Mercurial > hg > octave-kai > gnulib-hg
annotate lib/sha.c @ 4739:04758f7475fd
Merge changes from glibc.
author | Paul Eggert <eggert@cs.ucla.edu> |
---|---|
date | Fri, 26 Sep 2003 07:35:01 +0000 |
parents | 7135d3d3d962 |
children |
rev | line source |
---|---|
2863 | 1 /* sha.c - Functions to compute the SHA1 hash (message-digest) of files |
2 or blocks of memory. Complies to the NIST specification FIPS-180-1. | |
3 | |
4557 | 4 Copyright (C) 2000, 2001, 2003 Scott G. Miller |
2863 | 5 |
6 Credits: | |
7 Robert Klep <robert@ilse.nl> -- Expansion function fix | |
8 */ | |
9 | |
10 #ifdef HAVE_CONFIG_H | |
11 # include <config.h> | |
12 #endif | |
13 | |
4675 | 14 #include "sha.h" |
15 | |
2863 | 16 #include <sys/types.h> |
17 | |
4675 | 18 #include <stdlib.h> |
19 #include <string.h> | |
2863 | 20 |
3618 | 21 #include "unlocked-io.h" |
2863 | 22 |
23 /* | |
24 Not-swap is a macro that does an endian swap on architectures that are | |
25 big-endian, as SHA needs some data in a little-endian format | |
26 */ | |
27 | |
28 #ifdef WORDS_BIGENDIAN | |
29 # define NOTSWAP(n) (n) | |
30 # define SWAP(n) \ | |
31 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | |
32 #else | |
33 # define NOTSWAP(n) \ | |
34 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | |
35 # define SWAP(n) (n) | |
36 #endif | |
37 | |
4557 | 38 #define BLOCKSIZE 4096 |
39 /* Ensure that BLOCKSIZE is a multiple of 64. */ | |
40 #if BLOCKSIZE % 64 != 0 | |
41 /* FIXME-someday (soon?): use #error instead of this kludge. */ | |
42 "invalid BLOCKSIZE" | |
43 #endif | |
44 | |
2863 | 45 /* This array contains the bytes used to pad the buffer to the next |
46 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | |
47 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | |
48 | |
49 | |
50 /* | |
51 Takes a pointer to a 160 bit block of data (five 32 bit ints) and | |
52 intializes it to the start constants of the SHA1 algorithm. This | |
53 must be called before using hash in the call to sha_hash | |
54 */ | |
55 void | |
56 sha_init_ctx (struct sha_ctx *ctx) | |
57 { | |
58 ctx->A = 0x67452301; | |
59 ctx->B = 0xefcdab89; | |
60 ctx->C = 0x98badcfe; | |
61 ctx->D = 0x10325476; | |
62 ctx->E = 0xc3d2e1f0; | |
63 | |
64 ctx->total[0] = ctx->total[1] = 0; | |
65 ctx->buflen = 0; | |
66 } | |
67 | |
68 /* Put result from CTX in first 20 bytes following RESBUF. The result | |
69 must be in little endian byte order. | |
70 | |
71 IMPORTANT: On some systems it is required that RESBUF is correctly | |
72 aligned for a 32 bits value. */ | |
73 void * | |
74 sha_read_ctx (const struct sha_ctx *ctx, void *resbuf) | |
75 { | |
76 ((md5_uint32 *) resbuf)[0] = NOTSWAP (ctx->A); | |
77 ((md5_uint32 *) resbuf)[1] = NOTSWAP (ctx->B); | |
78 ((md5_uint32 *) resbuf)[2] = NOTSWAP (ctx->C); | |
79 ((md5_uint32 *) resbuf)[3] = NOTSWAP (ctx->D); | |
80 ((md5_uint32 *) resbuf)[4] = NOTSWAP (ctx->E); | |
81 | |
82 return resbuf; | |
83 } | |
84 | |
85 /* Process the remaining bytes in the internal buffer and the usual | |
86 prolog according to the standard and write the result to RESBUF. | |
87 | |
88 IMPORTANT: On some systems it is required that RESBUF is correctly | |
89 aligned for a 32 bits value. */ | |
90 void * | |
91 sha_finish_ctx (struct sha_ctx *ctx, void *resbuf) | |
92 { | |
93 /* Take yet unprocessed bytes into account. */ | |
94 md5_uint32 bytes = ctx->buflen; | |
95 size_t pad; | |
96 | |
97 /* Now count remaining bytes. */ | |
98 ctx->total[0] += bytes; | |
99 if (ctx->total[0] < bytes) | |
100 ++ctx->total[1]; | |
101 | |
102 pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; | |
103 memcpy (&ctx->buffer[bytes], fillbuf, pad); | |
104 | |
105 /* Put the 64-bit file length in *bits* at the end of the buffer. */ | |
106 *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = NOTSWAP (ctx->total[0] << 3); | |
107 *(md5_uint32 *) &ctx->buffer[bytes + pad] = NOTSWAP ((ctx->total[1] << 3) | | |
108 (ctx->total[0] >> 29)); | |
109 | |
110 /* Process last bytes. */ | |
111 sha_process_block (ctx->buffer, bytes + pad + 8, ctx); | |
112 | |
113 return sha_read_ctx (ctx, resbuf); | |
114 } | |
115 | |
116 /* Compute SHA1 message digest for bytes read from STREAM. The | |
117 resulting message digest number will be written into the 16 bytes | |
118 beginning at RESBLOCK. */ | |
119 int | |
120 sha_stream (FILE *stream, void *resblock) | |
121 { | |
122 struct sha_ctx ctx; | |
123 char buffer[BLOCKSIZE + 72]; | |
124 size_t sum; | |
125 | |
126 /* Initialize the computation context. */ | |
127 sha_init_ctx (&ctx); | |
128 | |
129 /* Iterate over full file contents. */ | |
130 while (1) | |
131 { | |
132 /* We read the file in blocks of BLOCKSIZE bytes. One call of the | |
133 computation function processes the whole buffer so that with the | |
134 next round of the loop another block can be read. */ | |
135 size_t n; | |
136 sum = 0; | |
137 | |
138 /* Read block. Take care for partial reads. */ | |
4557 | 139 while (1) |
2863 | 140 { |
141 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | |
142 | |
143 sum += n; | |
4557 | 144 |
145 if (sum == BLOCKSIZE) | |
146 break; | |
147 | |
148 if (n == 0) | |
149 { | |
150 /* Check for the error flag IFF N == 0, so that we don't | |
151 exit the loop after a partial read due to e.g., EAGAIN | |
152 or EWOULDBLOCK. */ | |
153 if (ferror (stream)) | |
154 return 1; | |
155 goto process_partial_block; | |
156 } | |
157 | |
158 /* We've read at least one byte, so ignore errors. But always | |
159 check for EOF, since feof may be true even though N > 0. | |
160 Otherwise, we could end up calling fread after EOF. */ | |
161 if (feof (stream)) | |
162 goto