |
90 | 1077 Return 1 if was able to do so and 0 if ran out of memory allocating |
1078 space to do so. */ | |
415 | 1079 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ |
90 | 1080 ((FAIL_STACK_FULL () \ |
415 | 1081 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ |
405 | 1082 ? 0 \ |
415 | 1083 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ |
405 | 1084 1)) |
1085 | |
1086 /* Push a pointer value onto the failure stack. | |
1087 Assumes the variable `fail_stack'. Probably should only | |
389 | 1088 be called from within `PUSH_FAILURE_POINT'. */ |
405 | 1089 #define PUSH_FAILURE_POINTER(item) \ |
415 | 1090 fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) |
405 | 1091 |
1092 /* This pushes an integer-valued item onto the failure stack. | |
1093 Assumes the variable `fail_stack'. Probably should only | |
1094 be called from within `PUSH_FAILURE_POINT'. */ | |
1095 #define PUSH_FAILURE_INT(item) \ | |
415 | 1096 fail_stack.stack[fail_stack.avail++].integer = (item) |
1097 | |
1098 /* Push a fail_stack_elt_t value onto the failure stack. | |
1099 Assumes the variable `fail_stack'. Probably should only | |
1100 be called from within `PUSH_FAILURE_POINT'. */ | |
1101 #define PUSH_FAILURE_ELT(item) \ | |
1102 fail_stack.stack[fail_stack.avail++] = (item) | |
1103 | |
1104 /* These three POP... operations complement the three PUSH... operations. | |
1105 All assume that `fail_stack' is nonempty. */ | |
1106 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer | |
1107 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer | |
1108 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] | |
90 | 1109 |
1110 /* Used to omit pushing failure point id's when we're not debugging. */ | |
1111 #ifdef DEBUG | |
405 | 1112 #define DEBUG_PUSH PUSH_FAILURE_INT |
1113 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () | |
90 | 1114 #else |
1115 #define DEBUG_PUSH(item) | |
1116 #define DEBUG_POP(item_addr) | |
1117 #endif | |
1118 | |
1119 | |
1120 /* Push the information about the state we will need | |
1121 if we ever fail back to it. | |
1122 | |
1123 Requires variables fail_stack, regstart, regend, reg_info, and | |
1124 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be | |
1125 declared. | |
1126 | |
1127 Does `return FAILURE_CODE' if runs out of memory. */ | |
1128 | |
1129 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ | |
1130 do { \ | |
1131 char *destination; \ | |
1132 /* Must be int, so when we don't save any registers, the arithmetic \ | |
1133 of 0 + -1 isn't done as unsigned. */ \ | |
1134 int this_reg; \ | |
1135 \ | |
1136 DEBUG_STATEMENT (failure_id++); \ | |
1137 DEBUG_STATEMENT (nfailure_points_pushed++); \ | |
1138 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | |
1139 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | |
1140 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | |
1141 \ | |
1142 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | |
1143 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | |
1144 \ | |
1145 /* Ensure we have enough space allocated for what we will push. */ \ | |
1146 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | |
1147 { \ | |
405 | 1148 if (!DOUBLE_FAIL_STACK (fail_stack)) \ |
90 | 1149 return failure_code; \ |
1150 \ | |
1151 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | |
1152 (fail_stack).size); \ | |
1153 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | |
1154 } \ | |
1155 \ | |
1156 /* Push the info, starting with the registers. */ \ | |
1157 DEBUG_PRINT1 ("\n"); \ | |
1158 \ | |
1159 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ | |
1160 this_reg++) \ | |
1161 { \ | |
1162 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ | |
1163 DEBUG_STATEMENT (num_regs_pushed++); \ | |
1164 \ | |
1165 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | |
405 | 1166 PUSH_FAILURE_POINTER (regstart[this_reg]); \ |
90 | 1167 \ |
1168 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | |
405 | 1169 PUSH_FAILURE_POINTER (regend[this_reg]); \ |
90 | 1170 \ |
1171 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ | |
1172 DEBUG_PRINT2 (" match_null=%d", \ | |
1173 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ | |
1174 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ | |
1175 DEBUG_PRINT2 (" matched_something=%d", \ | |
1176 MATCHED_SOMETHING (reg_info[this_reg])); \ | |
1177 DEBUG_PRINT2 (" ever_matched=%d", \ | |
1178 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ | |
1179 DEBUG_PRINT1 ("\n"); \ | |
415 | 1180 PUSH_FAILURE_ELT (reg_info[this_reg].word); \ |
90 | 1181 } \ |
1182 \ | |
1183 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ | |
405 | 1184 PUSH_FAILURE_INT (lowest_active_reg); \ |
90 | 1185 \ |
1186 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ | |
405 | 1187 PUSH_FAILURE_INT (highest_active_reg); \ |
90 | 1188 \ |
1189 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | |
1190 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | |
405 | 1191 PUSH_FAILURE_POINTER (pattern_place); \ |
90 | 1192 \ |
1193 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | |
1194 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | |
1195 size2); \ | |
1196 DEBUG_PRINT1 ("'\n"); \ | |
405 | 1197 PUSH_FAILURE_POINTER (string_place); \ |
90 | 1198 \ |
1199 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | |
1200 DEBUG_PUSH (failure_id); \ | |
1201 } while (0) | |
1202 | |
1203 /* This is the number of items that are pushed and popped on the stack | |
1204 for each register. */ | |
1205 #define NUM_REG_ITEMS 3 | |
1206 | |
1207 /* Individual items aside from the registers. */ | |
1208 #ifdef DEBUG | |
1209 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ | |
1210 #else | |
1211 #define NUM_NONREG_ITEMS 4 | |
1212 #endif | |
1213 | |
1214 /* We push at most this many items on the stack. */ | |
1215 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) | |
1216 | |
1217 /* We actually push this many items. */ | |
1218 #define NUM_FAILURE_ITEMS \ | |
1219 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ | |
1220 + NUM_NONREG_ITEMS) | |
1221 | |
1222 /* How many items can still be added to the stack without overflowing it. */ | |
1223 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) | |
1224 | |
1225 | |
1226 /* Pops what PUSH_FAIL_STACK pushes. | |
1227 | |
1228 We restore into the parameters, all of which should be lvalues: | |
1229 STR -- the saved data position. | |
1230 PAT -- the saved pattern position. | |
1231 LOW_REG, HIGH_REG -- the highest and lowest active registers. | |
1232 REGSTART, REGEND -- arrays of string positions. | |
1233 REG_INFO -- array of information about each subexpression. | |
1234 | |
1235 Also assumes the variables `fail_stack' and (if debugging), `bufp', | |
1236 `pend', `string1', `size1', `string2', and `size2'. */ | |
1237 | |
1238 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ | |
1239 { \ | |
1240 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | |
1241 int this_reg; \ | |
1242 const unsigned char *string_temp; \ | |
1243 \ | |
1244 assert (!FAIL_STACK_EMPTY ()); \ | |
1245 \ | |
1246 /* Remove failure points and point to how many regs pushed. */ \ | |
1247 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | |
1248 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | |
1249 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | |
1250 \ | |
1251 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | |
1252 \ | |
1253 DEBUG_POP (&failure_id); \ | |
1254 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | |
1255 \ | |
1256 /* If the saved string location is NULL, it came from an \ | |
1257 on_failure_keep_string_jump opcode, and we want to throw away the \ | |
1258 saved NULL, thus retaining our current position in the string. */ \ | |
405 | 1259 string_temp = POP_FAILURE_POINTER (); \ |
90 | 1260 if (string_temp != NULL) \ |
1261 str = (const char *) string_temp; \ | |
1262 \ | |
1263 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ | |
1264 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | |
1265 DEBUG_PRINT1 ("'\n"); \ | |
1266 \ | |
405 | 1267 pat = (unsigned char *) POP_FAILURE_POINTER (); \ |
90 | 1268 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ |
1269 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | |
1270 \ | |
1271 /* Restore register info. */ \ | |
405 | 1272 high_reg = (unsigned) POP_FAILURE_INT (); \ |
90 | 1273 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ |
1274 \ | |
405 | 1275 low_reg = (unsigned) POP_FAILURE_INT (); \ |
90 | 1276 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ |
1277 \ | |
1278 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | |
1279 { \ | |
1280 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | |
1281 \ | |
415 | 1282 reg_info[this_reg].word = POP_FAILURE_ELT (); \ |
90 | 1283 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ |
1284 \ | |
405 | 1285 regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
90 | 1286 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ |
1287 \ | |
405 | 1288 regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ |
90 | 1289 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ |
1290 } \ | |
1291 \ | |
389 | 1292 set_regs_matched_done = 0; \ |
90 | 1293 DEBUG_STATEMENT (nfailure_points_popped++); \ |
1294 } /* POP_FAILURE_POINT */ | |
1295 | |
1296 | |
1297 | |
1298 /* Structure for per-register (a.k.a. per-group) information. | |
415 | 1299 Other register information, such as the |
90 | 1300 starting and ending positions (which are addresses), and the list of |
1301 inner groups (which is a bits list) are maintained in separate | |
1302 variables. | |
1303 | |
1304 We are making a (strictly speaking) nonportable assumption here: that | |
1305 the compiler will pack our bit fields into something that fits into | |
1306 the type of `word', i.e., is something that fits into one item on the | |
1307 failure stack. */ | |
415 | 1308 |
90 | 1309 typedef union |
1310 { | |
1311 fail_stack_elt_t word; | |
1312 struct | |
1313 { | |
1314 /* This field is one if this group can match the empty string, | |
1315 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | |
1316 #define MATCH_NULL_UNSET_VALUE 3 | |
1317 unsigned match_null_string_p : 2; | |
1318 unsigned is_active : 1; | |
1319 unsigned matched_something : 1; | |
1320 unsigned ever_matched_something : 1; | |
1321 } bits; | |
1322 } register_info_type; | |
1323 | |
1324 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) | |
1325 #define IS_ACTIVE(R) ((R).bits.is_active) | |
1326 #define MATCHED_SOMETHING(R) ((R).bits.matched_something) | |
1327 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) | |
1328 | |
1329 | |
1330 /* Call this when have matched a real character; it sets `matched' flags | |
1331 for the subexpressions which we are currently inside. Also records | |
1332 that those subexprs have matched. */ | |
393
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1333 #define SET_REGS_MATCHED() \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1334 do \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1335 { \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1336 if (!set_regs_matched_done) \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1337 { \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1338 unsigned r; \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1339 set_regs_matched_done = 1; \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1340 for (r = lowest_active_reg; r <= highest_active_reg; r++) \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1341 { \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1342 MATCHED_SOMETHING (reg_info[r]) \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1343 = EVER_MATCHED_SOMETHING (reg_info[r]) \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1344 = 1; \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1345 } \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1346 } \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1347 } \ |
bbe02c28aff4
(SET_REGS_MATCHED): Enclose if-stmt in `do {...} while(0)'
Jim Meyering <jim@meyering.net>
parents:
389
diff
changeset
|
1348 while (0) |
90 | 1349 |
1350 /* Registers are set to a sentinel when they haven't yet matched. */ | |
389 | 1351 static char reg_unset_dummy; |
1352 #define REG_UNSET_VALUE (®_unset_dummy) | |
90 | 1353 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) |
1354 | |
14 | 1355 /* Subroutine declarations and macros for regex_compile. */ |
1356 | |
1357 static void store_op1 (), store_op2 (); | |
1358 static void insert_op1 (), insert_op2 (); | |
1359 static boolean at_begline_loc_p (), at_endline_loc_p (); | |
1360 static boolean group_in_compile_stack (); | |
1361 static reg_errcode_t compile_range (); | |
1362 | |
1363 /* Fetch the next character in the uncompiled pattern---translating it | |
1364 if necessary. Also cast from a signed character in the constant | |
1365 string passed to us by the user to an unsigned char that we can use | |
1366 as an array index (in, e.g., `translate'). */ | |
1367 #define PATFETCH(c) \ | |
1368 do {if (p == pend) return REG_EEND; \ | |
1369 c = (unsigned char) *p++; \ | |
1370 if (translate) c = translate[c]; \ | |
1371 } while (0) | |
1372 | |
1373 /* Fetch the next character in the uncompiled pattern, with no | |
1374 translation. */ | |
1375 #define PATFETCH_RAW(c) \ | |
1376 do {if (p == pend) return REG_EEND; \ | |
1377 c = (unsigned char) *p++; \ | |
1378 } while (0) | |
1379 | |
1380 /* Go backwards one character in the pattern. */ | |
1381 #define PATUNFETCH p-- | |
1382 | |
1383 | |
1384 /* If `translate' is non-null, return translate[D], else just D. We | |
1385 cast the subscript to translate because some data is declared as | |
1386 `char *', to avoid warnings when a string constant is passed. But | |
1387 when we use a character as a subscript we must make it unsigned. */ | |
1388 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) | |
1389 | |
1390 | |
1391 /* Macros for outputting the compiled pattern into `buffer'. */ | |
1392 | |
1393 /* If the buffer isn't allocated when it comes in, use this. */ | |
1394 #define INIT_BUF_SIZE 32 | |
1395 | |
1396 /* Make sure we have at least N more bytes of space in buffer. */ | |
1397 #define GET_BUFFER_SPACE(n) \ | |
1398 while (b - bufp->buffer + (n) > bufp->allocated) \ | |
1399 EXTEND_BUFFER () | |
1400 | |
1401 /* Make sure we have one more byte of buffer space and then add C to it. */ | |
1402 #define BUF_PUSH(c) \ | |
1403 do { \ | |
1404 GET_BUFFER_SPACE (1); \ | |
1405 *b++ = (unsigned char) (c); \ | |
1406 } while (0) | |
1407 | |
1408 | |
1409 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | |
1410 #define BUF_PUSH_2(c1, c2) \ | |
1411 do { \ | |
1412 GET_BUFFER_SPACE (2); \ | |
1413 *b++ = (unsigned char) (c1); \ | |
1414 *b++ = (unsigned char) (c2); \ | |
1415 } while (0) | |
1416 | |
1417 | |
1418 /* As with BUF_PUSH_2, except for three bytes. */ | |
1419 #define BUF_PUSH_3(c1, c2, c3) \ | |
1420 do { \ | |
1421 GET_BUFFER_SPACE (3); \ | |
1422 *b++ = (unsigned char) (c1); \ | |
1423 *b++ = (unsigned char) (c2); \ | |
1424 *b++ = (unsigned char) (c3); \ | |
1425 } while (0) | |
1426 | |
1427 | |
1428 /* Store a jump with opcode OP at LOC to location TO. We store a | |
1429 relative address offset by the three bytes the jump itself occupies. */ | |
1430 #define STORE_JUMP(op, loc, to) \ | |
1431 store_op1 (op, loc, (to) - (loc) - 3) | |
1432 | |
1433 /* Likewise, for a two-argument jump. */ | |
1434 #define STORE_JUMP2(op, loc, to, arg) \ | |
1435 store_op2 (op, loc, (to) - (loc) - 3, arg) | |
1436 | |
1437 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | |
1438 #define INSERT_JUMP(op, loc, to) \ | |
1439 insert_op1 (op, loc, (to) - (loc) - 3, b) | |
1440 | |
1441 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | |
1442 #define INSERT_JUMP2(op, loc, to, arg) \ | |
1443 insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | |
1444 | |
1445 | |
1446 /* This is not an arbitrary limit: the arguments which represent offsets | |
1447 into the pattern are two bytes long. So if 2^16 bytes turns out to | |
1448 be too small, many things would have to change. */ | |
1449 #define MAX_BUF_SIZE (1L << 16) | |
1450 | |
1451 | |
1452 /* Extend the buffer by twice its current size via realloc and | |
1453 reset the pointers that pointed into the old block to point to the | |
1454 correct places in the new one. If extending the buffer results in it | |
1455 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | |
1456 #define EXTEND_BUFFER() \ | |
1457 do { \ | |
1458 unsigned char *old_buffer = bufp->buffer; \ | |
1459 if (bufp->allocated == MAX_BUF_SIZE) \ | |
1460 return REG_ESIZE; \ | |
1461 bufp->allocated <<= 1; \ | |
1462 if (bufp->allocated > MAX_BUF_SIZE) \ | |
1463 bufp->allocated = MAX_BUF_SIZE; \ | |
1464 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | |
1465 if (bufp->buffer == NULL) \ | |
1466 return REG_ESPACE; \ | |
1467 /* If the buffer moved, move all the pointers into it. */ \ | |
1468 if (old_buffer != bufp->buffer) \ | |
1469 { \ | |
1470 b = (b - old_buffer) + bufp->buffer; \ | |
1471 begalt = (begalt - old_buffer) + bufp->buffer; \ | |
1472 if (fixup_alt_jump) \ | |
1473 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | |
1474 if (laststart) \ | |
1475 laststart = (laststart - old_buffer) + bufp->buffer; \ | |
1476 if (pending_exact) \ | |
1477 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | |
1478 } \ | |
1479 } while (0) | |
1480 | |
1481 | |
1482 /* Since we have one byte reserved for the register number argument to | |
1483 {start,stop}_memory, the maximum number of groups we can report | |
1484 things about is what fits in that byte. */ | |
1485 #define MAX_REGNUM 255 | |
1486 | |
1487 /* But patterns can have more than `MAX_REGNUM' registers. We just | |
1488 ignore the excess. */ | |
1489 typedef unsigned regnum_t; | |
1490 | |
1491 | |
1492 /* Macros for the compile stack. */ | |
1493 | |
1494 /* Since offsets can go either forwards or backwards, this type needs to | |
1495 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | |
1496 typedef int pattern_offset_t; | |
1497 | |
1498 typedef struct | |
1499 { | |
1500 pattern_offset_t begalt_offset; | |
1501 pattern_offset_t fixup_alt_jump; | |
1502 pattern_offset_t inner_group_offset; | |
1503 pattern_offset_t laststart_offset; | |
1504 regnum_t regnum; | |
1505 } compile_stack_elt_t; | |
1506 | |
1507 | |
1508 typedef struct | |
1509 { | |
1510 compile_stack_elt_t *stack; | |
1511 unsigned size; | |
1512 unsigned avail; /* Offset of next open position. */ | |
1513 } compile_stack_type; | |
1514 | |
1515 | |
1516 #define INIT_COMPILE_STACK_SIZE 32 | |
1517 | |
1518 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | |
1519 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | |
1520 | |
1521 /* The next available element. */ | |
1522 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | |
1523 | |
1524 | |
1525 /* Set the bit for character C in a list. */ | |
1526 #define SET_LIST_BIT(c) \ | |
1527 (b[((unsigned char) (c)) / BYTEWIDTH] \ | |
1528 |= 1 << (((unsigned char) c) % BYTEWIDTH)) | |
1529 | |
1530 | |
1531 /* Get the next unsigned number in the uncompiled pattern. */ | |
1532 #define GET_UNSIGNED_NUMBER(num) \ | |
1533 { if (p != pend) \ | |
1534 { \ | |
1535 PATFETCH (c); \ | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
1536 while (ISDIGIT (c)) \ |
14 | 1537 { \ |
1538 if (num < 0) \ | |
1539 num = 0; \ | |
1540 num = num * 10 + c - '0'; \ | |
1541 if (p == pend) \ | |
1542 break; \ | |
1543 PATFETCH (c); \ | |
1544 } \ | |
1545 } \ | |
1546 } | |
1547 | |
1548 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | |
1549 | |
1550 #define IS_CHAR_CLASS(string) \ | |
1551 (STREQ (string, "alpha") || STREQ (string, "upper") \ | |
1552 || STREQ (string, "lower") || STREQ (string, "digit") \ | |
1553 || STREQ (string, "alnum") || STREQ (string, "xdigit") \ | |
1554 || STREQ (string, "space") || STREQ (string, "print") \ | |
1555 || STREQ (string, "punct") || STREQ (string, "graph") \ | |
1556 || STREQ (string, "cntrl") || STREQ (string, "blank")) | |
1557 | |
405 | 1558 #ifndef MATCH_MAY_ALLOCATE |
1559 | |
1560 /* If we cannot allocate large objects within re_match_2_internal, | |
1561 we make the fail stack and register vectors global. | |
1562 The fail stack, we grow to the maximum size when a regexp | |
1563 is compiled. | |
1564 The register vectors, we adjust in size each time we | |
1565 compile a regexp, according to the number of registers it needs. */ | |
1566 | |
1567 static fail_stack_type fail_stack; | |
1568 | |
1569 /* Size with which the following vectors are currently allocated. | |
1570 That is so we can make them bigger as needed, | |
1571 but never make them smaller. */ | |
1572 static int regs_allocated_size; | |
1573 | |
1574 static const char ** regstart, ** regend; | |
1575 static const char ** old_regstart, ** old_regend; | |
1576 static const char **best_regstart, **best_regend; | |
1577 static register_info_type *reg_info; | |
1578 static const char **reg_dummy; | |
1579 static register_info_type *reg_info_dummy; | |
1580 | |
1581 /* Make the register vectors big enough for NUM_REGS registers, | |
1582 but don't make them smaller. */ | |
1583 | |
1584 static | |
1585 regex_grow_registers (num_regs) | |
1586 int num_regs; | |
1587 { | |
1588 if (num_regs > regs_allocated_size) | |
1589 { | |
1590 RETALLOC_IF (regstart, num_regs, const char *); | |
1591 RETALLOC_IF (regend, num_regs, const char *); | |
1592 RETALLOC_IF (old_regstart, num_regs, const char *); | |
1593 RETALLOC_IF (old_regend, num_regs, const char *); | |
1594 RETALLOC_IF (best_regstart, num_regs, const char *); | |
1595 RETALLOC_IF (best_regend, num_regs, const char *); | |
1596 RETALLOC_IF (reg_info, num_regs, register_info_type); | |
1597 RETALLOC_IF (reg_dummy, num_regs, const char *); | |
1598 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); | |
1599 | |
1600 regs_allocated_size = num_regs; | |
1601 } | |
1602 } | |
1603 | |
1604 #endif /* not MATCH_MAY_ALLOCATE */ | |
1605 | |
14 | 1606 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. |
1607 Returns one of error codes defined in `regex.h', or zero for success. | |
1608 | |
1609 Assumes the `allocated' (and perhaps `buffer') and `translate' | |
1610 fields are set in BUFP on entry. | |
1611 | |
1612 If it succeeds, results are put in BUFP (if it returns an error, the | |
1613 contents of BUFP are undefined): | |
1614 `buffer' is the compiled pattern; | |
1615 `syntax' is set to SYNTAX; | |
1616 `used' is set to the length of the compiled pattern; | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
1617 `fastmap_accurate' is zero; |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
1618 `re_nsub' is the number of subexpressions in PATTERN; |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
1619 `not_bol' and `not_eol' are zero; |
14 | 1620 |
1621 The `fastmap' and `newline_anchor' fields are neither | |
1622 examined nor set. */ | |
1623 | |
318 | 1624 /* Return, freeing storage we allocated. */ |
1625 #define FREE_STACK_RETURN(value) \ | |
1626 return (free (compile_stack.stack), value) | |
1627 | |
14 | 1628 static reg_errcode_t |
1629 regex_compile (pattern, size, syntax, bufp) | |
1630 const char *pattern; | |
1631 int size; | |
1632 reg_syntax_t syntax; | |
1633 struct re_pattern_buffer *bufp; | |
1634 { | |
1635 /* We fetch characters from PATTERN here. Even though PATTERN is | |
1636 `char *' (i.e., signed), we declare these variables as unsigned, so | |
1637 they can be reliably used as array indices. */ | |
1638 register unsigned char c, c1; | |
1639 | |
198 | 1640 /* A random temporary spot in PATTERN. */ |
14 | 1641 const char *p1; |
1642 | |
1643 /* Points to the end of the buffer, where we should append. */ | |
1644 register unsigned char *b; | |
1645 | |
1646 /* Keeps track of unclosed groups. */ | |
1647 compile_stack_type compile_stack; | |
1648 | |
1649 /* Points to the current (ending) position in the pattern. */ | |
1650 const char *p = pattern; | |
1651 const char *pend = pattern + size; | |
1652 | |
1653 /* How to translate the characters in the pattern. */ | |
1654 char *translate = bufp->translate; | |
1655 | |
1656 /* Address of the count-byte of the most recently inserted `exactn' | |
1657 command. This makes it possible to tell if a new exact-match | |
1658 character can be added to that command or if the character requires | |
1659 a new `exactn' command. */ | |
1660 unsigned char *pending_exact = 0; | |
1661 | |
1662 /* Address of start of the most recently finished expression. | |
1663 This tells, e.g., postfix * where to find the start of its | |
1664 operand. Reset at the beginning of groups and alternatives. */ | |
1665 unsigned char *laststart = 0; | |
1666 | |
1667 /* Address of beginning of regexp, or inside of last group. */ | |
1668 unsigned char *begalt; | |
1669 | |
1670 /* Place in the uncompiled pattern (i.e., the {) to | |
1671 which to go back if the interval is invalid. */ | |
1672 const char *beg_interval; | |
1673 | |
1674 /* Address of the place where a forward jump should go to the end of | |
1675 the containing expression. Each alternative of an `or' -- except the | |
1676 last -- ends with a forward jump of this sort. */ | |
1677 unsigned char *fixup_alt_jump = 0; | |
1678 | |
1679 /* Counts open-groups as they are encountered. Remembered for the | |
1680 matching close-group on the compile stack, so the same register | |
1681 number is put in the stop_memory as the start_memory. */ | |
1682 regnum_t regnum = 0; | |
1683 | |
1684 #ifdef DEBUG | |
1685 DEBUG_PRINT1 ("\nCompiling pattern: "); | |
1686 if (debug) | |
1687 { | |
1688 unsigned debug_count; | |
1689 | |
1690 for (debug_count = 0; debug_count < size; debug_count++) | |
389 | 1691 putchar (pattern[debug_count]); |
14 | 1692 putchar ('\n'); |
1693 } | |
1694 #endif /* DEBUG */ | |
1695 | |
1696 /* Initialize the compile stack. */ | |
1697 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); | |
1698 if (compile_stack.stack == NULL) | |
1699 return REG_ESPACE; | |
1700 | |
1701 compile_stack.size = INIT_COMPILE_STACK_SIZE; | |
1702 compile_stack.avail = 0; | |
1703 | |
1704 /* Initialize the pattern buffer. */ | |
1705 bufp->syntax = syntax; | |
1706 bufp->fastmap_accurate = 0; | |
1707 bufp->not_bol = bufp->not_eol = 0; | |
1708 | |
1709 /* Set `used' to zero, so that if we return an error, the pattern | |
1710 printer (for debugging) will think there's no pattern. We reset it | |
1711 at the end. */ | |
1712 bufp->used = 0; | |
1713 | |
1714 /* Always count groups, whether or not bufp->no_sub is set. */ | |
1715 bufp->re_nsub = 0; | |
1716 | |
1717 #if !defined (emacs) && !defined (SYNTAX_TABLE) | |
1718 /* Initialize the syntax table. */ | |
1719 init_syntax_once (); | |
1720 #endif | |
1721 | |
1722 if (bufp->allocated == 0) | |
1723 { | |
1724 if (bufp->buffer) | |
1725 { /* If zero allocated, but buffer is non-null, try to realloc | |
1726 enough space. This loses if buffer's address is bogus, but | |
1727 that is the user's responsibility. */ | |
1728 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | |
1729 } | |
1730 else | |
1731 { /* Caller did not allocate a buffer. Do it for them. */ | |
1732 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | |
1733 } | |
318 | 1734 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); |
14 | 1735 |
1736 bufp->allocated = INIT_BUF_SIZE; | |
1737 } | |
1738 | |
1739 begalt = b = bufp->buffer; | |
1740 | |
1741 /* Loop through the uncompiled pattern until we're at the end. */ | |
1742 while (p != pend) | |
1743 { | |
1744 PATFETCH (c); | |
1745 | |
1746 switch (c) | |
1747 { | |
1748 case '^': | |
1749 { | |
1750 if ( /* If at start of pattern, it's an operator. */ | |
1751 p == pattern + 1 | |
1752 /* If context independent, it's an operator. */ | |
1753 || syntax & RE_CONTEXT_INDEP_ANCHORS | |
1754 /* Otherwise, depends on what's come before. */ | |
1755 || at_begline_loc_p (pattern, p, syntax)) | |
1756 BUF_PUSH (begline); | |
1757 else | |
1758 goto normal_char; | |
1759 } | |
1760 break; | |
1761 | |
1762 | |
1763 case '$': | |
1764 { | |
1765 if ( /* If at end of pattern, it's an operator. */ | |
1766 p == pend | |
1767 /* If context independent, it's an operator. */ | |
1768 || syntax & RE_CONTEXT_INDEP_ANCHORS | |
1769 /* Otherwise, depends on what's next. */ | |
1770 || at_endline_loc_p (p, pend, syntax)) | |
1771 BUF_PUSH (endline); | |
1772 else | |
1773 goto normal_char; | |
1774 } | |
1775 break; | |
1776 | |
1777 | |
1778 case '+': | |
1779 case '?': | |
1780 if ((syntax & RE_BK_PLUS_QM) | |
1781 || (syntax & RE_LIMITED_OPS)) | |
1782 goto normal_char; | |
1783 handle_plus: | |
1784 case '*': | |
1785 /* If there is no previous pattern... */ | |
1786 if (!laststart) | |
1787 { | |
1788 if (syntax & RE_CONTEXT_INVALID_OPS) | |
318 | 1789 FREE_STACK_RETURN (REG_BADRPT); |
14 | 1790 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) |
1791 goto normal_char; | |
1792 } | |
1793 | |
1794 { | |
1795 /* Are we optimizing this jump? */ | |
1796 boolean keep_string_p = false; | |
1797 | |
1798 /* 1 means zero (many) matches is allowed. */ | |
1799 char zero_times_ok = 0, many_times_ok = 0; | |
1800 | |
1801 /* If there is a sequence of repetition chars, collapse it | |
1802 down to just one (the right one). We can't combine | |
1803 interval operators with these because of, e.g., `a{2}*', | |
1804 which should only match an even number of `a's. */ | |
1805 | |
1806 for (;;) | |
1807 { | |
1808 zero_times_ok |= c != '+'; | |
1809 many_times_ok |= c != '?'; | |
1810 | |
1811 if (p == pend) | |
1812 break; | |
1813 | |
1814 PATFETCH (c); | |
1815 | |
1816 if (c == '*' | |
1817 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | |
1818 ; | |
1819 | |
1820 else if (syntax & RE_BK_PLUS_QM && c == '\\') | |
1821 { | |
318 | 1822 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
14 | 1823 |
1824 PATFETCH (c1); | |
1825 if (!(c1 == '+' || c1 == '?')) | |
1826 { | |
1827 PATUNFETCH; | |
1828 PATUNFETCH; | |
1829 break; | |
1830 } | |
1831 | |
1832 c = c1; | |
1833 } | |
1834 else | |
1835 { | |
1836 PATUNFETCH; | |
1837 break; | |
1838 } | |
1839 | |
1840 /* If we get here, we found another repeat character. */ | |
1841 } | |
1842 | |
1843 /* Star, etc. applied to an empty pattern is equivalent | |
1844 to an empty pattern. */ | |
1845 if (!laststart) | |
1846 break; | |
1847 | |
1848 /* Now we know whether or not zero matches is allowed | |
1849 and also whether or not two or more matches is allowed. */ | |
1850 if (many_times_ok) | |
1851 { /* More than one repetition is allowed, so put in at the | |
1852 end a backward relative jump from `b' to before the next | |
1853 jump we're going to put in below (which jumps from | |
1854 laststart to after this jump). | |
1855 | |
1856 But if we are at the `*' in the exact sequence `.*\n', | |
1857 insert an unconditional jump backwards to the ., | |
1858 instead of the beginning of the loop. This way we only | |
1859 push a failure point once, instead of every time | |
1860 through the loop. */ | |
1861 assert (p - 1 > pattern); | |
1862 | |
1863 /* Allocate the space for the jump. */ | |
1864 GET_BUFFER_SPACE (3); | |
1865 | |
1866 /* We know we are not at the first character of the pattern, | |
1867 because laststart was nonzero. And we've already | |
1868 incremented `p', by the way, to be the character after | |
1869 the `*'. Do we have to do something analogous here | |
1870 for null bytes, because of RE_DOT_NOT_NULL? */ | |
1871 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | |
80 | 1872 && zero_times_ok |
14 | 1873 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') |
1874 && !(syntax & RE_DOT_NEWLINE)) | |
1875 { /* We have .*\n. */ | |
1876 STORE_JUMP (jump, b, laststart); | |
1877 keep_string_p = true; | |
1878 } | |
1879 else | |
1880 /* Anything else. */ | |
1881 STORE_JUMP (maybe_pop_jump, b, laststart - 3); | |
1882 | |
1883 /* We've added more stuff to the buffer. */ | |
1884 b += 3; | |
1885 } | |
1886 | |
1887 /* On failure, jump from laststart to b + 3, which will be the | |
1888 end of the buffer after this jump is inserted. */ | |
1889 GET_BUFFER_SPACE (3); | |
1890 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | |
1891 : on_failure_jump, | |
1892 laststart, b + 3); | |
1893 pending_exact = 0; | |
1894 b += 3; | |
1895 | |
1896 if (!zero_times_ok) | |
1897 { | |
1898 /* At least one repetition is required, so insert a | |
1899 `dummy_failure_jump' before the initial | |
1900 `on_failure_jump' instruction of the loop. This | |
1901 effects a skip over that instruction the first time | |
1902 we hit that loop. */ | |
1903 GET_BUFFER_SPACE (3); | |
1904 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | |
1905 b += 3; | |
1906 } | |
1907 } | |
1908 break; | |
1909 | |
1910 | |
1911 case '.': | |
1912 laststart = b; | |
1913 BUF_PUSH (anychar); | |
1914 break; | |
1915 | |
1916 | |
1917 case '[': | |
1918 { | |
1919 boolean had_char_class = false; | |
1920 | |
318 | 1921 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
14 | 1922 |
1923 /* Ensure that we have enough space to push a charset: the | |
1924 opcode, the length count, and the bitset; 34 bytes in all. */ | |
1925 GET_BUFFER_SPACE (34); | |
1926 | |
1927 laststart = b; | |
1928 | |
1929 /* We test `*p == '^' twice, instead of using an if | |
1930 statement, so we only need one BUF_PUSH. */ | |
1931 BUF_PUSH (*p == '^' ? charset_not : charset); | |
1932 if (*p == '^') | |
1933 p++; | |
1934 | |
1935 /* Remember the first position in the bracket expression. */ | |
1936 p1 = p; | |
1937 | |
1938 /* Push the number of bytes in the bitmap. */ | |
1939 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | |
1940 | |
1941 /* Clear the whole map. */ | |
1942 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); | |
1943 | |
1944 /* charset_not matches newline according to a syntax bit. */ | |
1945 if ((re_opcode_t) b[-2] == charset_not | |
1946 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | |
1947 SET_LIST_BIT ('\n'); | |
1948 | |
1949 /* Read in characters and ranges, setting map bits. */ | |
1950 for (;;) | |
1951 { | |
318 | 1952 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
14 | 1953 |
1954 PATFETCH (c); | |
1955 | |
1956 /* \ might escape characters inside [...] and [^...]. */ | |
1957 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | |
1958 { | |
318 | 1959 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
14 | 1960 |
1961 PATFETCH (c1); | |
1962 SET_LIST_BIT (c1); | |
1963 continue; | |
1964 } | |
1965 | |
1966 /* Could be the end of the bracket expression. If it's | |
1967 not (i.e., when the bracket expression is `[]' so | |
1968 far), the ']' character bit gets set way below. */ | |
1969 if (c == ']' && p != p1 + 1) | |
1970 break; | |
1971 | |
1972 /* Look ahead to see if it's a range when the last thing | |
1973 was a character class. */ | |
1974 if (had_char_class && c == '-' && *p != ']') | |
318 | 1975 FREE_STACK_RETURN (REG_ERANGE); |
14 | 1976 |
1977 /* Look ahead to see if it's a range when the last thing | |
1978 was a character: if this is a hyphen not at the | |
1979 beginning or the end of a list, then it's the range | |
1980 operator. */ | |
1981 if (c == '-' | |
1982 && !(p - 2 >= pattern && p[-2] == '[') | |
1983 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | |
1984 && *p != ']') | |
1985 { | |
1986 reg_errcode_t ret | |
1987 = compile_range (&p, pend, translate, syntax, b); | |
318 | 1988 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
14 | 1989 } |
1990 | |
1991 else if (p[0] == '-' && p[1] != ']') | |
1992 { /* This handles ranges made up of characters only. */ | |
1993 reg_errcode_t ret; | |
1994 | |
1995 /* Move past the `-'. */ | |
1996 PATFETCH (c1); | |
1997 | |
1998 ret = compile_range (&p, pend, translate, syntax, b); | |
318 | 1999 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); |
14 | 2000 } |
2001 | |
2002 /* See if we're at the beginning of a possible character | |
2003 class. */ | |
2004 | |
2005 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | |
2006 { /* Leave room for the null. */ | |
2007 char str[CHAR_CLASS_MAX_LENGTH + 1]; | |
2008 | |
2009 PATFETCH (c); | |
2010 c1 = 0; | |
2011 | |
2012 /* If pattern is `[[:'. */ | |
318 | 2013 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
14 | 2014 |
2015 for (;;) | |
2016 { | |
2017 PATFETCH (c); | |
2018 if (c == ':' || c == ']' || p == pend | |
2019 || c1 == CHAR_CLASS_MAX_LENGTH) | |
2020 break; | |
2021 str[c1++] = c; | |
2022 } | |
2023 str[c1] = '\0'; | |
2024 | |
2025 /* If isn't a word bracketed by `[:' and:`]': | |
2026 undo the ending character, the letters, and leave | |
2027 the leading `:' and `[' (but set bits for them). */ | |
2028 if (c == ':' && *p == ']') | |
2029 { | |
2030 int ch; | |
2031 boolean is_alnum = STREQ (str, "alnum"); | |
2032 boolean is_alpha = STREQ (str, "alpha"); | |
2033 boolean is_blank = STREQ (str, "blank"); | |
2034 boolean is_cntrl = STREQ (str, "cntrl"); | |
2035 boolean is_digit = STREQ (str, "digit"); | |
2036 boolean is_graph = STREQ (str, "graph"); | |
2037 boolean is_lower = STREQ (str, "lower"); | |
2038 boolean is_print = STREQ (str, "print"); | |
2039 boolean is_punct = STREQ (str, "punct"); | |
2040 boolean is_space = STREQ (str, "space"); | |
2041 boolean is_upper = STREQ (str, "upper"); | |
2042 boolean is_xdigit = STREQ (str, "xdigit"); | |
2043 | |
318 | 2044 if (!IS_CHAR_CLASS (str)) |
2045 FREE_STACK_RETURN (REG_ECTYPE); | |
14 | 2046 |
2047 /* Throw away the ] at the end of the character | |
2048 class. */ | |
2049 PATFETCH (c); | |
2050 | |
318 | 2051 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); |
14 | 2052 |
2053 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | |
2054 { | |
318 | 2055 /* This was split into 3 if's to |
2056 avoid an arbitrary limit in some compiler. */ | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2057 if ( (is_alnum && ISALNUM (ch)) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2058 || (is_alpha && ISALPHA (ch)) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2059 || (is_blank && ISBLANK (ch)) |
318 | 2060 || (is_cntrl && ISCNTRL (ch))) |
2061 SET_LIST_BIT (ch); | |
2062 if ( (is_digit && ISDIGIT (ch)) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2063 || (is_graph && ISGRAPH (ch)) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2064 || (is_lower && ISLOWER (ch)) |
318 | 2065 || (is_print && ISPRINT (ch))) |
2066 SET_LIST_BIT (ch); | |
2067 if ( (is_punct && ISPUNCT (ch)) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2068 || (is_space && ISSPACE (ch)) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2069 || (is_upper && ISUPPER (ch)) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2070 || (is_xdigit && ISXDIGIT (ch))) |
318 | 2071 SET_LIST_BIT (ch); |
14 | 2072 } |
2073 had_char_class = true; | |
2074 } | |
2075 else | |
2076 { | |
2077 c1++; | |
2078 while (c1--) | |
2079 PATUNFETCH; | |
2080 SET_LIST_BIT ('['); | |
2081 SET_LIST_BIT (':'); | |
2082 had_char_class = false; | |
2083 } | |
2084 } | |
2085 else | |
2086 { | |
2087 had_char_class = false; | |
2088 SET_LIST_BIT (c); | |
2089 } | |
2090 } | |
2091 | |
2092 /* Discard any (non)matching list bytes that are all 0 at the | |
2093 end of the map. Decrease the map-length byte too. */ | |
2094 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | |
2095 b[-1]--; | |
2096 b += b[-1]; | |
2097 } | |
2098 break; | |
2099 | |
2100 | |
2101 case '(': | |
2102 if (syntax & RE_NO_BK_PARENS) | |
2103 goto handle_open; | |
2104 else | |
2105 goto normal_char; | |
2106 | |
2107 | |
2108 case ')': | |
2109 if (syntax & RE_NO_BK_PARENS) | |
2110 goto handle_close; | |
2111 else | |
2112 goto normal_char; | |
2113 | |
2114 | |
2115 case '\n': | |
2116 if (syntax & RE_NEWLINE_ALT) | |
2117 goto handle_alt; | |
2118 else | |
2119 goto normal_char; | |
2120 | |
2121 | |
2122 case '|': | |
2123 if (syntax & RE_NO_BK_VBAR) | |
2124 goto handle_alt; | |
2125 else | |
2126 goto normal_char; | |
2127 | |
2128 | |
2129 case '{': | |
2130 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | |
2131 goto handle_interval; | |
2132 else | |
2133 goto normal_char; | |
2134 | |
2135 | |
2136 case '\\': | |
318 | 2137 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); |
14 | 2138 |
2139 /* Do not translate the character after the \, so that we can | |
2140 distinguish, e.g., \B from \b, even if we normally would | |
2141 translate, e.g., B to b. */ | |
2142 PATFETCH_RAW (c); | |
2143 | |
2144 switch (c) | |
2145 { | |
2146 case '(': | |
2147 if (syntax & RE_NO_BK_PARENS) | |
2148 goto normal_backslash; | |
2149 | |
2150 handle_open: | |
2151 bufp->re_nsub++; | |
2152 regnum++; | |
2153 | |
2154 if (COMPILE_STACK_FULL) | |
2155 { | |
2156 RETALLOC (compile_stack.stack, compile_stack.size << 1, | |
2157 compile_stack_elt_t); | |
2158 if (compile_stack.stack == NULL) return REG_ESPACE; | |
2159 | |
2160 compile_stack.size <<= 1; | |
2161 } | |
2162 | |
2163 /* These are the values to restore when we hit end of this | |
2164 group. They are all relative offsets, so that if the | |
2165 whole pattern moves because of realloc, they will still | |
2166 be valid. */ | |
2167 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | |
2168 COMPILE_STACK_TOP.fixup_alt_jump | |
2169 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | |
2170 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; | |
2171 COMPILE_STACK_TOP.regnum = regnum; | |
2172 | |
2173 /* We will eventually replace the 0 with the number of | |
2174 groups inner to this one. But do not push a | |
2175 start_memory for groups beyond the last one we can | |
2176 represent in the compiled pattern. */ | |
2177 if (regnum <= MAX_REGNUM) | |
2178 { | |
2179 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; | |
2180 BUF_PUSH_3 (start_memory, regnum, 0); | |
2181 } | |
2182 | |
2183 compile_stack.avail++; | |
2184 | |
2185 fixup_alt_jump = 0; | |
2186 laststart = 0; | |
2187 begalt = b; | |
80 | 2188 /* If we've reached MAX_REGNUM groups, then this open |
2189 won't actually generate any code, so we'll have to | |
2190 clear pending_exact explicitly. */ | |
2191 pending_exact = 0; | |
14 | 2192 break; |
2193 | |
2194 | |
2195 case ')': | |
2196 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | |
2197 | |
2198 if (COMPILE_STACK_EMPTY) | |
2199 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | |
2200 goto normal_backslash; | |
2201 else | |
318 | 2202 FREE_STACK_RETURN (REG_ERPAREN); |
14 | 2203 |
2204 handle_close: | |
2205 if (fixup_alt_jump) | |
2206 { /* Push a dummy failure point at the end of the | |
2207 alternative for a possible future | |
2208 `pop_failure_jump' to pop. See comments at | |
2209 `push_dummy_failure' in `re_match_2'. */ | |
2210 BUF_PUSH (push_dummy_failure); | |
2211 | |
2212 /* We allocated space for this jump when we assigned | |
2213 to `fixup_alt_jump', in the `handle_alt' case below. */ | |
2214 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); | |
2215 } | |
2216 | |
2217 /* See similar code for backslashed left paren above. */ | |
2218 if (COMPILE_STACK_EMPTY) | |
2219 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | |
2220 goto normal_char; | |
2221 else | |
318 | 2222 FREE_STACK_RETURN (REG_ERPAREN); |
14 | 2223 |
2224 /* Since we just checked for an empty stack above, this | |
2225 ``can't happen''. */ | |
2226 assert (compile_stack.avail != 0); | |
2227 { | |
2228 /* We don't just want to restore into `regnum', because | |
2229 later groups should continue to be numbered higher, | |
2230 as in `(ab)c(de)' -- the second group is #2. */ | |
2231 regnum_t this_group_regnum; | |
2232 | |
2233 compile_stack.avail--; | |
2234 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | |
2235 fixup_alt_jump | |
2236 = COMPILE_STACK_TOP.fixup_alt_jump | |
2237 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | |
2238 : 0; | |
2239 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | |
2240 this_group_regnum = COMPILE_STACK_TOP.regnum; | |
80 | 2241 /* If we've reached MAX_REGNUM groups, then this open |
2242 won't actually generate any code, so we'll have to | |
2243 clear pending_exact explicitly. */ | |
2244 pending_exact = 0; | |
14 | 2245 |
2246 /* We're at the end of the group, so now we know how many | |
2247 groups were inside this one. */ | |
2248 if (this_group_regnum <= MAX_REGNUM) | |
2249 { | |
2250 unsigned char *inner_group_loc | |
2251 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | |
2252 | |
2253 *inner_group_loc = regnum - this_group_regnum; | |
2254 BUF_PUSH_3 (stop_memory, this_group_regnum, | |
2255 regnum - this_group_regnum); | |
2256 } | |
2257 } | |
2258 break; | |
2259 | |
2260 | |
2261 case '|': /* `\|'. */ | |
2262 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | |
2263 goto normal_backslash; | |
2264 handle_alt: | |
2265 if (syntax & RE_LIMITED_OPS) | |
2266 goto normal_char; | |
2267 | |
2268 /* Insert before the previous alternative a jump which | |
2269 jumps to this alternative if the former fails. */ | |
2270 GET_BUFFER_SPACE (3); | |
2271 INSERT_JUMP (on_failure_jump, begalt, b + 6); | |
2272 pending_exact = 0; | |
2273 b += 3; | |
2274 | |
2275 /* The alternative before this one has a jump after it | |
2276 which gets executed if it gets matched. Adjust that | |
2277 jump so it will jump to this alternative's analogous | |
2278 jump (put in below, which in turn will jump to the next | |
2279 (if any) alternative's such jump, etc.). The last such | |
2280 jump jumps to the correct final destination. A picture: | |
2281 _____ _____ | |
2282 | | | | | |
2283 | v | v | |
2284 a | b | c | |
2285 | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2286 If we are at `b', then fixup_alt_jump right now points to a |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2287 three-byte space after `a'. We'll put in the jump, set |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2288 fixup_alt_jump to right after `b', and leave behind three |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
2289 bytes which we'll fill in when we get to after `c'. */ |
14 | 2290 |
2291 if (fixup_alt_jump) | |
2292 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | |
2293 | |
2294 /* Mark and leave space for a jump after this alternative, | |
2295 to be filled in later either by next alternative or | |
2296 when know we're at the end of a series of alternatives. */ | |
2297 fixup_alt_jump = b; | |
2298 GET_BUFFER_SPACE (3); | |
2299 b += 3; | |
2300 | |
2301 laststart = 0; | |
2302 begalt = b; | |
2303 break; | |
2304 | |
2305 | |
2306 case '{': | |
2307 /* If \{ is a literal. */ | |
2308 if (!(syntax & RE_INTERVALS) | |
2309 /* If we're at `\{' and it's not the open-interval | |
2310 operator. */ | |
2311 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | |
2312 || (p - 2 == pattern && p == pend)) | |
2313 goto normal_backslash; | |
2314 | |
2315 handle_interval: | |
2316 { | |
2317 /* If got here, then the syntax allows intervals. */ | |
2318 | |
2319 /* At least (most) this many matches must be made. */ | |
2320 int lower_bound = -1, upper_bound = -1; | |
2321 | |
2322 beg_interval = p - 1; | |
2323 | |
2324 if (p == pend) | |
2325 { | |
2326 if (syntax & RE_NO_BK_BRACES) | |
2327 goto unfetch_interval; | |
2328 else | |
318 | 2329 FREE_STACK_RETURN (REG_EBRACE); |
14 | 2330 } |
2331 | |
2332 GET_UNSIGNED_NUMBER (lower_bound); | |
2333 | |
2334 if (c == ',') | |
2335 { | |
2336 GET_UNSIGNED_NUMBER (upper_bound); | |
2337 if (upper_bound < 0) upper_bound = RE_DUP_MAX; | |
2338 } | |
2339 else | |
2340 /* Interval such as `{1}' => match exactly once. */ | |
2341 upper_bound = lower_bound; | |
2342 | |
2343 if (lower_bound < 0 || upper_bound > RE_DUP_MAX | |
2344 || lower_bound > upper_bound) | |
2345 { | |
2346 if (syntax & RE_NO_BK_BRACES) | |
2347 goto unfetch_interval; | |
2348 else | |
318 | 2349 FREE_STACK_RETURN (REG_BADBR); |
14 | 2350 } |
2351 | |
2352 if (!(syntax & RE_NO_BK_BRACES)) | |
2353 { | |
318 | 2354 if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); |
14 | 2355 |
2356 PATFETCH (c); | |
2357 } | |
2358 | |
2359 if (c != '}') | |
2360 { | |
2361 if (syntax & RE_NO_BK_BRACES) | |
2362 goto unfetch_interval; | |
2363 else | |
318 | 2364 FREE_STACK_RETURN (REG_BADBR); |
14 | 2365 } |
2366 | |
2367 /* We just parsed a valid interval. */ | |
2368 | |
2369 /* If it's invalid to have no preceding re. */ | |
2370 if (!laststart) | |
2371 { | |
2372 if (syntax & RE_CONTEXT_INVALID_OPS) | |
318 | 2373 FREE_STACK_RETURN (REG_BADRPT); |
14 | 2374 else if (syntax & RE_CONTEXT_INDEP_OPS) |
2375 laststart = b; | |
2376 else | |
2377 goto unfetch_interval; | |
2378 } | |
2379 | |
2380 /* If the upper bound is zero, don't want to succeed at | |
2381 all; jump from `laststart' to `b + 3', which will be | |
2382 the end of the buffer after we insert the jump. */ | |
2383 if (upper_bound == 0) | |
2384 { | |
2385 GET_BUFFER_SPACE (3); | |
2386 INSERT_JUMP (jump, laststart, b + 3); | |
2387 b += 3; | |
2388 } | |
2389 | |
2390 /* Otherwise, we have a nontrivial interval. When | |
2391 we're all done, the pattern will look like: | |
2392 set_number_at <jump count> <upper bound> | |
2393 set_number_at <succeed_n count> <lower bound> | |
198 | 2394 succeed_n <after jump addr> <succeed_n count> |
14 | 2395 <body of loop> |
2396 jump_n <succeed_n addr> <jump count> | |
2397 (The upper bound and `jump_n' are omitted if | |
2398 `upper_bound' is 1, though.) */ | |
2399 else | |
2400 { /* If the upper bound is > 1, we need to insert | |
2401 more at the end of the loop. */ | |
2402 unsigned nbytes = 10 + (upper_bound > 1) * 10; | |
2403 | |
2404 GET_BUFFER_SPACE (nbytes); | |
2405 | |
2406 /* Initialize lower bound of the `succeed_n', even | |
2407 though it will be set during matching by its | |
2408 attendant `set_number_at' (inserted next), | |
2409 because `re_compile_fastmap' needs to know. | |
2410 Jump to the `jump_n' we might insert below. */ | |
2411 INSERT_JUMP2 (succeed_n, laststart, | |
2412 b + 5 + (upper_bound > 1) * 5, | |
2413 lower_bound); | |
2414 b += 5; | |
2415 | |
2416 /* Code to initialize the lower bound. Insert | |
2417 before the `succeed_n'. The `5' is the last two | |
2418 bytes of this `set_number_at', plus 3 bytes of | |
2419 the following `succeed_n'. */ | |
2420 insert_op2 (set_number_at, laststart, 5, lower_bound, b); | |
2421 b += 5; | |
2422 | |
2423 if (upper_bound > 1) | |
2424 { /* More than one repetition is allowed, so | |
2425 append a backward jump to the `succeed_n' | |
2426 that starts this interval. | |
2427 | |
2428 When we've reached this during matching, | |
2429 we'll have matched the interval once, so | |
2430 jump back only `upper_bound - 1' times. */ | |
2431 STORE_JUMP2 (jump_n, b, laststart + 5, | |
2432 upper_bound - 1); | |
2433 b += 5; | |
2434 | |
2435 /* The location we want to set is the second | |
2436 parameter of the `jump_n'; that is `b-2' as | |
2437 an absolute address. `laststart' will be | |
2438 the `set_number_at' we're about to insert; | |
2439 `laststart+3' the number to set, the source | |
2440 for the relative address. But we are | |
2441 inserting into the middle of the pattern -- | |
2442 so everything is getting moved up by 5. | |
2443 Conclusion: (b - 2) - (laststart + 3) + 5, | |
2444 i.e., b - laststart. | |
2445 | |
2446 We insert this at the beginning of the loop | |
2447 so that if we fail during matching, we'll | |
2448 reinitialize the bounds. */ | |
2449 insert_op2 (set_number_at, laststart, b - laststart, | |
2450 upper_bound - 1, b); | |
2451 b += 5; | |
2452 } | |
2453 } | |
2454 pending_exact = 0; | |
2455 beg_interval = NULL; | |
2456 } | |
2457 break; | |
2458 | |
2459 unfetch_interval: | |
2460 /* If an invalid interval, match the characters as literals. */ | |
2461 assert (beg_interval); | |
2462 p = beg_interval; | |
2463 beg_interval = NULL; | |
2464 | |
2465 /* normal_char and normal_backslash need `c'. */ | |
2466 PATFETCH (c); | |
2467 | |
2468 if (!(syntax & RE_NO_BK_BRACES)) | |
2469 { | |
2470 if (p > pattern && p[-1] == '\\') | |
2471 goto normal_backslash; | |
2472 } | |
2473 goto normal_char; | |
2474 | |
2475 #ifdef emacs | |
2476 /* There is no way to specify the before_dot and after_dot | |
2477 operators. rms says this is ok. --karl */ | |
2478 case '=': | |
2479 BUF_PUSH (at_dot); | |
2480 break; | |
2481 | |
2482 case 's': | |
2483 laststart = b; | |
2484 PATFETCH (c); | |
2485 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | |
2486 break; | |
2487 | |
2488 case 'S': | |
2489 laststart = b; | |
2490 PATFETCH (c); | |
2491 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | |
2492 break; | |
2493 #endif /* emacs */ | |
2494 | |
2495 | |
2496 case 'w': | |
2497 laststart = b; | |
2498 BUF_PUSH (wordchar); | |
2499 break; | |
2500 | |
2501 | |
2502 case 'W': | |
2503 laststart = b; | |
2504 BUF_PUSH (notwordchar); | |
2505 break; | |
2506 | |
2507 | |
2508 case '<': | |
2509 BUF_PUSH (wordbeg); | |
2510 break; | |
2511 | |
2512 case '>': | |
2513 BUF_PUSH (wordend); | |
2514 break; | |
2515 | |
2516 case 'b': | |
2517 BUF_PUSH (wordbound); | |
2518 break; | |
2519 | |
2520 case 'B': | |
2521 BUF_PUSH (notwordbound); | |
2522 break; | |
2523 | |
2524 case '`': | |
2525 BUF_PUSH (begbuf); | |
2526 break; | |
2527 | |
2528 case '\'': | |
2529 BUF_PUSH (endbuf); | |
2530 break; | |
2531 | |
2532 case '1': case '2': case '3': case '4': case '5': | |
2533 case '6': case '7': case '8': case '9': | |
2534 if (syntax & RE_NO_BK_REFS) | |
2535 goto normal_char; | |
2536 | |
2537 c1 = c - '0'; | |
2538 | |
2539 if (c1 > regnum) | |
318 | 2540 FREE_STACK_RETURN (REG_ESUBREG); |
14 | 2541 |
2542 /* Can't back reference to a subexpression if inside of it. */ | |
2543 if (group_in_compile_stack (compile_stack, c1)) | |
2544 goto normal_char; | |
2545 | |
2546 laststart = b; | |
2547 BUF_PUSH_2 (duplicate, c1); | |
2548 break; | |
2549 | |
2550 | |
2551 case '+': | |
2552 case '?': | |
2553 if (syntax & RE_BK_PLUS_QM) | |
2554 goto handle_plus; | |
2555 else | |
2556 goto normal_backslash; | |
2557 | |
2558 default: | |
2559 normal_backslash: | |
2560 /* You might think it would be useful for \ to mean | |
2561 not to translate; but if we don't translate it | |
2562 it will never match anything. */ | |
2563 c = TRANSLATE (c); | |
2564 goto normal_char; | |
2565 } | |
2566 break; | |
2567 | |
2568 | |
2569 default: | |
2570 /* Expects the character in `c'. */ | |
2571 normal_char: | |
2572 /* If no exactn currently being built. */ | |
2573 if (!pending_exact | |
2574 | |
2575 /* If last exactn not at current position. */ | |
2576 || pending_exact + *pending_exact + 1 != b | |
2577 | |
2578 /* We have only one byte following the exactn for the count. */ | |
2579 || *pending_exact == (1 << BYTEWIDTH) - 1 | |
2580 | |
2581 /* If followed by a repetition operator. */ | |
2582 || *p == '*' || *p == '^' | |
2583 || ((syntax & RE_BK_PLUS_QM) | |
2584 ? *p == '\\' && (p[1] == '+' || p[1] == '?') | |
2585 : (*p == '+' || *p == '?')) | |
2586 || ((syntax & RE_INTERVALS) | |
2587 && ((syntax & RE_NO_BK_BRACES) | |
2588 ? *p == '{' | |
2589 : (p[0] == '\\' && p[1] == '{')))) | |
2590 { | |
2591 /* Start building a new exactn. */ | |
2592 | |
2593 laststart = b; | |
2594 | |
2595 BUF_PUSH_2 (exactn, 0); | |
2596 pending_exact = b - 1; | |
2597 } | |
2598 | |
2599 BUF_PUSH (c); | |
2600 (*pending_exact)++; | |
2601 break; | |
2602 } /* switch (c) */ | |
2603 } /* while p != pend */ | |
2604 | |
2605 | |
2606 /* Through the pattern now. */ | |
2607 | |
2608 if (fixup_alt_jump) | |
2609 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | |
2610 | |
2611 if (!COMPILE_STACK_EMPTY) | |
318 | 2612 FREE_STACK_RETURN (REG_EPAREN); |
14 | 2613 |
389 | 2614 /* If we don't want backtracking, force success |
2615 the first time we reach the end of the compiled pattern. */ | |
2616 if (syntax & RE_NO_POSIX_BACKTRACKING) | |
2617 BUF_PUSH (succeed); | |
2618 | |
14 | 2619 free (compile_stack.stack); |
2620 | |
2621 /* We have succeeded; set the length of the buffer. */ | |
2622 bufp->used = b - bufp->buffer; | |
2623 | |
2624 #ifdef DEBUG | |
2625 if (debug) | |
2626 { | |
81 | 2627 DEBUG_PRINT1 ("\nCompiled pattern: \n"); |
14 | 2628 print_compiled_pattern (bufp); |
2629 } | |
2630 #endif /* DEBUG */ | |
2631 | |
90 | 2632 #ifndef MATCH_MAY_ALLOCATE |
2633 /* Initialize the failure stack to the largest possible stack. This | |
2634 isn't necessary unless we're trying to avoid calling alloca in | |
2635 the search and match routines. */ | |
2636 { | |
2637 int num_regs = bufp->re_nsub + 1; | |
2638 | |
2639 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size | |
2640 is strictly greater than re_max_failures, the largest possible stack | |
2641 is 2 * re_max_failures failure points. */ | |
217 | 2642 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) |
2643 { | |
2644 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); | |
2645 | |
2646 #ifdef emacs | |
2647 if (! fail_stack.stack) | |
2648 fail_stack.stack | |
2649 = (fail_stack_elt_t *) xmalloc (fail_stack.size | |
2650 * sizeof (fail_stack_elt_t)); | |
2651 else | |
2652 fail_stack.stack | |
2653 = (fail_stack_elt_t *) xrealloc (fail_stack.stack, | |
2654 (fail_stack.size | |
2655 * sizeof (fail_stack_elt_t))); | |
2656 #else /* not emacs */ | |
2657 if (! fail_stack.stack) | |
2658 fail_stack.stack | |
2659 = (fail_stack_elt_t *) malloc (fail_stack.size | |
2660 * sizeof (fail_stack_elt_t)); | |
2661 else | |
2662 fail_stack.stack | |
2663 = (fail_stack_elt_t *) realloc (fail_stack.stack, | |
2664 (fail_stack.size | |
2665 * sizeof (fail_stack_elt_t))); | |
2666 #endif /* not emacs */ | |
2667 } | |
90 | 2668 |
405 | 2669 regex_grow_registers (num_regs); |
90 | 2670 } |
405 | 2671 #endif /* not MATCH_MAY_ALLOCATE */ |
90 | 2672 |
14 | 2673 return REG_NOERROR; |
2674 } /* regex_compile */ | |
2675 | |
2676 /* Subroutines for `regex_compile'. */ | |
2677 | |
2678 /* Store OP at LOC followed by two-byte integer parameter ARG. */ | |
2679 | |
2680 static void | |
2681 store_op1 (op, loc, arg) | |
2682 re_opcode_t op; | |
2683 unsigned char *loc; | |
2684 int arg; | |
2685 { | |
2686 *loc = (unsigned char) op; | |
2687 STORE_NUMBER (loc + 1, arg); | |
2688 } | |
2689 | |
2690 | |
2691 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | |
2692 | |
2693 static void | |
2694 store_op2 (op, loc, arg1, arg2) | |
2695 re_opcode_t op; | |
2696 unsigned char *loc; | |
2697 int arg1, arg2; | |
2698 { | |
2699 *loc = (unsigned char) op; | |
2700 STORE_NUMBER (loc + 1, arg1); | |
2701 STORE_NUMBER (loc + 3, arg2); | |
2702 } | |
2703 | |
2704 | |
2705 /* Copy the bytes from LOC to END to open up three bytes of space at LOC | |
2706 for OP followed by two-byte integer parameter ARG. */ | |
2707 | |
2708 static void | |
2709 insert_op1 (op, loc, arg, end) | |
2710 re_opcode_t op; | |
2711 unsigned char *loc; | |
2712 int arg; | |
2713 unsigned char *end; | |
2714 { | |
2715 register unsigned char *pfrom = end; | |
2716 register unsigned char *pto = end + 3; | |
2717 | |
2718 while (pfrom != loc) | |
2719 *--pto = *--pfrom; | |
2720 | |
2721 store_op1 (op, loc, arg); | |
2722 } | |
2723 | |
2724 | |
2725 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | |
2726 | |
2727 static void | |
2728 insert_op2 (op, loc, arg1, arg2, end) | |
2729 re_opcode_t op; | |
2730 unsigned char *loc; | |
2731 int arg1, arg2; | |
2732 unsigned char *end; | |
2733 { | |
2734 register unsigned char *pfrom = end; | |
2735 register unsigned char *pto = end + 5; | |
2736 | |
2737 while (pfrom != loc) | |
2738 *--pto = *--pfrom; | |
2739 | |
2740 store_op2 (op, loc, arg1, arg2); | |
2741 } | |
2742 | |
2743 | |
2744 /* P points to just after a ^ in PATTERN. Return true if that ^ comes | |
2745 after an alternative or a begin-subexpression. We assume there is at | |
2746 least one character before the ^. */ | |
2747 | |
2748 static boolean | |
2749 at_begline_loc_p (pattern, p, syntax) | |
2750 const char *pattern, *p; | |
2751 reg_syntax_t syntax; | |
2752 { | |
2753 const char *prev = p - 2; | |
2754 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | |
2755 | |
2756 return | |
2757 /* After a subexpression? */ | |
2758 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | |
2759 /* After an alternative? */ | |
2760 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | |
2761 } | |
2762 | |
2763 | |
2764 /* The dual of at_begline_loc_p. This one is for $. We assume there is | |
2765 at least one character after the $, i.e., `P < PEND'. */ | |
2766 | |
2767 static boolean | |
2768 at_endline_loc_p (p, pend, syntax) | |
2769 const char *p, *pend; | |
2770 int syntax; | |
2771 { | |
2772 const char *next = p; | |
2773 boolean next_backslash = *next == '\\'; | |
450 | 2774 const char *next_next = p + 1 < pend ? p + 1 : 0; |
14 | 2775 |
2776 return | |
2777 /* Before a subexpression? */ | |
2778 (syntax & RE_NO_BK_PARENS ? *next == ')' | |
2779 : next_backslash && next_next && *next_next == ')') | |
2780 /* Before an alternative? */ | |
2781 || (syntax & RE_NO_BK_VBAR ? *next == '|' | |
2782 : next_backslash && next_next && *next_next == '|'); | |
2783 } | |
2784 | |
2785 | |
2786 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | |
2787 false if it's not. */ | |
2788 | |
2789 static boolean | |
2790 group_in_compile_stack (compile_stack, regnum) | |
2791 compile_stack_type compile_stack; | |
2792 regnum_t regnum; | |
2793 { | |
2794 int this_element; | |
2795 | |
2796 for (this_element = compile_stack.avail - 1; | |
2797 this_element >= 0; | |
2798 this_element--) | |
2799 if (compile_stack.stack[this_element].regnum == regnum) | |
2800 return true; | |
2801 | |
2802 return false; | |
2803 } | |
2804 | |
2805 | |
2806 /* Read the ending character of a range (in a bracket expression) from the | |
2807 uncompiled pattern *P_PTR (which ends at PEND). We assume the | |
2808 starting character is in `P[-2]'. (`P[-1]' is the character `-'.) | |
2809 Then we set the translation of all bits between the starting and | |
2810 ending characters (inclusive) in the compiled pattern B. | |
2811 | |
2812 Return an error code. | |
2813 | |
2814 We use these short variable names so we can use the same macros as | |
2815 `regex_compile' itself. */ | |
2816 | |
2817 static reg_errcode_t | |
2818 compile_range (p_ptr, pend, translate, syntax, b) | |
2819 const char **p_ptr, *pend; | |
2820 char *translate; | |
2821 reg_syntax_t syntax; | |
2822 unsigned char *b; | |
2823 { | |
2824 unsigned this_char; | |
2825 | |
2826 const char *p = *p_ptr; | |
37 | 2827 int range_start, range_end; |
14 | 2828 |
2829 if (p == pend) | |
2830 return REG_ERANGE; | |
2831 | |
37 | 2832 /* Even though the pattern is a signed `char *', we need to fetch |
2833 with unsigned char *'s; if the high bit of the pattern character | |
2834 is set, the range endpoints will be negative if we fetch using a | |
2835 signed char *. | |
2836 | |
2837 We also want to fetch the endpoints without translating them; the | |
2838 appropriate translation is done in the bit-setting loop below. */ | |
318 | 2839 /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *. */ |
2840 range_start = ((const unsigned char *) p)[-2]; | |
2841 range_end = ((const unsigned char *) p)[0]; | |
14 | 2842 |
2843 /* Have to increment the pointer into the pattern string, so the | |
2844 caller isn't still at the ending character. */ | |
2845 (*p_ptr)++; | |
2846 | |
2847 /* If the start is after the end, the range is empty. */ | |
2848 if (range_start > range_end) | |
2849 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | |
2850 | |
2851 /* Here we see why `this_char' has to be larger than an `unsigned | |
2852 char' -- the range is inclusive, so if `range_end' == 0xff | |
2853 (assuming 8-bit characters), we would otherwise go into an infinite | |
2854 loop, since all characters <= 0xff. */ | |
2855 for (this_char = range_start; this_char <= range_end; this_char++) | |
2856 { | |
2857 SET_LIST_BIT (TRANSLATE (this_char)); | |
2858 } | |
2859 | |
2860 return REG_NOERROR; | |
2861 } | |
2862 | |
2863 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | |
2864 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | |
2865 characters can start a string that matches the pattern. This fastmap | |
2866 is used by re_search to skip quickly over impossible starting points. | |
2867 | |
2868 The caller must supply the address of a (1 << BYTEWIDTH)-byte data | |
2869 area as BUFP->fastmap. | |
2870 | |
2871 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | |
2872 the pattern buffer. | |
2873 | |
2874 Returns 0 if we succeed, -2 if an internal error. */ | |
2875 | |
2876 int | |
2877 re_compile_fastmap (bufp) | |
2878 struct re_pattern_buffer *bufp; | |
2879 { | |
2880 int j, k; | |
90 | 2881 #ifdef MATCH_MAY_ALLOCATE |
14 | 2882 fail_stack_type fail_stack; |
90 | 2883 #endif |
14 | 2884 #ifndef REGEX_MALLOC |
2885 char *destination; | |
2886 #endif | |
2887 /* We don't push any register information onto the failure stack. */ | |
2888 unsigned num_regs = 0; | |
2889 | |
2890 register char *fastmap = bufp->fastmap; | |
2891 unsigned char *pattern = bufp->buffer; | |
2892 unsigned long size = bufp->used; | |
170 | 2893 unsigned char *p = pattern; |
14 | 2894 register unsigned char *pend = pattern + size; |
2895 | |
405 | 2896 /* This holds the pointer to the failure stack, when |
2897 it is allocated relocatably. */ | |
410 | 2898 #ifdef REL_ALLOC |
405 | 2899 fail_stack_elt_t *failure_stack_ptr; |
409
e9f87c3ee38a
(REGEX_FREE): Add back the `while (0)' hack
Jim Meyering <jim@meyering.net>
parents:
408
diff
changeset
|
2900 #endif |
405 | 2901 |
14 | 2902 /* Assume that each path through the pattern can be null until |
2903 proven otherwise. We set this false at the bottom of switch | |
2904 statement, to which we get only if a particular path doesn't | |
2905 match the empty string. */ | |
2906 boolean path_can_be_null = true; | |
2907 | |
2908 /* We aren't doing a `succeed_n' to begin with. */ | |
2909 boolean succeed_n_p = false; | |
2910 | |
2911 assert (fastmap != NULL && p != NULL); | |
2912 | |
2913 INIT_FAIL_STACK (); | |
2914 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | |
2915 bufp->fastmap_accurate = 1; /* It will be when we're done. */ | |
2916 bufp->can_be_null = 0; | |
2917 | |
389 | 2918 while (1) |
14 | 2919 { |
389 | 2920 if (p == pend || *p == succeed) |
2921 { | |
2922 /* We have reached the (effective) end of pattern. */ | |
2923 if (!FAIL_STACK_EMPTY ()) | |
2924 { | |
2925 bufp->can_be_null |= path_can_be_null; | |
2926 | |
2927 /* Reset for next path. */ | |
2928 path_can_be_null = true; | |
2929 | |
415 | 2930 p = fail_stack.stack[--fail_stack.avail].pointer; |
389 | 2931 |
2932 continue; | |
2933 } | |
2934 else | |
2935 break; | |
14 | 2936 } |
2937 | |
2938 /* We should never be about to go beyond the end of the pattern. */ | |
2939 assert (p < pend); | |
2940 | |
389 | 2941 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
14 | 2942 { |
2943 | |
2944 /* I guess the idea here is to simply not bother with a fastmap | |
2945 if a backreference is used, since it's too hard to figure out | |
2946 the fastmap for the corresponding group. Setting | |
2947 `can_be_null' stops `re_search_2' from using the fastmap, so | |
2948 that is all we do. */ | |
2949 case duplicate: | |
2950 bufp->can_be_null = 1; | |
405 | 2951 goto done; |
14 | 2952 |
2953 | |
2954 /* Following are the cases which match a character. These end | |
2955 with `break'. */ | |
2956 | |
2957 case exactn: | |
2958 fastmap[p[1]] = 1; | |
2959 break; | |
2960 | |
2961 | |
2962 case charset: | |
2963 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | |
2964 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | |
2965 fastmap[j] = 1; | |
2966 break; | |
2967 | |
2968 | |
2969 case charset_not: | |
2970 /* Chars beyond end of map must be allowed. */ | |
2971 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) | |
2972 fastmap[j] = 1; | |
2973 | |
2974 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | |
2975 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | |
2976 fastmap[j] = 1; | |
2977 break; | |
2978 | |
2979 | |
2980 case wordchar: | |
2981 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
2982 if (SYNTAX (j) == Sword) | |
2983 fastmap[j] = 1; | |
2984 break; | |
2985 | |
2986 | |
2987 case notwordchar: | |
2988 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
2989 if (SYNTAX (j) != Sword) | |
2990 fastmap[j] = 1; | |
2991 break; | |
2992 | |
2993 | |
2994 case anychar: | |
318 | 2995 { |
2996 int fastmap_newline = fastmap['\n']; | |
2997 | |
2998 /* `.' matches anything ... */ | |
2999 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3000 fastmap[j] = 1; | |
3001 | |
3002 /* ... except perhaps newline. */ | |
3003 if (!(bufp->syntax & RE_DOT_NEWLINE)) | |
3004 fastmap['\n'] = fastmap_newline; | |
3005 | |
3006 /* Return if we have already set `can_be_null'; if we have, | |
3007 then the fastmap is irrelevant. Something's wrong here. */ | |
3008 else if (bufp->can_be_null) | |
405 | 3009 goto done; |
318 | 3010 |
3011 /* Otherwise, have to check alternative paths. */ | |
3012 break; | |
3013 } | |
14 | 3014 |
3015 #ifdef emacs | |
3016 case syntaxspec: | |
3017 k = *p++; | |
3018 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3019 if (SYNTAX (j) == (enum syntaxcode) k) | |
3020 fastmap[j] = 1; | |
3021 break; | |
3022 | |
3023 | |
3024 case notsyntaxspec: | |
3025 k = *p++; | |
3026 for (j = 0; j < (1 << BYTEWIDTH); j++) | |
3027 if (SYNTAX (j) != (enum syntaxcode) k) | |
3028 fastmap[j] = 1; | |
3029 break; | |
3030 | |
3031 | |
3032 /* All cases after this match the empty string. These end with | |
3033 `continue'. */ | |
3034 | |
3035 | |
3036 case before_dot: | |
3037 case at_dot: | |
3038 case after_dot: | |
3039 continue; | |
3040 #endif /* not emacs */ | |
3041 | |
3042 | |
3043 case no_op: | |
3044 case begline: | |
3045 case endline: | |
3046 case begbuf: | |
3047 case endbuf: | |
3048 case wordbound: | |
3049 case notwordbound: | |
3050 case wordbeg: | |
3051 case wordend: | |
3052 case push_dummy_failure: | |
3053 continue; | |
3054 | |
3055 | |
3056 case jump_n: | |
3057 case pop_failure_jump: | |
3058 case maybe_pop_jump: | |
3059 case jump: | |
3060 case jump_past_alt: | |
3061 case dummy_failure_jump: | |
3062 EXTRACT_NUMBER_AND_INCR (j, p); | |
3063 p += j; | |
3064 if (j > 0) | |
3065 continue; | |
3066 | |
3067 /* Jump backward implies we just went through the body of a | |
3068 loop and matched nothing. Opcode jumped to should be | |
3069 `on_failure_jump' or `succeed_n'. Just treat it like an | |
3070 ordinary jump. For a * loop, it has pushed its failure | |
3071 point already; if so, discard that as redundant. */ | |
3072 if ((re_opcode_t) *p != on_failure_jump | |
3073 && (re_opcode_t) *p != succeed_n) | |
3074 continue; | |
3075 | |
3076 p++; | |
3077 EXTRACT_NUMBER_AND_INCR (j, p); | |
3078 p += j; | |
3079 | |
3080 /* If what's on the stack is where we are now, pop it. */ | |
3081 if (!FAIL_STACK_EMPTY () | |
415 | 3082 && fail_stack.stack[fail_stack.avail - 1].pointer == p) |
14 | 3083 fail_stack.avail--; |
3084 | |
3085 continue; | |
3086 | |
3087 | |
3088 case on_failure_jump: | |
3089 case on_failure_keep_string_jump: | |
3090 handle_on_failure_jump: | |
3091 EXTRACT_NUMBER_AND_INCR (j, p); | |
3092 | |
3093 /* For some patterns, e.g., `(a?)?', `p+j' here points to the | |
3094 end of the pattern. We don't want to push such a point, | |
3095 since when we restore it above, entering the switch will | |
3096 increment `p' past the end of the pattern. We don't need | |
3097 to push such a point since we obviously won't find any more | |
3098 fastmap entries beyond `pend'. Such a pattern can match | |
3099 the null string, though. */ | |
3100 if (p + j < pend) | |
3101 { | |
3102 if (!PUSH_PATTERN_OP (p + j, fail_stack)) | |
405 | 3103 { |
440 | 3104 RESET_FAIL_STACK (); |
405 | 3105 return -2; |
3106 } | |
14 | 3107 } |
3108 else | |
3109 bufp->can_be_null = 1; | |
3110 | |
3111 if (succeed_n_p) | |
3112 { | |
3113 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | |
3114 succeed_n_p = false; | |
3115 } | |
3116 | |
3117 continue; | |
3118 | |
3119 | |
3120 case succeed_n: | |
3121 /* Get to the number of times to succeed. */ | |
3122 p += 2; | |
3123 | |
3124 /* Increment p past the n for when k != 0. */ | |
3125 EXTRACT_NUMBER_AND_INCR (k, p); | |
3126 if (k == 0) | |
3127 { | |
3128 p -= 4; | |
3129 succeed_n_p = true; /* Spaghetti code alert. */ | |
3130 goto handle_on_failure_jump; | |
3131 } | |
3132 continue; | |
3133 | |
3134 | |
3135 case set_number_at: | |
3136 p += 4; | |
3137 continue; | |
3138 | |
3139 | |
3140 case start_memory: | |
3141 case stop_memory: | |
3142 p += 2; | |
3143 continue; | |
3144 | |
3145 | |
3146 default: | |
3147 abort (); /* We have listed all the cases. */ | |
3148 } /* switch *p++ */ | |
3149 | |
3150 /* Getting here means we have found the possible starting | |
3151 characters for one path of the pattern -- and that the empty | |
3152 string does not match. We need not follow this path further. | |
3153 Instead, look at the next alternative (remembered on the | |
3154 stack), or quit if no more. The test at the top of the loop | |
3155 does these things. */ | |
3156 path_can_be_null = false; | |
3157 p = pend; | |
3158 } /* while p */ | |
3159 | |
3160 /* Set `can_be_null' for the last path (also the first path, if the | |
3161 pattern is empty). */ | |
3162 bufp->can_be_null |= path_can_be_null; | |
405 | 3163 |
3164 done: | |
440 | 3165 RESET_FAIL_STACK (); |
14 | 3166 return 0; |
3167 } /* re_compile_fastmap */ | |
3168 | |
3169 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | |
3170 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | |
3171 this memory for recording register information. STARTS and ENDS | |
3172 must be allocated using the malloc library routine, and must each | |
3173 be at least NUM_REGS * sizeof (regoff_t) bytes long. | |
3174 | |
3175 If NUM_REGS == 0, then subsequent matches should allocate their own | |
3176 register data. | |
3177 | |
3178 Unless this function is called, the first search or match using | |
3179 PATTERN_BUFFER will allocate its own register data, without | |
3180 freeing the old data. */ | |
3181 | |
3182 void | |
3183 re_set_registers (bufp, regs, num_regs, starts, ends) | |
3184 struct re_pattern_buffer *bufp; | |
3185 struct re_registers *regs; | |
3186 unsigned num_regs; | |
3187 regoff_t *starts, *ends; | |
3188 { | |
3189 if (num_regs) | |
3190 { | |
3191 bufp->regs_allocated = REGS_REALLOCATE; | |
3192 regs->num_regs = num_regs; | |
3193 regs->start = starts; | |
3194 regs->end = ends; | |
3195 } | |
3196 else | |
3197 { | |
3198 bufp->regs_allocated = REGS_UNALLOCATED; | |
3199 regs->num_regs = 0; | |
175 | 3200 regs->start = regs->end = (regoff_t *) 0; |
14 | 3201 } |
3202 } | |
3203 | |
3204 /* Searching routines. */ | |
3205 | |
3206 /* Like re_search_2, below, but only one string is specified, and | |
3207 doesn't let you say where to stop matching. */ | |
3208 | |
3209 int | |
3210 re_search (bufp, string, size, startpos, range, regs) | |
3211 struct re_pattern_buffer *bufp; | |
3212 const char *string; | |
3213 int size, startpos, range; | |
3214 struct re_registers *regs; | |
3215 { | |
3216 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | |
3217 regs, size); | |
3218 } | |
3219 | |
3220 | |
3221 /* Using the compiled pattern in BUFP->buffer, first tries to match the | |
3222 virtual concatenation of STRING1 and STRING2, starting first at index | |
3223 STARTPOS, then at STARTPOS + 1, and so on. | |
3224 | |
3225 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | |
3226 | |
3227 RANGE is how far to scan while trying to match. RANGE = 0 means try | |
3228 only at STARTPOS; in general, the last start tried is STARTPOS + | |
3229 RANGE. | |
3230 | |
3231 In REGS, return the indices of the virtual concatenation of STRING1 | |
3232 and STRING2 that matched the entire BUFP->buffer and its contained | |
3233 subexpressions. | |
3234 | |
3235 Do not consider matching one past the index STOP in the virtual | |
3236 concatenation of STRING1 and STRING2. | |
3237 | |
3238 We return either the position in the strings at which the match was | |
3239 found, -1 if no match, or -2 if error (such as failure | |
3240 stack overflow). */ | |
3241 | |
3242 int | |
3243 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) | |
3244 struct re_pattern_buffer *bufp; | |
3245 const char *string1, *string2; | |
3246 int size1, size2; | |
3247 int startpos; | |
3248 int range; | |
3249 struct re_registers *regs; | |
3250 int stop; | |
3251 { | |
3252 int val; | |
3253 register char *fastmap = bufp->fastmap; | |
3254 register char *translate = bufp->translate; | |
3255 int total_size = size1 + size2; | |
3256 int endpos = startpos + range; | |
3257 | |
3258 /* Check for out-of-range STARTPOS. */ | |
3259 if (startpos < 0 || startpos > total_size) | |
3260 return -1; | |
3261 | |
3262 /* Fix up RANGE if it might eventually take us outside | |
3263 the virtual concatenation of STRING1 and STRING2. */ | |
3264 if (endpos < -1) | |
3265 range = -1 - startpos; | |
3266 else if (endpos > total_size) | |
3267 range = total_size - startpos; | |
3268 | |
3269 /* If the search isn't to be a backwards one, don't waste time in a | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3270 search for a pattern that must be anchored. */ |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3271 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) |
14 | 3272 { |
3273 if (startpos > 0) | |
3274 return -1; | |
3275 else | |
3276 range = 1; | |
3277 } | |
3278 | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3279 /* Update the fastmap now if not correct already. */ |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3280 if (fastmap && !bufp->fastmap_accurate) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3281 if (re_compile_fastmap (bufp) == -2) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3282 return -2; |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3283 |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3284 /* Loop through the string, looking for a place to start matching. */ |
14 | 3285 for (;;) |
3286 { | |
3287 /* If a fastmap is supplied, skip quickly over characters that | |
3288 cannot be the start of a match. If the pattern can match the | |
3289 null string, however, we don't need to skip characters; we want | |
3290 the first null string. */ | |
3291 if (fastmap && startpos < total_size && !bufp->can_be_null) | |
3292 { | |
3293 if (range > 0) /* Searching forwards. */ | |
3294 { | |
3295 register const char *d; | |
3296 register int lim = 0; | |
3297 int irange = range; | |
3298 | |
3299 if (startpos < size1 && startpos + range >= size1) | |
3300 lim = range - (size1 - startpos); | |
3301 | |
3302 d = (startpos >= size1 ? string2 - size1 : string1) + startpos; | |
3303 | |
3304 /* Written out as an if-else to avoid testing `translate' | |
3305 inside the loop. */ | |
3306 if (translate) | |
3307 while (range > lim | |
80 | 3308 && !fastmap[(unsigned char) |
3309 translate[(unsigned char) *d++]]) | |
14 | 3310 range--; |
3311 else | |
3312 while (range > lim && !fastmap[(unsigned char) *d++]) | |
3313 range--; | |
3314 | |
3315 startpos += irange - range; | |
3316 } | |
3317 else /* Searching backwards. */ | |
3318 { | |
3319 register char c = (size1 == 0 || startpos >= size1 | |
3320 ? string2[startpos - size1] | |
3321 : string1[startpos]); | |
3322 | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3323 if (!fastmap[(unsigned char) TRANSLATE (c)]) |
14 | 3324 goto advance; |
3325 } | |
3326 } | |
3327 | |
3328 /* If can't match the null string, and that's all we have left, fail. */ | |
3329 if (range >= 0 && startpos == total_size && fastmap | |
3330 && !bufp->can_be_null) | |
3331 return -1; | |
3332 | |
198 | 3333 val = re_match_2_internal (bufp, string1, size1, string2, size2, |
3334 startpos, regs, stop); | |
218 | 3335 #ifndef REGEX_MALLOC |
3336 #ifdef C_ALLOCA | |
198 | 3337 alloca (0); |
218 | 3338 #endif |
3339 #endif | |
198 | 3340 |
14 | 3341 if (val >= 0) |
3342 return startpos; | |
3343 | |
3344 if (val == -2) | |
3345 return -2; | |
3346 | |
3347 advance: | |
3348 if (!range) | |
3349 break; | |
3350 else if (range > 0) | |
3351 { | |
3352 range--; | |
3353 startpos++; | |
3354 } | |
3355 else | |
3356 { | |
3357 range++; | |
3358 startpos--; | |
3359 } | |
3360 } | |
3361 return -1; | |
3362 } /* re_search_2 */ | |
3363 | |
3364 /* Declarations and macros for re_match_2. */ | |
3365 | |
3366 static int bcmp_translate (); | |
3367 static boolean alt_match_null_string_p (), | |
3368 common_op_match_null_string_p (), | |
3369 group_match_null_string_p (); | |
3370 | |
3371 /* This converts PTR, a pointer into one of the search strings `string1' | |
3372 and `string2' into an offset from the beginning of that string. */ | |
170 | 3373 #define POINTER_TO_OFFSET(ptr) \ |
3374 (FIRST_STRING_P (ptr) \ | |
3375 ? ((regoff_t) ((ptr) - string1)) \ | |
3376 : ((regoff_t) ((ptr) - string2 + size1))) | |
14 | 3377 |
3378 /* Macros for dealing with the split strings in re_match_2. */ | |
3379 | |
3380 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | |
3381 | |
3382 /* Call before fetching a character with *d. This switches over to | |
3383 string2 if necessary. */ | |
3384 #define PREFETCH() \ | |
3385 while (d == dend) \ | |
3386 { \ | |
3387 /* End of string2 => fail. */ \ | |
3388 if (dend == end_match_2) \ | |
3389 goto fail; \ | |
3390 /* End of string1 => advance to string2. */ \ | |
3391 d = string2; \ | |
3392 dend = end_match_2; \ | |
3393 } | |
3394 | |
3395 | |
3396 /* Test if at very beginning or at very end of the virtual concatenation | |
3397 of `string1' and `string2'. If only one string, it's `string2'. */ | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3398 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3399 #define AT_STRINGS_END(d) ((d) == end2) |
14 | 3400 |
3401 | |
3402 /* Test if D points to a character which is word-constituent. We have | |
3403 two special cases to check for: if past the end of string1, look at | |
3404 the first character in string2; and if before the beginning of | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3405 string2, look at the last character in string1. */ |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3406 #define WORDCHAR_P(d) \ |
14 | 3407 (SYNTAX ((d) == end1 ? *string2 \ |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3408 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3409 == Sword) |
14 | 3410 |
3411 /* Test if the character before D and the one at D differ with respect | |
3412 to being word-constituent. */ | |
3413 #define AT_WORD_BOUNDARY(d) \ | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3414 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3415 || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) |
14 | 3416 |
3417 | |
3418 /* Free everything we malloc. */ | |
90 | 3419 #ifdef MATCH_MAY_ALLOCATE |
405 | 3420 #define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL |
14 | 3421 #define FREE_VARIABLES() \ |
3422 do { \ | |
405 | 3423 REGEX_FREE_STACK (fail_stack.stack); \ |
14 | 3424 FREE_VAR (regstart); \ |
3425 FREE_VAR (regend); \ | |
3426 FREE_VAR (old_regstart); \ | |
3427 FREE_VAR (old_regend); \ | |
3428 FREE_VAR (best_regstart); \ | |
3429 FREE_VAR (best_regend); \ | |
3430 FREE_VAR (reg_info); \ | |
3431 FREE_VAR (reg_dummy); \ | |
3432 FREE_VAR (reg_info_dummy); \ | |
3433 } while (0) | |
90 | 3434 #else |
440 | 3435 #define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ |
90 | 3436 #endif /* not MATCH_MAY_ALLOCATE */ |
14 | 3437 |
3438 /* These values must meet several constraints. They must not be valid | |
3439 register values; since we have a limit of 255 registers (because | |
3440 we use only one byte in the pattern for the register number), we can | |
3441 use numbers larger than 255. They must differ by 1, because of | |
3442 NUM_FAILURE_ITEMS above. And the value for the lowest register must | |
3443 be larger than the value for the highest register, so we do not try | |
3444 to actually save any registers when none are active. */ | |
3445 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | |
3446 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | |
3447 | |
3448 /* Matching routines. */ | |
3449 | |
3450 #ifndef emacs /* Emacs never uses this. */ | |
3451 /* re_match is like re_match_2 except it takes only a single string. */ | |
3452 | |
3453 int | |
3454 re_match (bufp, string, size, pos, regs) | |
3455 struct re_pattern_buffer *bufp; | |
3456 const char *string; | |
3457 int size, pos; | |
3458 struct re_registers *regs; | |
198 | 3459 { |
3460 int result = re_match_2_internal (bufp, NULL, 0, string, size, | |
3461 pos, regs, size); | |
3462 alloca (0); | |
3463 return result; | |
14 | 3464 } |
3465 #endif /* not emacs */ | |
3466 | |
3467 | |
3468 /* re_match_2 matches the compiled pattern in BUFP against the | |
3469 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | |
3470 and SIZE2, respectively). We start matching at POS, and stop | |
3471 matching at STOP. | |
3472 | |
3473 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | |
3474 store offsets for the substring each group matched in REGS. See the | |
3475 documentation for exactly how many groups we fill. | |
3476 | |
3477 We return -1 if no match, -2 if an internal error (such as the | |
3478 failure stack overflowing). Otherwise, we return the length of the | |
3479 matched substring. */ | |
3480 | |
3481 int | |
3482 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | |
3483 struct re_pattern_buffer *bufp; | |
3484 const char *string1, *string2; | |
3485 int size1, size2; | |
3486 int pos; | |
3487 struct re_registers *regs; | |
3488 int stop; | |
3489 { | |
198 | 3490 int result = re_match_2_internal (bufp, string1, size1, string2, size2, |
3491 pos, regs, stop); | |
3492 alloca (0); | |
3493 return result; | |
3494 } | |
3495 | |
3496 /* This is a separate function so that we can force an alloca cleanup | |
3497 afterwards. */ | |
3498 static int | |
3499 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) | |
3500 struct re_pattern_buffer *bufp; | |
3501 const char *string1, *string2; | |
3502 int size1, size2; | |
3503 int pos; | |
3504 struct re_registers *regs; | |
3505 int stop; | |
3506 { | |
14 | 3507 /* General temporaries. */ |
3508 int mcnt; | |
3509 unsigned char *p1; | |
3510 | |
3511 /* Just past the end of the corresponding string. */ | |
3512 const char *end1, *end2; | |
3513 | |
3514 /* Pointers into string1 and string2, just past the last characters in | |
3515 each to consider matching. */ | |
3516 const char *end_match_1, *end_match_2; | |
3517 | |
3518 /* Where we are in the data, and the end of the current string. */ | |
3519 const char *d, *dend; | |
3520 | |
3521 /* Where we are in the pattern, and the end of the pattern. */ | |
3522 unsigned char *p = bufp->buffer; | |
3523 register unsigned char *pend = p + bufp->used; | |
3524 | |
198 | 3525 /* Mark the opcode just after a start_memory, so we can test for an |
3526 empty subpattern when we get to the stop_memory. */ | |
3527 unsigned char *just_past_start_mem = 0; | |
3528 | |
14 | 3529 /* We use this to map every character in the string. */ |
3530 char *translate = bufp->translate; | |
3531 | |
3532 /* Failure point stack. Each place that can handle a failure further | |
3533 down the line pushes a failure point on this stack. It consists of | |
3534 restart, regend, and reg_info for all registers corresponding to | |
3535 the subexpressions we're currently inside, plus the number of such | |
3536 registers, and, finally, two char *'s. The first char * is where | |
3537 to resume scanning the pattern; the second one is where to resume | |
3538 scanning the strings. If the latter is zero, the failure point is | |
3539 a ``dummy''; if a failure happens and the failure point is a dummy, | |
3540 it gets discarded and the next next one is tried. */ | |
90 | 3541 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
14 | 3542 fail_stack_type fail_stack; |
90 | 3543 #endif |
14 | 3544 #ifdef DEBUG |
3545 static unsigned failure_id = 0; | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3546 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; |
14 | 3547 #endif |
3548 | |
405 | 3549 /* This holds the pointer to the failure stack, when |
3550 it is allocated relocatably. */ | |
410 | 3551 #ifdef REL_ALLOC |
405 | 3552 fail_stack_elt_t *failure_stack_ptr; |
409
e9f87c3ee38a
(REGEX_FREE): Add back the `while (0)' hack
Jim Meyering <jim@meyering.net>
parents:
408
diff
changeset
|
3553 #endif |
405 | 3554 |
14 | 3555 /* We fill all the registers internally, independent of what we |
3556 return, for use in backreferences. The number here includes | |
3557 an element for register zero. */ | |
3558 unsigned num_regs = bufp->re_nsub + 1; | |
3559 | |
3560 /* The currently active registers. */ | |
3561 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; | |
3562 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
3563 | |
3564 /* Information on the contents of registers. These are pointers into | |
3565 the input strings; they record just what was matched (on this | |
3566 attempt) by a subexpression part of the pattern, that is, the | |
3567 regnum-th regstart pointer points to where in the pattern we began | |
3568 matching and the regnum-th regend points to right after where we | |
3569 stopped matching the regnum-th subexpression. (The zeroth register | |
3570 keeps track of what the whole pattern matches.) */ | |
90 | 3571 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
14 | 3572 const char **regstart, **regend; |
90 | 3573 #endif |
14 | 3574 |
3575 /* If a group that's operated upon by a repetition operator fails to | |
3576 match anything, then the register for its start will need to be | |
3577 restored because it will have been set to wherever in the string we | |
3578 are when we last see its open-group operator. Similarly for a | |
3579 register's end. */ | |
90 | 3580 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
14 | 3581 const char **old_regstart, **old_regend; |
90 | 3582 #endif |
14 | 3583 |
3584 /* The is_active field of reg_info helps us keep track of which (possibly | |
3585 nested) subexpressions we are currently in. The matched_something | |
3586 field of reg_info[reg_num] helps us tell whether or not we have | |
3587 matched any of the pattern so far this time through the reg_num-th | |
3588 subexpression. These two fields get reset each time through any | |
3589 loop their register is in. */ | |
90 | 3590 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ |
14 | 3591 register_info_type *reg_info; |
90 | 3592 #endif |
14 | 3593 |
3594 /* The following record the register info as found in the above | |
3595 variables when we find a match better than any we've seen before. | |
3596 This happens as we backtrack through the failure points, which in | |
3597 turn happens only if we have not yet matched the entire string. */ | |
3598 unsigned best_regs_set = false; | |
90 | 3599 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
14 | 3600 const char **best_regstart, **best_regend; |
90 | 3601 #endif |
14 | 3602 |
3603 /* Logically, this is `best_regend[0]'. But we don't want to have to | |
3604 allocate space for that if we're not allocating space for anything | |
3605 else (see below). Also, we never need info about register 0 for | |
3606 any of the other register vectors, and it seems rather a kludge to | |
3607 treat `best_regend' differently than the rest. So we keep track of | |
3608 the end of the best match so far in a separate variable. We | |
3609 initialize this to NULL so that when we backtrack the first time | |
3610 and need to test it, it's not garbage. */ | |
3611 const char *match_end = NULL; | |
3612 | |
389 | 3613 /* This helps SET_REGS_MATCHED avoid doing redundant work. */ |
3614 int set_regs_matched_done = 0; | |
3615 | |
14 | 3616 /* Used when we pop values we don't care about. */ |
90 | 3617 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ |
14 | 3618 const char **reg_dummy; |
3619 register_info_type *reg_info_dummy; | |
90 | 3620 #endif |
14 | 3621 |
3622 #ifdef DEBUG | |
3623 /* Counts the total number of registers pushed. */ | |
3624 unsigned num_regs_pushed = 0; | |
3625 #endif | |
3626 | |
3627 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); | |
3628 | |
3629 INIT_FAIL_STACK (); | |
3630 | |
90 | 3631 #ifdef MATCH_MAY_ALLOCATE |
14 | 3632 /* Do not bother to initialize all the register variables if there are |
3633 no groups in the pattern, as it takes a fair amount of time. If | |
3634 there are groups, we include space for register 0 (the whole | |
3635 pattern), even though we never use it, since it simplifies the | |
3636 array indexing. We should fix this. */ | |
3637 if (bufp->re_nsub) | |
3638 { | |
3639 regstart = REGEX_TALLOC (num_regs, const char *); | |
3640 regend = REGEX_TALLOC (num_regs, const char *); | |
3641 old_regstart = REGEX_TALLOC (num_regs, const char *); | |
3642 old_regend = REGEX_TALLOC (num_regs, const char *); | |
3643 best_regstart = REGEX_TALLOC (num_regs, const char *); | |
3644 best_regend = REGEX_TALLOC (num_regs, const char *); | |
3645 reg_info = REGEX_TALLOC (num_regs, register_info_type); | |
3646 reg_dummy = REGEX_TALLOC (num_regs, const char *); | |
3647 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); | |
3648 | |
3649 if (!(regstart && regend && old_regstart && old_regend && reg_info | |
3650 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | |
3651 { | |
3652 FREE_VARIABLES (); | |
3653 return -2; | |
3654 } | |
3655 } | |
3656 else | |
3657 { | |
3658 /* We must initialize all our variables to NULL, so that | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3659 `FREE_VARIABLES' doesn't try to free them. */ |
14 | 3660 regstart = regend = old_regstart = old_regend = best_regstart |
3661 = best_regend = reg_dummy = NULL; | |
3662 reg_info = reg_info_dummy = (register_info_type *) NULL; | |
3663 } | |
90 | 3664 #endif /* MATCH_MAY_ALLOCATE */ |
14 | 3665 |
3666 /* The starting position is bogus. */ | |
3667 if (pos < 0 || pos > size1 + size2) | |
3668 { | |
3669 FREE_VARIABLES (); | |
3670 return -1; | |
3671 } | |
3672 | |
3673 /* Initialize subexpression text positions to -1 to mark ones that no | |
3674 start_memory/stop_memory has been seen for. Also initialize the | |
3675 register information struct. */ | |
3676 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
3677 { | |
3678 regstart[mcnt] = regend[mcnt] | |
3679 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | |
3680 | |
3681 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | |
3682 IS_ACTIVE (reg_info[mcnt]) = 0; | |
3683 MATCHED_SOMETHING (reg_info[mcnt]) = 0; | |
3684 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | |
3685 } | |
3686 | |
3687 /* We move `string1' into `string2' if the latter's empty -- but not if | |
3688 `string1' is null. */ | |
3689 if (size2 == 0 && string1 != NULL) | |
3690 { | |
3691 string2 = string1; | |
3692 size2 = size1; | |
3693 string1 = 0; | |
3694 size1 = 0; | |
3695 } | |
3696 end1 = string1 + size1; | |
3697 end2 = string2 + size2; | |
3698 | |
3699 /* Compute where to stop matching, within the two strings. */ | |
3700 if (stop <= size1) | |
3701 { | |
3702 end_match_1 = string1 + stop; | |
3703 end_match_2 = string2; | |
3704 } | |
3705 else | |
3706 { | |
3707 end_match_1 = end1; | |
3708 end_match_2 = string2 + stop - size1; | |
3709 } | |
3710 | |
3711 /* `p' scans through the pattern as `d' scans through the data. | |
3712 `dend' is the end of the input string that `d' points within. `d' | |
3713 is advanced into the following input string whenever necessary, but | |
3714 this happens before fetching; therefore, at the beginning of the | |
3715 loop, `d' can be pointing at the end of a string, but it cannot | |
3716 equal `string2'. */ | |
3717 if (size1 > 0 && pos <= size1) | |
3718 { | |
3719 d = string1 + pos; | |
3720 dend = end_match_1; | |
3721 } | |
3722 else | |
3723 { | |
3724 d = string2 + pos - size1; | |
3725 dend = end_match_2; | |
3726 } | |
3727 | |
3728 DEBUG_PRINT1 ("The compiled pattern is: "); | |
3729 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | |
3730 DEBUG_PRINT1 ("The string to match is: `"); | |
3731 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | |
3732 DEBUG_PRINT1 ("'\n"); | |
3733 | |
3734 /* This loops over pattern commands. It exits by returning from the | |
3735 function if the match is complete, or it drops through if the match | |
3736 fails at this starting point in the input data. */ | |
3737 for (;;) | |
3738 { | |
3739 DEBUG_PRINT2 ("\n0x%x: ", p); | |
3740 | |
3741 if (p == pend) | |
3742 { /* End of pattern means we might have succeeded. */ | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3743 DEBUG_PRINT1 ("end of pattern ... "); |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3744 |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3745 /* If we haven't matched the entire string, and we want the |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3746 longest match, try backtracking. */ |
14 | 3747 if (d != end_match_2) |
3748 { | |
318 | 3749 /* 1 if this match ends in the same string (string1 or string2) |
3750 as the best previous match. */ | |
3751 boolean same_str_p = (FIRST_STRING_P (match_end) | |
3752 == MATCHING_IN_FIRST_STRING); | |
3753 /* 1 if this match is the best seen so far. */ | |
3754 boolean best_match_p; | |
3755 | |
3756 /* AIX compiler got confused when this was combined | |
3757 with the previous declaration. */ | |
3758 if (same_str_p) | |
3759 best_match_p = d > match_end; | |
3760 else | |
3761 best_match_p = !MATCHING_IN_FIRST_STRING; | |
3762 | |
14 | 3763 DEBUG_PRINT1 ("backtracking.\n"); |
3764 | |
3765 if (!FAIL_STACK_EMPTY ()) | |
3766 { /* More failure points to try. */ | |
3767 | |
3768 /* If exceeds best match so far, save it. */ | |
318 | 3769 if (!best_regs_set || best_match_p) |
14 | 3770 { |
3771 best_regs_set = true; | |
3772 match_end = d; | |
3773 | |
3774 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | |
3775 | |
3776 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
3777 { | |
3778 best_regstart[mcnt] = regstart[mcnt]; | |
3779 best_regend[mcnt] = regend[mcnt]; | |
3780 } | |
3781 } | |
3782 goto fail; | |
3783 } | |
3784 | |
318 | 3785 /* If no failure points, don't restore garbage. And if |
3786 last match is real best match, don't restore second | |
3787 best one. */ | |
3788 else if (best_regs_set && !best_match_p) | |
14 | 3789 { |
3790 restore_best_regs: | |
3791 /* Restore best match. It may happen that `dend == | |
3792 end_match_1' while the restored d is in string2. | |
3793 For example, the pattern `x.*y.*z' against the | |
3794 strings `x-' and `y-z-', if the two strings are | |
3795 not consecutive in memory. */ | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3796 DEBUG_PRINT1 ("Restoring best registers.\n"); |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3797 |
14 | 3798 d = match_end; |
3799 dend = ((d >= string1 && d <= end1) | |
3800 ? end_match_1 : end_match_2); | |
3801 | |
3802 for (mcnt = 1; mcnt < num_regs; mcnt++) | |
3803 { | |
3804 regstart[mcnt] = best_regstart[mcnt]; | |
3805 regend[mcnt] = best_regend[mcnt]; | |
3806 } | |
3807 } | |
3808 } /* d != end_match_2 */ | |
3809 | |
405 | 3810 succeed_label: |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3811 DEBUG_PRINT1 ("Accepting match.\n"); |
14 | 3812 |
3813 /* If caller wants register contents data back, do it. */ | |
3814 if (regs && !bufp->no_sub) | |
3815 { | |
3816 /* Have the register data arrays been allocated? */ | |
3817 if (bufp->regs_allocated == REGS_UNALLOCATED) | |
3818 { /* No. So allocate them with malloc. We need one | |
3819 extra element beyond `num_regs' for the `-1' marker | |
3820 GNU code uses. */ | |
3821 regs->num_regs = MAX (RE_NREGS, num_regs + 1); | |
3822 regs->start = TALLOC (regs->num_regs, regoff_t); | |
3823 regs->end = TALLOC (regs->num_regs, regoff_t); | |
3824 if (regs->start == NULL || regs->end == NULL) | |
405 | 3825 { |
3826 FREE_VARIABLES (); | |
3827 return -2; | |
3828 } | |
14 | 3829 bufp->regs_allocated = REGS_REALLOCATE; |
3830 } | |
3831 else if (bufp->regs_allocated == REGS_REALLOCATE) | |
3832 { /* Yes. If we need more elements than were already | |
3833 allocated, reallocate them. If we need fewer, just | |
3834 leave it alone. */ | |
3835 if (regs->num_regs < num_regs + 1) | |
3836 { | |
3837 regs->num_regs = num_regs + 1; | |
3838 RETALLOC (regs->start, regs->num_regs, regoff_t); | |
3839 RETALLOC (regs->end, regs->num_regs, regoff_t); | |
3840 if (regs->start == NULL || regs->end == NULL) | |
405 | 3841 { |
3842 FREE_VARIABLES (); | |
3843 return -2; | |
3844 } | |
14 | 3845 } |
3846 } | |
3847 else | |
80 | 3848 { |
3849 /* These braces fend off a "empty body in an else-statement" | |
3850 warning under GCC when assert expands to nothing. */ | |
3851 assert (bufp->regs_allocated == REGS_FIXED); | |
3852 } | |
14 | 3853 |
3854 /* Convert the pointer data in `regstart' and `regend' to | |
3855 indices. Register zero has to be set differently, | |
3856 since we haven't kept track of any info for it. */ | |
3857 if (regs->num_regs > 0) | |
3858 { | |
3859 regs->start[0] = pos; | |
170 | 3860 regs->end[0] = (MATCHING_IN_FIRST_STRING |
3861 ? ((regoff_t) (d - string1)) | |
3862 : ((regoff_t) (d - string2 + size1))); | |
14 | 3863 } |
3864 | |
3865 /* Go through the first `min (num_regs, regs->num_regs)' | |
3866 registers, since that is all we initialized. */ | |
3867 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) | |
3868 { | |
3869 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) | |
3870 regs->start[mcnt] = regs->end[mcnt] = -1; | |
3871 else | |
3872 { | |
170 | 3873 regs->start[mcnt] |
3874 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); | |
3875 regs->end[mcnt] | |
3876 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); | |
14 | 3877 } |
3878 } | |
3879 | |
3880 /* If the regs structure we return has more elements than | |
3881 were in the pattern, set the extra elements to -1. If | |
3882 we (re)allocated the registers, this is the case, | |
3883 because we always allocate enough to have at least one | |
3884 -1 at the end. */ | |
3885 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | |
3886 regs->start[mcnt] = regs->end[mcnt] = -1; | |
3887 } /* regs && !bufp->no_sub */ | |
3888 | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3889 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3890 nfailure_points_pushed, nfailure_points_popped, |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3891 nfailure_points_pushed - nfailure_points_popped); |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
3892 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); |
14 | 3893 |
3894 mcnt = d - pos - (MATCHING_IN_FIRST_STRING | |
3895 ? string1 | |
3896 : string2 - size1); | |
3897 | |
3898 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | |
3899 | |
405 | 3900 FREE_VARIABLES (); |
14 | 3901 return mcnt; |
3902 } | |
3903 | |
3904 /* Otherwise match next pattern command. */ | |
389 | 3905 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) |
14 | 3906 { |
3907 /* Ignore these. Used to ignore the n of succeed_n's which | |
3908 currently have n == 0. */ | |
3909 case no_op: | |
3910 DEBUG_PRINT1 ("EXECUTING no_op.\n"); | |
3911 break; | |
3912 | |
389 | 3913 case succeed: |
3914 DEBUG_PRINT1 ("EXECUTING succeed.\n"); | |
405 | 3915 goto succeed_label; |
14 | 3916 |
3917 /* Match the next n pattern characters exactly. The following | |
3918 byte in the pattern defines n, and the n bytes after that | |
3919 are the characters to match. */ | |
3920 case exactn: | |
3921 mcnt = *p++; | |
3922 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | |
3923 | |
3924 /* This is written out as an if-else so we don't waste time | |
3925 testing `translate' inside the loop. */ | |
3926 if (translate) | |
3927 { | |
3928 do | |
3929 { | |
3930 PREFETCH (); | |
3931 if (translate[(unsigned char) *d++] != (char) *p++) | |
3932 goto fail; | |
3933 } | |
3934 while (--mcnt); | |
3935 } | |
3936 else | |
3937 { | |
3938 do | |
3939 { | |
3940 PREFETCH (); | |
3941 if (*d++ != (char) *p++) goto fail; | |
3942 } | |
3943 while (--mcnt); | |
3944 } | |
3945 SET_REGS_MATCHED (); | |
3946 break; | |
3947 | |
3948 | |
3949 /* Match any character except possibly a newline or a null. */ | |
3950 case anychar: | |
3951 DEBUG_PRINT1 ("EXECUTING anychar.\n"); | |
3952 | |
3953 PREFETCH (); | |
3954 | |
3955 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') | |
3956 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) | |
3957 goto fail; | |
3958 | |
3959 SET_REGS_MATCHED (); | |
3960 DEBUG_PRINT2 (" Matched `%d'.\n", *d); | |
3961 d++; | |
3962 break; | |
3963 | |
3964 | |
3965 case charset: | |
3966 case charset_not: | |
3967 { | |
3968 register unsigned char c; | |
3969 boolean not = (re_opcode_t) *(p - 1) == charset_not; | |
3970 | |
3971 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | |
3972 | |
3973 PREFETCH (); | |
3974 c = TRANSLATE (*d); /* The character to match. */ | |
3975 | |
3976 /* Cast to `unsigned' instead of `unsigned char' in case the | |
3977 bit list is a full 32 bytes long. */ | |
3978 if (c < (unsigned) (*p * BYTEWIDTH) | |
3979 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | |
3980 not = !not; | |
3981 | |
3982 p += 1 + *p; | |
3983 | |
3984 if (!not) goto fail; | |
3985 | |
3986 SET_REGS_MATCHED (); | |
3987 d++; | |
3988 break; | |
3989 } | |
3990 | |
3991 | |
3992 /* The beginning of a group is represented by start_memory. | |
3993 The arguments are the register number in the next byte, and the | |
3994 number of groups inner to this one in the next. The text | |
3995 matched within the group is recorded (in the internal | |
3996 registers data structure) under the register number. */ | |
3997 case start_memory: | |
3998 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | |
3999 | |
4000 /* Find out if this group can match the empty string. */ | |
4001 p1 = p; /* To send to group_match_null_string_p. */ | |
4002 | |
4003 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | |
4004 REG_MATCH_NULL_STRING_P (reg_info[*p]) | |
4005 = group_match_null_string_p (&p1, pend, reg_info); | |
4006 | |
4007 /* Save the position in the string where we were the last time | |
4008 we were at this open-group operator in case the group is | |
4009 operated upon by a repetition operator, e.g., with `(a*)*b' | |
4010 against `ab'; then we want to ignore where we are now in | |
4011 the string in case this attempt to match fails. */ | |
4012 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | |
4013 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | |
4014 : regstart[*p]; | |
4015 DEBUG_PRINT2 (" old_regstart: %d\n", | |
4016 POINTER_TO_OFFSET (old_regstart[*p])); | |
4017 | |
4018 regstart[*p] = d; | |
4019 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | |
4020 | |
4021 IS_ACTIVE (reg_info[*p]) = 1; | |
4022 MATCHED_SOMETHING (reg_info[*p]) = 0; | |
389 | 4023 |
4024 /* Clear this whenever we change the register activity status. */ | |
4025 set_regs_matched_done = 0; | |
14 | 4026 |
4027 /* This is the new highest active register. */ | |
4028 highest_active_reg = *p; | |
4029 | |
4030 /* If nothing was active before, this is the new lowest active | |
4031 register. */ | |
4032 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | |
4033 lowest_active_reg = *p; | |
4034 | |
4035 /* Move past the register number and inner group count. */ | |
4036 p += 2; | |
198 | 4037 just_past_start_mem = p; |
389 | 4038 |
14 | 4039 break; |
4040 | |
4041 | |
4042 /* The stop_memory opcode represents the end of a group. Its | |
4043 arguments are the same as start_memory's: the register | |
4044 number, and the number of inner groups. */ | |
4045 case stop_memory: | |
4046 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | |
4047 | |
4048 /* We need to save the string position the last time we were at | |
4049 this close-group operator in case the group is operated | |
4050 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | |
4051 against `aba'; then we want to ignore where we are now in | |
4052 the string in case this attempt to match fails. */ | |
4053 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | |
4054 ? REG_UNSET (regend[*p]) ? d : regend[*p] | |
4055 : regend[*p]; | |
4056 DEBUG_PRINT2 (" old_regend: %d\n", | |
4057 POINTER_TO_OFFSET (old_regend[*p])); | |
4058 | |
4059 regend[*p] = d; | |
4060 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | |
4061 | |
4062 /* This register isn't active anymore. */ | |
4063 IS_ACTIVE (reg_info[*p]) = 0; | |
389 | 4064 |
4065 /* Clear this whenever we change the register activity status. */ | |
4066 set_regs_matched_done = 0; | |
4067 | |
14 | 4068 /* If this was the only register active, nothing is active |
4069 anymore. */ | |
4070 if (lowest_active_reg == highest_active_reg) | |
4071 { | |
4072 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | |
4073 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
4074 } | |
4075 else | |
4076 { /* We must scan for the new highest active register, since | |
4077 it isn't necessarily one less than now: consider | |
4078 (a(b)c(d(e)f)g). When group 3 ends, after the f), the | |
4079 new highest active register is 1. */ | |
4080 unsigned char r = *p - 1; | |
4081 while (r > 0 && !IS_ACTIVE (reg_info[r])) | |
4082 r--; | |
4083 | |
4084 /* If we end up at register zero, that means that we saved | |
4085 the registers as the result of an `on_failure_jump', not | |
4086 a `start_memory', and we jumped to past the innermost | |
4087 `stop_memory'. For example, in ((.)*) we save | |
4088 registers 1 and 2 as a result of the *, but when we pop | |
4089 back to the second ), we are at the stop_memory 1. | |
4090 Thus, nothing is active. */ | |
4091 if (r == 0) | |
4092 { | |
4093 lowest_active_reg = NO_LOWEST_ACTIVE_REG; | |
4094 highest_active_reg = NO_HIGHEST_ACTIVE_REG; | |
4095 } | |
4096 else | |
4097 highest_active_reg = r; | |
4098 } | |
4099 | |
4100 /* If just failed to match something this time around with a | |
4101 group that's operated on by a repetition operator, try to | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4102 force exit from the ``loop'', and restore the register |
14 | 4103 information for this group that we had before trying this |
4104 last match. */ | |
4105 if ((!MATCHED_SOMETHING (reg_info[*p]) | |
198 | 4106 || just_past_start_mem == p - 1) |
14 | 4107 && (p + 2) < pend) |
4108 { | |
4109 boolean is_a_jump_n = false; | |
4110 | |
4111 p1 = p + 2; | |
4112 mcnt = 0; | |
4113 switch ((re_opcode_t) *p1++) | |
4114 { | |
4115 case jump_n: | |
4116 is_a_jump_n = true; | |
4117 case pop_failure_jump: | |
4118 case maybe_pop_jump: | |
4119 case jump: | |
4120 case dummy_failure_jump: | |
4121 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
4122 if (is_a_jump_n) | |
4123 p1 += 2; | |
4124 break; | |
4125 | |
4126 default: | |
4127 /* do nothing */ ; | |
4128 } | |
4129 p1 += mcnt; | |
4130 | |
4131 /* If the next operation is a jump backwards in the pattern | |
4132 to an on_failure_jump right before the start_memory | |
4133 corresponding to this stop_memory, exit from the loop | |
4134 by forcing a failure after pushing on the stack the | |
4135 on_failure_jump's jump in the pattern, and d. */ | |
4136 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | |
4137 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | |
4138 { | |
4139 /* If this group ever matched anything, then restore | |
4140 what its registers were before trying this last | |
4141 failed match, e.g., with `(a*)*b' against `ab' for | |
4142 regstart[1], and, e.g., with `((a*)*(b*)*)*' | |
4143 against `aba' for regend[3]. | |
4144 | |
4145 Also restore the registers for inner groups for, | |
4146 e.g., `((a*)(b*))*' against `aba' (register 3 would | |
4147 otherwise get trashed). */ | |
4148 | |
4149 if (EVER_MATCHED_SOMETHING (reg_info[*p])) | |
4150 { | |
4151 unsigned r; | |
4152 | |
4153 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | |
4154 | |
4155 /* Restore this and inner groups' (if any) registers. */ | |
4156 for (r = *p; r < *p + *(p + 1); r++) | |
4157 { | |
4158 regstart[r] = old_regstart[r]; | |
4159 | |
4160 /* xx why this test? */ | |
405 | 4161 if (old_regend[r] >= regstart[r]) |
14 | 4162 regend[r] = old_regend[r]; |
4163 } | |
4164 } | |
4165 p1++; | |
4166 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
4167 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | |
4168 | |
4169 goto fail; | |
4170 } | |
4171 } | |
4172 | |
4173 /* Move past the register number and the inner group count. */ | |
4174 p += 2; | |
4175 break; | |
4176 | |
4177 | |
4178 /* \<digit> has been turned into a `duplicate' command which is | |
4179 followed by the numeric value of <digit> as the register number. */ | |
4180 case duplicate: | |
4181 { | |
4182 register const char *d2, *dend2; | |
4183 int regno = *p++; /* Get which register to match against. */ | |
4184 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | |
4185 | |
4186 /* Can't back reference a group which we've never matched. */ | |
4187 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | |
4188 goto fail; | |
4189 | |
4190 /* Where in input to try to start matching. */ | |
4191 d2 = regstart[regno]; | |
4192 | |
4193 /* Where to stop matching; if both the place to start and | |
4194 the place to stop matching are in the same string, then | |
4195 set to the place to stop, otherwise, for now have to use | |
4196 the end of the first string. */ | |
4197 | |
4198 dend2 = ((FIRST_STRING_P (regstart[regno]) | |
4199 == FIRST_STRING_P (regend[regno])) | |
4200 ? regend[regno] : end_match_1); | |
4201 for (;;) | |
4202 { | |
4203 /* If necessary, advance to next segment in register | |
4204 contents. */ | |
4205 while (d2 == dend2) | |
4206 { | |
4207 if (dend2 == end_match_2) break; | |
4208 if (dend2 == regend[regno]) break; | |
4209 | |
4210 /* End of string1 => advance to string2. */ | |
4211 d2 = string2; | |
4212 dend2 = regend[regno]; | |
4213 } | |
4214 /* At end of register contents => success */ | |
4215 if (d2 == dend2) break; | |
4216 | |
4217 /* If necessary, advance to next segment in data. */ | |
4218 PREFETCH (); | |
4219 | |
4220 /* How many characters left in this segment to match. */ | |
4221 mcnt = dend - d; | |
4222 | |
4223 /* Want how many consecutive characters we can match in | |
4224 one shot, so, if necessary, adjust the count. */ | |
4225 if (mcnt > dend2 - d2) | |
4226 mcnt = dend2 - d2; | |
4227 | |
4228 /* Compare that many; failure if mismatch, else move | |
4229 past them. */ | |
4230 if (translate | |
4231 ? bcmp_translate (d, d2, mcnt, translate) | |
4232 : bcmp (d, d2, mcnt)) | |
4233 goto fail; | |
4234 d += mcnt, d2 += mcnt; | |
389 | 4235 |
4236 /* Do this because we've match some characters. */ | |
4237 SET_REGS_MATCHED (); | |
14 | 4238 } |
4239 } | |
4240 break; | |
4241 | |
4242 | |
4243 /* begline matches the empty string at the beginning of the string | |
4244 (unless `not_bol' is set in `bufp'), and, if | |
4245 `newline_anchor' is set, after newlines. */ | |
4246 case begline: | |
4247 DEBUG_PRINT1 ("EXECUTING begline.\n"); | |
4248 | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4249 if (AT_STRINGS_BEG (d)) |
14 | 4250 { |
4251 if (!bufp->not_bol) break; | |
4252 } | |
4253 else if (d[-1] == '\n' && bufp->newline_anchor) | |
4254 { | |
4255 break; | |
4256 } | |
4257 /* In all other cases, we fail. */ | |
4258 goto fail; | |
4259 | |
4260 | |
4261 /* endline is the dual of begline. */ | |
4262 case endline: | |
4263 DEBUG_PRINT1 ("EXECUTING endline.\n"); | |
4264 | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4265 if (AT_STRINGS_END (d)) |
14 | 4266 { |
4267 if (!bufp->not_eol) break; | |
4268 } | |
4269 | |
4270 /* We have to ``prefetch'' the next character. */ | |
4271 else if ((d == end1 ? *string2 : *d) == '\n' | |
4272 && bufp->newline_anchor) | |
4273 { | |
4274 break; | |
4275 } | |
4276 goto fail; | |
4277 | |
4278 | |
4279 /* Match at the very beginning of the data. */ | |
4280 case begbuf: | |
4281 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4282 if (AT_STRINGS_BEG (d)) |
14 | 4283 break; |
4284 goto fail; | |
4285 | |
4286 | |
4287 /* Match at the very end of the data. */ | |
4288 case endbuf: | |
4289 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4290 if (AT_STRINGS_END (d)) |
14 | 4291 break; |
4292 goto fail; | |
4293 | |
4294 | |
4295 /* on_failure_keep_string_jump is used to optimize `.*\n'. It | |
4296 pushes NULL as the value for the string on the stack. Then | |
4297 `pop_failure_point' will keep the current value for the | |
4298 string, instead of restoring it. To see why, consider | |
4299 matching `foo\nbar' against `.*\n'. The .* matches the foo; | |
4300 then the . fails against the \n. But the next thing we want | |
4301 to do is match the \n against the \n; if we restored the | |
4302 string value, we would be back at the foo. | |
4303 | |
4304 Because this is used only in specific cases, we don't need to | |
4305 check all the things that `on_failure_jump' does, to make | |
4306 sure the right things get saved on the stack. Hence we don't | |
4307 share its code. The only reason to push anything on the | |
4308 stack at all is that otherwise we would have to change | |
4309 `anychar's code to do something besides goto fail in this | |
4310 case; that seems worse than this. */ | |
4311 case on_failure_keep_string_jump: | |
4312 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | |
4313 | |
4314 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
4315 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | |
4316 | |
4317 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); | |
4318 break; | |
4319 | |
4320 | |
4321 /* Uses of on_failure_jump: | |
4322 | |
4323 Each alternative starts with an on_failure_jump that points | |
4324 to the beginning of the next alternative. Each alternative | |
4325 except the last ends with a jump that in effect jumps past | |
4326 the rest of the alternatives. (They really jump to the | |
4327 ending jump of the following alternative, because tensioning | |
4328 these jumps is a hassle.) | |
4329 | |
4330 Repeats start with an on_failure_jump that points past both | |
4331 the repetition text and either the following jump or | |
4332 pop_failure_jump back to this on_failure_jump. */ | |
4333 case on_failure_jump: | |
4334 on_failure: | |
4335 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | |
4336 | |
4337 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
4338 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | |
4339 | |
4340 /* If this on_failure_jump comes right before a group (i.e., | |
4341 the original * applied to a group), save the information | |
4342 for that group and all inner ones, so that if we fail back | |
4343 to this point, the group's information will be correct. | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4344 For example, in \(a*\)*\1, we need the preceding group, |
14 | 4345 and in \(\(a*\)b*\)\2, we need the inner group. */ |
4346 | |
4347 /* We can't use `p' to check ahead because we push | |
4348 a failure point to `p + mcnt' after we do this. */ | |
4349 p1 = p; | |
4350 | |
4351 /* We need to skip no_op's before we look for the | |
4352 start_memory in case this on_failure_jump is happening as | |
4353 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | |
4354 against aba. */ | |
4355 while (p1 < pend && (re_opcode_t) *p1 == no_op) | |
4356 p1++; | |
4357 | |
4358 if (p1 < pend && (re_opcode_t) *p1 == start_memory) | |
4359 { | |
4360 /* We have a new highest active register now. This will | |
4361 get reset at the start_memory we are about to get to, | |
4362 but we will have saved all the registers relevant to | |
4363 this repetition op, as described above. */ | |
4364 highest_active_reg = *(p1 + 1) + *(p1 + 2); | |
4365 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | |
4366 lowest_active_reg = *(p1 + 1); | |
4367 } | |
4368 | |
4369 DEBUG_PRINT1 (":\n"); | |
4370 PUSH_FAILURE_POINT (p + mcnt, d, -2); | |
4371 break; | |
4372 | |
4373 | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4374 /* A smart repeat ends with `maybe_pop_jump'. |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4375 We change it to either `pop_failure_jump' or `jump'. */ |
14 | 4376 case maybe_pop_jump: |
4377 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
4378 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | |
4379 { | |
4380 register unsigned char *p2 = p; | |
4381 | |
4382 /* Compare the beginning of the repeat with what in the | |
4383 pattern follows its end. If we can establish that there | |
4384 is nothing that they would both match, i.e., that we | |
4385 would have to backtrack because of (as in, e.g., `a*a') | |
4386 then we can change to pop_failure_jump, because we'll | |
4387 never have to backtrack. | |
4388 | |
4389 This is not true in the case of alternatives: in | |
4390 `(a|ab)*' we do need to backtrack to the `ab' alternative | |
4391 (e.g., if the string was `ab'). But instead of trying to | |
4392 detect that here, the alternative has put on a dummy | |
4393 failure point which is what we will end up popping. */ | |
4394 | |
103 | 4395 /* Skip over open/close-group commands. |
4396 If what follows this loop is a ...+ construct, | |
4397 look at what begins its body, since we will have to | |
4398 match at least one of that. */ | |
4399 while (1) | |
4400 { | |
4401 if (p2 + 2 < pend | |
4402 && ((re_opcode_t) *p2 == stop_memory | |
4403 || (re_opcode_t) *p2 == start_memory)) | |
4404 p2 += 3; | |
4405 else if (p2 + 6 < pend | |
4406 && (re_opcode_t) *p2 == dummy_failure_jump) | |
4407 p2 += 6; | |
4408 else | |
4409 break; | |
4410 } | |
4411 | |
4412 p1 = p + mcnt; | |
4413 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | |
4414 to the `maybe_finalize_jump' of this case. Examine what | |
4415 follows. */ | |
14 | 4416 |
4417 /* If we're at the end of the pattern, we can change. */ | |
4418 if (p2 == pend) | |
37 | 4419 { |
4420 /* Consider what happens when matching ":\(.*\)" | |
4421 against ":/". I don't really understand this code | |
4422 yet. */ | |
14 | 4423 p[-3] = (unsigned char) pop_failure_jump; |
37 | 4424 DEBUG_PRINT1 |
4425 (" End of pattern: change to `pop_failure_jump'.\n"); | |
14 | 4426 } |
4427 | |
4428 else if ((re_opcode_t) *p2 == exactn | |
4429 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | |
4430 { | |
4431 register unsigned char c | |
4432 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |
103 | 4433 |
14 | 4434 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4435 { |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4436 p[-3] = (unsigned char) pop_failure_jump; |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4437 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4438 c, p1[5]); |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4439 } |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4440 |
14 | 4441 else if ((re_opcode_t) p1[3] == charset |
4442 || (re_opcode_t) p1[3] == charset_not) | |
4443 { | |
4444 int not = (re_opcode_t) p1[3] == charset_not; | |
4445 | |
4446 if (c < (unsigned char) (p1[4] * BYTEWIDTH) | |
4447 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | |
4448 not = !not; | |
4449 | |
4450 /* `not' is equal to 1 if c would match, which means | |
4451 that we can't change to pop_failure_jump. */ | |
4452 if (!not) | |
4453 { | |
4454 p[-3] = (unsigned char) pop_failure_jump; | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4455 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); |
14 | 4456 } |
4457 } | |
4458 } | |
103 | 4459 else if ((re_opcode_t) *p2 == charset) |
4460 { | |
217 | 4461 #ifdef DEBUG |
103 | 4462 register unsigned char c |
4463 = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |
217 | 4464 #endif |
103 | 4465 |
4466 if ((re_opcode_t) p1[3] == exactn | |
318 | 4467 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[4] |
103 | 4468 && (p2[1 + p1[4] / BYTEWIDTH] |
4469 & (1 << (p1[4] % BYTEWIDTH))))) | |
4470 { | |
4471 p[-3] = (unsigned char) pop_failure_jump; | |
4472 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | |
4473 c, p1[5]); | |
4474 } | |
4475 | |
4476 else if ((re_opcode_t) p1[3] == charset_not) | |
4477 { | |
4478 int idx; | |
4479 /* We win if the charset_not inside the loop | |
4480 lists every character listed in the charset after. */ | |
318 | 4481 for (idx = 0; idx < (int) p2[1]; idx++) |
103 | 4482 if (! (p2[2 + idx] == 0 |
318 | 4483 || (idx < (int) p1[4] |
103 | 4484 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) |
4485 break; | |
4486 | |
4487 if (idx == p2[1]) | |
4488 { | |
4489 p[-3] = (unsigned char) pop_failure_jump; | |
4490 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |
4491 } | |
4492 } | |
4493 else if ((re_opcode_t) p1[3] == charset) | |
4494 { | |
4495 int idx; | |
4496 /* We win if the charset inside the loop | |
4497 has no overlap with the one after the loop. */ | |
318 | 4498 for (idx = 0; |
4499 idx < (int) p2[1] && idx < (int) p1[4]; | |
4500 idx++) | |
103 | 4501 if ((p2[2 + idx] & p1[5 + idx]) != 0) |
4502 break; | |
4503 | |
4504 if (idx == p2[1] || idx == p1[4]) | |
4505 { | |
4506 p[-3] = (unsigned char) pop_failure_jump; | |
4507 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |
4508 } | |
4509 } | |
4510 } | |
14 | 4511 } |
4512 p -= 2; /* Point at relative address again. */ | |
4513 if ((re_opcode_t) p[-1] != pop_failure_jump) | |
4514 { | |
4515 p[-1] = (unsigned char) jump; | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4516 DEBUG_PRINT1 (" Match => jump.\n"); |
14 | 4517 goto unconditional_jump; |
4518 } | |
4519 /* Note fall through. */ | |
4520 | |
4521 | |
4522 /* The end of a simple repeat has a pop_failure_jump back to | |
4523 its matching on_failure_jump, where the latter will push a | |
4524 failure point. The pop_failure_jump takes off failure | |
4525 points put on by this pop_failure_jump's matching | |
4526 on_failure_jump; we got through the pattern to here from the | |
4527 matching on_failure_jump, so didn't fail. */ | |
4528 case pop_failure_jump: | |
4529 { | |
4530 /* We need to pass separate storage for the lowest and | |
4531 highest registers, even though we don't care about the | |
4532 actual values. Otherwise, we will restore only one | |
4533 register from the stack, since lowest will == highest in | |
4534 `pop_failure_point'. */ | |
389 | 4535 unsigned dummy_low_reg, dummy_high_reg; |
14 | 4536 unsigned char *pdummy; |
4537 const char *sdummy; | |
4538 | |
4539 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | |
4540 POP_FAILURE_POINT (sdummy, pdummy, | |
4541 dummy_low_reg, dummy_high_reg, | |
4542 reg_dummy, reg_dummy, reg_info_dummy); | |
4543 } | |
4544 /* Note fall through. */ | |
4545 | |
4546 | |
4547 /* Unconditionally jump (without popping any failure points). */ | |
4548 case jump: | |
4549 unconditional_jump: | |
4550 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | |
4551 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | |
4552 p += mcnt; /* Do the jump. */ | |
4553 DEBUG_PRINT2 ("(to 0x%x).\n", p); | |
4554 break; | |
4555 | |
4556 | |
4557 /* We need this opcode so we can detect where alternatives end | |
4558 in `group_match_null_string_p' et al. */ | |
4559 case jump_past_alt: | |
4560 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | |
4561 goto unconditional_jump; | |
4562 | |
4563 | |
4564 /* Normally, the on_failure_jump pushes a failure point, which | |
4565 then gets popped at pop_failure_jump. We will end up at | |
4566 pop_failure_jump, also, and with a pattern of, say, `a+', we | |
4567 are skipping over the on_failure_jump, so we have to push | |
4568 something meaningless for pop_failure_jump to pop. */ | |
4569 case dummy_failure_jump: | |
4570 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | |
4571 /* It doesn't matter what we push for the string here. What | |
4572 the code at `fail' tests is the value for the pattern. */ | |
4573 PUSH_FAILURE_POINT (0, 0, -2); | |
4574 goto unconditional_jump; | |
4575 | |
4576 | |
4577 /* At the end of an alternative, we need to push a dummy failure | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4578 point in case we are followed by a `pop_failure_jump', because |
14 | 4579 we don't want the failure point for the alternative to be |
4580 popped. For example, matching `(a|ab)*' against `aab' | |
4581 requires that we match the `ab' alternative. */ | |
4582 case push_dummy_failure: | |
4583 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | |
4584 /* See comments just above at `dummy_failure_jump' about the | |
4585 two zeroes. */ | |
4586 PUSH_FAILURE_POINT (0, 0, -2); | |
4587 break; | |
4588 | |
4589 /* Have to succeed matching what follows at least n times. | |
4590 After that, handle like `on_failure_jump'. */ | |
4591 case succeed_n: | |
4592 EXTRACT_NUMBER (mcnt, p + 2); | |
4593 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | |
4594 | |
4595 assert (mcnt >= 0); | |
4596 /* Originally, this is how many times we HAVE to succeed. */ | |
4597 if (mcnt > 0) | |
4598 { | |
4599 mcnt--; | |
4600 p += 2; | |
4601 STORE_NUMBER_AND_INCR (p, mcnt); | |
4602 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | |
4603 } | |
4604 else if (mcnt == 0) | |
4605 { | |
4606 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | |
4607 p[2] = (unsigned char) no_op; | |
4608 p[3] = (unsigned char) no_op; | |
4609 goto on_failure; | |
4610 } | |
4611 break; | |
4612 | |
4613 case jump_n: | |
4614 EXTRACT_NUMBER (mcnt, p + 2); | |
4615 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | |
4616 | |
4617 /* Originally, this is how many times we CAN jump. */ | |
4618 if (mcnt) | |
4619 { | |
4620 mcnt--; | |
4621 STORE_NUMBER (p + 2, mcnt); | |
4622 goto unconditional_jump; | |
4623 } | |
4624 /* If don't have to jump any more, skip over the rest of command. */ | |
4625 else | |
4626 p += 4; | |
4627 break; | |
4628 | |
4629 case set_number_at: | |
4630 { | |
4631 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | |
4632 | |
4633 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
4634 p1 = p + mcnt; | |
4635 EXTRACT_NUMBER_AND_INCR (mcnt, p); | |
4636 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | |
4637 STORE_NUMBER (p1, mcnt); | |
4638 break; | |
4639 } | |
4640 | |
4641 case wordbound: | |
4642 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | |
4643 if (AT_WORD_BOUNDARY (d)) | |
4644 break; | |
4645 goto fail; | |
4646 | |
4647 case notwordbound: | |
4648 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | |
4649 if (AT_WORD_BOUNDARY (d)) | |
4650 goto fail; | |
4651 break; | |
4652 | |
4653 case wordbeg: | |
4654 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4655 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) |
14 | 4656 break; |
4657 goto fail; | |
4658 | |
4659 case wordend: | |
4660 DEBUG_PRINT1 ("EXECUTING wordend.\n"); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4661 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4662 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) |
14 | 4663 break; |
4664 goto fail; | |
4665 | |
4666 #ifdef emacs | |
4667 case before_dot: | |
4668 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | |
4669 if (PTR_CHAR_POS ((unsigned char *) d) >= point) | |
4670 goto fail; | |
4671 break; | |
4672 | |
4673 case at_dot: | |
4674 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | |
4675 if (PTR_CHAR_POS ((unsigned char *) d) != point) | |
4676 goto fail; | |
4677 break; | |
4678 | |
4679 case after_dot: | |
4680 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | |
4681 if (PTR_CHAR_POS ((unsigned char *) d) <= point) | |
4682 goto fail; | |
4683 break; | |
217 | 4684 #if 0 /* not emacs19 */ |
14 | 4685 case at_dot: |
4686 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | |
4687 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point) | |
4688 goto fail; | |
4689 break; | |
4690 #endif /* not emacs19 */ | |
4691 | |
4692 case syntaxspec: | |
4693 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | |
4694 mcnt = *p++; | |
4695 goto matchsyntax; | |
4696 | |
4697 case wordchar: | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4698 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); |
14 | 4699 mcnt = (int) Sword; |
4700 matchsyntax: | |
4701 PREFETCH (); | |
198 | 4702 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
4703 d++; | |
4704 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) | |
4705 goto fail; | |
14 | 4706 SET_REGS_MATCHED (); |
4707 break; | |
4708 | |
4709 case notsyntaxspec: | |
4710 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | |
4711 mcnt = *p++; | |
4712 goto matchnotsyntax; | |
4713 | |
4714 case notwordchar: | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4715 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); |
14 | 4716 mcnt = (int) Sword; |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4717 matchnotsyntax: |
14 | 4718 PREFETCH (); |
198 | 4719 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ |
4720 d++; | |
4721 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) | |
4722 goto fail; | |
14 | 4723 SET_REGS_MATCHED (); |
4724 break; | |
4725 | |
4726 #else /* not emacs */ | |
4727 case wordchar: | |
4728 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | |
4729 PREFETCH (); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4730 if (!WORDCHAR_P (d)) |
14 | 4731 goto fail; |
4732 SET_REGS_MATCHED (); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4733 d++; |
14 | 4734 break; |
4735 | |
4736 case notwordchar: | |
4737 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | |
4738 PREFETCH (); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4739 if (WORDCHAR_P (d)) |
14 | 4740 goto fail; |
4741 SET_REGS_MATCHED (); | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
4742 d++; |
14 | 4743 break; |
4744 #endif /* not emacs */ | |
4745 | |
4746 default: | |
4747 abort (); | |
4748 } | |
4749 continue; /* Successfully executed one pattern command; keep going. */ | |
4750 | |
4751 | |
4752 /* We goto here if a matching operation fails. */ | |
4753 fail: | |
4754 if (!FAIL_STACK_EMPTY ()) | |
4755 { /* A restart point is known. Restore to that state. */ | |
4756 DEBUG_PRINT1 ("\nFAIL:\n"); | |
4757 POP_FAILURE_POINT (d, p, | |
4758 lowest_active_reg, highest_active_reg, | |
4759 regstart, regend, reg_info); | |
4760 | |
4761 /* If this failure point is a dummy, try the next one. */ | |
4762 if (!p) | |
4763 goto fail; | |
4764 | |
4765 /* If we failed to the end of the pattern, don't examine *p. */ | |
4766 assert (p <= pend); | |
4767 if (p < pend) | |
4768 { | |
4769 boolean is_a_jump_n = false; | |
4770 | |
4771 /* If failed to a backwards jump that's part of a repetition | |
4772 loop, need to pop this failure point and use the next one. */ | |
4773 switch ((re_opcode_t) *p) | |
4774 { | |
4775 case jump_n: | |
4776 is_a_jump_n = true; | |
4777 case maybe_pop_jump: | |
4778 case pop_failure_jump: | |
4779 case jump: | |
4780 p1 = p + 1; | |
4781 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
4782 p1 += mcnt; | |
4783 | |
4784 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | |
4785 || (!is_a_jump_n | |
4786 && (re_opcode_t) *p1 == on_failure_jump)) | |
4787 goto fail; | |
4788 break; | |
4789 default: | |
4790 /* do nothing */ ; | |
4791 } | |
4792 } | |
4793 | |
4794 if (d >= string1 && d <= end1) | |
4795 dend = end_match_1; | |
4796 } | |
4797 else | |
4798 break; /* Matching at this starting point really fails. */ | |
4799 } /* for (;;) */ | |
4800 | |
4801 if (best_regs_set) | |
4802 goto restore_best_regs; | |
4803 | |
4804 FREE_VARIABLES (); | |
4805 | |
4806 return -1; /* Failure to match. */ | |
4807 } /* re_match_2 */ | |
4808 | |
4809 /* Subroutine definitions for re_match_2. */ | |
4810 | |
4811 | |
4812 /* We are passed P pointing to a register number after a start_memory. | |
4813 | |
4814 Return true if the pattern up to the corresponding stop_memory can | |
4815 match the empty string, and false otherwise. | |
4816 | |
4817 If we find the matching stop_memory, sets P to point to one past its number. | |
4818 Otherwise, sets P to an undefined byte less than or equal to END. | |
4819 | |
4820 We don't handle duplicates properly (yet). */ | |
4821 | |
4822 static boolean | |
4823 group_match_null_string_p (p, end, reg_info) | |
4824 unsigned char **p, *end; | |
4825 register_info_type *reg_info; | |
4826 { | |
4827 int mcnt; | |
4828 /* Point to after the args to the start_memory. */ | |
4829 unsigned char *p1 = *p + 2; | |
4830 | |
4831 while (p1 < end) | |
4832 { | |
4833 /* Skip over opcodes that can match nothing, and return true or | |
4834 false, as appropriate, when we get to one that can't, or to the | |
4835 matching stop_memory. */ | |
4836 | |
4837 switch ((re_opcode_t) *p1) | |
4838 { | |
4839 /* Could be either a loop or a series of alternatives. */ | |
4840 case on_failure_jump: | |
4841 p1++; | |
4842 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
4843 | |
4844 /* If the next operation is not a jump backwards in the | |
4845 pattern. */ | |
4846 | |
4847 if (mcnt >= 0) | |
4848 { | |
4849 /* Go through the on_failure_jumps of the alternatives, | |
4850 seeing if any of the alternatives cannot match nothing. | |
4851 The last alternative starts with only a jump, | |
4852 whereas the rest start with on_failure_jump and end | |
4853 with a jump, e.g., here is the pattern for `a|b|c': | |
4854 | |
4855 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | |
4856 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | |
4857 /exactn/1/c | |
4858 | |
4859 So, we have to first go through the first (n-1) | |
4860 alternatives and then deal with the last one separately. */ | |
4861 | |
4862 | |
4863 /* Deal with the first (n-1) alternatives, which start | |
4864 with an on_failure_jump (see above) that jumps to right | |
4865 past a jump_past_alt. */ | |
4866 | |
4867 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | |
4868 { | |
4869 /* `mcnt' holds how many bytes long the alternative | |
4870 is, including the ending `jump_past_alt' and | |
4871 its number. */ | |
4872 | |
4873 if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | |
4874 reg_info)) | |
4875 return false; | |
4876 | |
4877 /* Move to right after this alternative, including the | |
4878 jump_past_alt. */ | |
4879 p1 += mcnt; | |
4880 | |
4881 /* Break if it's the beginning of an n-th alternative | |
4882 that doesn't begin with an on_failure_jump. */ | |
4883 if ((re_opcode_t) *p1 != on_failure_jump) | |
4884 break; | |
4885 | |
4886 /* Still have to check that it's not an n-th | |
4887 alternative that starts with an on_failure_jump. */ | |
4888 p1++; | |
4889 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
4890 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | |
4891 { | |
4892 /* Get to the beginning of the n-th alternative. */ | |
4893 p1 -= 3; | |
4894 break; | |
4895 } | |
4896 } | |
4897 | |
4898 /* Deal with the last alternative: go back and get number | |
4899 of the `jump_past_alt' just before it. `mcnt' contains | |
4900 the length of the alternative. */ | |
4901 EXTRACT_NUMBER (mcnt, p1 - 2); | |
4902 | |
4903 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | |
4904 return false; | |
4905 | |
4906 p1 += mcnt; /* Get past the n-th alternative. */ | |
4907 } /* if mcnt > 0 */ | |
4908 break; | |
4909 | |
4910 | |
4911 case stop_memory: | |
4912 assert (p1[1] == **p); | |
4913 *p = p1 + 2; | |
4914 return true; | |
4915 | |
4916 | |
4917 default: | |
4918 if (!common_op_match_null_string_p (&p1, end, reg_info)) | |
4919 return false; | |
4920 } | |
4921 } /* while p1 < end */ | |
4922 | |
4923 return false; | |
4924 } /* group_match_null_string_p */ | |
4925 | |
4926 | |
4927 /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | |
4928 It expects P to be the first byte of a single alternative and END one | |
4929 byte past the last. The alternative can contain groups. */ | |
4930 | |
4931 static boolean | |
4932 alt_match_null_string_p (p, end, reg_info) | |
4933 unsigned char *p, *end; | |
4934 register_info_type *reg_info; | |
4935 { | |
4936 int mcnt; | |
4937 unsigned char *p1 = p; | |
4938 | |
4939 while (p1 < end) | |
4940 { | |
4941 /* Skip over opcodes that can match nothing, and break when we get | |
4942 to one that can't. */ | |
4943 | |
4944 switch ((re_opcode_t) *p1) | |
4945 { | |
4946 /* It's a loop. */ | |
4947 case on_failure_jump: | |
4948 p1++; | |
4949 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
4950 p1 += mcnt; | |
4951 break; | |
4952 | |
4953 default: | |
4954 if (!common_op_match_null_string_p (&p1, end, reg_info)) | |
4955 return false; | |
4956 } | |
4957 } /* while p1 < end */ | |
4958 | |
4959 return true; | |
4960 } /* alt_match_null_string_p */ | |
4961 | |
4962 | |
4963 /* Deals with the ops common to group_match_null_string_p and | |
4964 alt_match_null_string_p. | |
4965 | |
4966 Sets P to one after the op and its arguments, if any. */ | |
4967 | |
4968 static boolean | |
4969 common_op_match_null_string_p (p, end, reg_info) | |
4970 unsigned char **p, *end; | |
4971 register_info_type *reg_info; | |
4972 { | |
4973 int mcnt; | |
4974 boolean ret; | |
4975 int reg_no; | |
4976 unsigned char *p1 = *p; | |
4977 | |
4978 switch ((re_opcode_t) *p1++) | |
4979 { | |
4980 case no_op: | |
4981 case begline: | |
4982 case endline: | |
4983 case begbuf: | |
4984 case endbuf: | |
4985 case wordbeg: | |
4986 case wordend: | |
4987 case wordbound: | |
4988 case notwordbound: | |
4989 #ifdef emacs | |
4990 case before_dot: | |
4991 case at_dot: | |
4992 case after_dot: | |
4993 #endif | |
4994 break; | |
4995 | |
4996 case start_memory: | |
4997 reg_no = *p1; | |
4998 assert (reg_no > 0 && reg_no <= MAX_REGNUM); | |
4999 ret = group_match_null_string_p (&p1, end, reg_info); | |
5000 | |
5001 /* Have to set this here in case we're checking a group which | |
5002 contains a group and a back reference to it. */ | |
5003 | |
5004 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | |
5005 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | |
5006 | |
5007 if (!ret) | |
5008 return false; | |
5009 break; | |
5010 | |
5011 /* If this is an optimized succeed_n for zero times, make the jump. */ | |
5012 case jump: | |
5013 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
5014 if (mcnt >= 0) | |
5015 p1 += mcnt; | |
5016 else | |
5017 return false; | |
5018 break; | |
5019 | |
5020 case succeed_n: | |
5021 /* Get to the number of times to succeed. */ | |
5022 p1 += 2; | |
5023 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
5024 | |
5025 if (mcnt == 0) | |
5026 { | |
5027 p1 -= 4; | |
5028 EXTRACT_NUMBER_AND_INCR (mcnt, p1); | |
5029 p1 += mcnt; | |
5030 } | |
5031 else | |
5032 return false; | |
5033 break; | |
5034 | |
5035 case duplicate: | |
5036 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | |
5037 return false; | |
5038 break; | |
5039 | |
5040 case set_number_at: | |
5041 p1 += 4; | |
5042 | |
5043 default: | |
5044 /* All other opcodes mean we cannot match the empty string. */ | |
5045 return false; | |
5046 } | |
5047 | |
5048 *p = p1; | |
5049 return true; | |
5050 } /* common_op_match_null_string_p */ | |
5051 | |
5052 | |
5053 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | |
5054 bytes; nonzero otherwise. */ | |
5055 | |
5056 static int | |
5057 bcmp_translate (s1, s2, len, translate) | |
5058 unsigned char *s1, *s2; | |
5059 register int len; | |
5060 char *translate; | |
5061 { | |
5062 register unsigned char *p1 = s1, *p2 = s2; | |
5063 while (len) | |
5064 { | |
5065 if (translate[*p1++] != translate[*p2++]) return 1; | |
5066 len--; | |
5067 } | |
5068 return 0; | |
5069 } | |
5070 | |
5071 /* Entry points for GNU code. */ | |
5072 | |
5073 /* re_compile_pattern is the GNU regular expression compiler: it | |
5074 compiles PATTERN (of length SIZE) and puts the result in BUFP. | |
5075 Returns 0 if the pattern was valid, otherwise an error string. | |
5076 | |
5077 Assumes the `allocated' (and perhaps `buffer') and `translate' fields | |
5078 are set in BUFP on entry. | |
5079 | |
5080 We call regex_compile to do the actual compilation. */ | |
5081 | |
5082 const char * | |
5083 re_compile_pattern (pattern, length, bufp) | |
5084 const char *pattern; | |
5085 int length; | |
5086 struct re_pattern_buffer *bufp; | |
5087 { | |
5088 reg_errcode_t ret; | |
5089 | |
5090 /* GNU code is written to assume at least RE_NREGS registers will be set | |
5091 (and at least one extra will be -1). */ | |
5092 bufp->regs_allocated = REGS_UNALLOCATED; | |
5093 | |
5094 /* And GNU code determines whether or not to get register information | |
5095 by passing null for the REGS argument to re_match, etc., not by | |
5096 setting no_sub. */ | |
5097 bufp->no_sub = 0; | |
5098 | |
5099 /* Match anchors at newline. */ | |
5100 bufp->newline_anchor = 1; | |
5101 | |
5102 ret = regex_compile (pattern, length, re_syntax_options, bufp); | |
5103 | |
389 | 5104 if (!ret) |
5105 return NULL; | |
5106 return gettext (re_error_msgid[(int) ret]); | |
14 | 5107 } |
5108 | |
5109 /* Entry points compatible with 4.2 BSD regex library. We don't define | |
340 | 5110 them unless specifically requested. */ |
5111 | |
5112 #ifdef _REGEX_RE_COMP | |
14 | 5113 |
5114 /* BSD has one and only one pattern buffer. */ | |
5115 static struct re_pattern_buffer re_comp_buf; | |
5116 | |
5117 char * | |
5118 re_comp (s) | |
5119 const char *s; | |
5120 { | |
5121 reg_errcode_t ret; | |
5122 | |
5123 if (!s) | |
5124 { | |
5125 if (!re_comp_buf.buffer) | |
389 | 5126 return gettext ("No previous regular expression"); |
14 | 5127 return 0; |
5128 } | |
5129 | |
5130 if (!re_comp_buf.buffer) | |
5131 { | |
5132 re_comp_buf.buffer = (unsigned char *) malloc (200); | |
5133 if (re_comp_buf.buffer == NULL) | |
389 | 5134 return gettext (re_error_msgid[(int) REG_ESPACE]); |
14 | 5135 re_comp_buf.allocated = 200; |
5136 | |
5137 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); | |
5138 if (re_comp_buf.fastmap == NULL) | |
389 | 5139 return gettext (re_error_msgid[(int) REG_ESPACE]); |
14 | 5140 } |
5141 | |
5142 /* Since `re_exec' always passes NULL for the `regs' argument, we | |
5143 don't need to initialize the pattern buffer fields which affect it. */ | |
5144 | |
5145 /* Match anchors at newlines. */ | |
5146 re_comp_buf.newline_anchor = 1; | |
5147 | |
5148 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | |
5149 | |
389 | 5150 if (!ret) |
5151 return NULL; | |
5152 | |
5153 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | |
5154 return (char *) gettext (re_error_msgid[(int) ret]); | |
14 | 5155 } |
5156 | |
5157 | |
5158 int | |
5159 re_exec (s) | |
5160 const char *s; | |
5161 { | |
5162 const int len = strlen (s); | |
5163 return | |
5164 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | |
5165 } | |
340 | 5166 #endif /* _REGEX_RE_COMP */ |
14 | 5167 |
5168 /* POSIX.2 functions. Don't define these for Emacs. */ | |
5169 | |
5170 #ifndef emacs | |
5171 | |
5172 /* regcomp takes a regular expression as a string and compiles it. | |
5173 | |
5174 PREG is a regex_t *. We do not expect any fields to be initialized, | |
5175 since POSIX says we shouldn't. Thus, we set | |
5176 | |
5177 `buffer' to the compiled pattern; | |
5178 `used' to the length of the compiled pattern; | |
5179 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | |
5180 REG_EXTENDED bit in CFLAGS is set; otherwise, to | |
5181 RE_SYNTAX_POSIX_BASIC; | |
5182 `newline_anchor' to REG_NEWLINE being set in CFLAGS; | |
5183 `fastmap' and `fastmap_accurate' to zero; | |
5184 `re_nsub' to the number of subexpressions in PATTERN. | |
5185 | |
5186 PATTERN is the address of the pattern string. | |
5187 | |
5188 CFLAGS is a series of bits which affect compilation. | |
5189 | |
5190 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | |
5191 use POSIX basic syntax. | |
5192 | |
5193 If REG_NEWLINE is set, then . and [^...] don't match newline. | |
5194 Also, regexec will try a match beginning after every newline. | |
5195 | |
5196 If REG_ICASE is set, then we considers upper- and lowercase | |
5197 versions of letters to be equivalent when matching. | |
5198 | |
5199 If REG_NOSUB is set, then when PREG is passed to regexec, that | |
5200 routine will report only success or failure, and nothing about the | |
5201 registers. | |
5202 | |
5203 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | |
5204 the return codes and their meanings.) */ | |
5205 | |
5206 int | |
5207 regcomp (preg, pattern, cflags) | |
5208 regex_t *preg; | |
5209 const char *pattern; | |
5210 int cflags; | |
5211 { | |
5212 reg_errcode_t ret; | |
5213 unsigned syntax | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
5214 = (cflags & REG_EXTENDED) ? |
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
5215 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; |
14 | 5216 |
5217 /* regex_compile will allocate the space for the compiled pattern. */ | |
5218 preg->buffer = 0; | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
5219 preg->allocated = 0; |
86 | 5220 preg->used = 0; |
14 | 5221 |
5222 /* Don't bother to use a fastmap when searching. This simplifies the | |
5223 REG_NEWLINE case: if we used a fastmap, we'd have to put all the | |
5224 characters after newlines into the fastmap. This way, we just try | |
5225 every character. */ | |
5226 preg->fastmap = 0; | |
5227 | |
5228 if (cflags & REG_ICASE) | |
5229 { | |
5230 unsigned i; | |
5231 | |
5232 preg->translate = (char *) malloc (CHAR_SET_SIZE); | |
5233 if (preg->translate == NULL) | |
5234 return (int) REG_ESPACE; | |
5235 | |
5236 /* Map uppercase characters to corresponding lowercase ones. */ | |
5237 for (i = 0; i < CHAR_SET_SIZE; i++) | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
5238 preg->translate[i] = ISUPPER (i) ? tolower (i) : i; |
14 | 5239 } |
5240 else | |
5241 preg->translate = NULL; | |
5242 | |
5243 /* If REG_NEWLINE is set, newlines are treated differently. */ | |
5244 if (cflags & REG_NEWLINE) | |
5245 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | |
5246 syntax &= ~RE_DOT_NEWLINE; | |
5247 syntax |= RE_HAT_LISTS_NOT_NEWLINE; | |
5248 /* It also changes the matching behavior. */ | |
5249 preg->newline_anchor = 1; | |
5250 } | |
5251 else | |
5252 preg->newline_anchor = 0; | |
5253 | |
5254 preg->no_sub = !!(cflags & REG_NOSUB); | |
5255 | |
5256 /* POSIX says a null character in the pattern terminates it, so we | |
5257 can use strlen here in compiling the pattern. */ | |
5258 ret = regex_compile (pattern, strlen (pattern), syntax, preg); | |
5259 | |
5260 /* POSIX doesn't distinguish between an unmatched open-group and an | |
5261 unmatched close-group: both are REG_EPAREN. */ | |
5262 if (ret == REG_ERPAREN) ret = REG_EPAREN; | |
5263 | |
5264 return (int) ret; | |
5265 } | |
5266 | |
5267 | |
5268 /* regexec searches for a given pattern, specified by PREG, in the | |
5269 string STRING. | |
5270 | |
5271 If NMATCH is zero or REG_NOSUB was set in the cflags argument to | |
5272 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | |
5273 least NMATCH elements, and we set them to the offsets of the | |
5274 corresponding matched substrings. | |
5275 | |
5276 EFLAGS specifies `execution flags' which affect matching: if | |
5277 REG_NOTBOL is set, then ^ does not match at the beginning of the | |
5278 string; if REG_NOTEOL is set, then $ does not match at the end. | |
5279 | |
5280 We return 0 if we find a match and REG_NOMATCH if not. */ | |
5281 | |
5282 int | |
5283 regexec (preg, string, nmatch, pmatch, eflags) | |
5284 const regex_t *preg; | |
5285 const char *string; | |
5286 size_t nmatch; | |
5287 regmatch_t pmatch[]; | |
5288 int eflags; | |
5289 { | |
5290 int ret; | |
5291 struct re_registers regs; | |
5292 regex_t private_preg; | |
5293 int len = strlen (string); | |
5294 boolean want_reg_info = !preg->no_sub && nmatch > 0; | |
5295 | |
5296 private_preg = *preg; | |
5297 | |
5298 private_preg.not_bol = !!(eflags & REG_NOTBOL); | |
5299 private_preg.not_eol = !!(eflags & REG_NOTEOL); | |
5300 | |
5301 /* The user has told us exactly how many registers to return | |
5302 information about, via `nmatch'. We have to pass that on to the | |
5303 matching routines. */ | |
5304 private_preg.regs_allocated = REGS_FIXED; | |
5305 | |
5306 if (want_reg_info) | |
5307 { | |
5308 regs.num_regs = nmatch; | |
5309 regs.start = TALLOC (nmatch, regoff_t); | |
5310 regs.end = TALLOC (nmatch, regoff_t); | |
5311 if (regs.start == NULL || regs.end == NULL) | |
5312 return (int) REG_NOMATCH; | |
5313 } | |
5314 | |
5315 /* Perform the searching operation. */ | |
5316 ret = re_search (&private_preg, string, len, | |
5317 /* start: */ 0, /* range: */ len, | |
5318 want_reg_info ? ®s : (struct re_registers *) 0); | |
5319 | |
5320 /* Copy the register information to the POSIX structure. */ | |
5321 if (want_reg_info) | |
5322 { | |
5323 if (ret >= 0) | |
5324 { | |
5325 unsigned r; | |
5326 | |
5327 for (r = 0; r < nmatch; r++) | |
5328 { | |
5329 pmatch[r].rm_so = regs.start[r]; | |
5330 pmatch[r].rm_eo = regs.end[r]; | |
5331 } | |
5332 } | |
5333 | |
5334 /* If we needed the temporary register info, free the space now. */ | |
5335 free (regs.start); | |
5336 free (regs.end); | |
5337 } | |
5338 | |
5339 /* We want zero return to mean success, unlike `re_search'. */ | |
5340 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | |
5341 } | |
5342 | |
5343 | |
5344 /* Returns a message corresponding to an error code, ERRCODE, returned | |
30
37bbdc81e894
isascii guards for ctype.h macros
Jim Meyering <jim@meyering.net>
parents:
14
diff
changeset
|
5345 from either regcomp or regexec. We don't use PREG here. */ |
14 | 5346 |
5347 size_t | |
5348 regerror (errcode, preg, errbuf, errbuf_size) | |
5349 int errcode; | |
5350 const regex_t *preg; | |
5351 char *errbuf; | |
5352 size_t errbuf_size; | |
5353 { | |
37 | 5354 const char *msg; |
5355 size_t msg_size; | |
5356 | |
5357 if (errcode < 0 | |
389 | 5358 || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) |
37 | 5359 /* Only error codes returned by the rest of the code should be passed |
5360 to this routine. If we are given anything else, or if other regex | |
5361 code generates an invalid error code, then the program has a bug. | |
5362 Dump core so we can fix it. */ | |
5363 abort (); | |
5364 | |
389 | 5365 msg = gettext (re_error_msgid[errcode]); |
80 | 5366 |
37 | 5367 msg_size = strlen (msg) + 1; /* Includes the null. */ |
14 | 5368 |
5369 if (errbuf_size != 0) | |
5370 { | |
5371 if (msg_size > errbuf_size) | |
5372 { | |
5373 strncpy (errbuf, msg, errbuf_size - 1); | |
5374 errbuf[errbuf_size - 1] = 0; | |
5375 } | |
5376 else | |
5377 strcpy (errbuf, msg); | |
5378 } | |
5379 | |
5380 return msg_size; | |
5381 } | |
5382 | |
5383 | |
5384 /* Free dynamically allocated space used by PREG. */ | |
5385 | |
5386 void | |
5387 regfree (preg) | |
5388 regex_t *preg; | |
5389 { | |
5390 if (preg->buffer != NULL) | |
5391 free (preg->buffer); | |
5392 preg->buffer = NULL; | |
5393 | |
5394 preg->allocated = 0; | |
5395 preg->used = 0; | |
5396 | |
5397 if (preg->fastmap != NULL) | |
5398 free (preg->fastmap); | |
5399 preg->fastmap = NULL; | |
5400 preg->fastmap_accurate = 0; | |
5401 | |
5402 if (preg->translate != NULL) | |
5403 free (preg->translate); | |
5404 preg->translate = NULL; | |
5405 } | |
5406 | |
5407 #endif /* not emacs */ | |
5408 | |
5409 /* | |
5410 Local variables: | |
5411 make-backup-files: t | |
5412 version-control: t | |
5413 trim-versions-without-asking: nil | |
5414 End: | |
5415 */ |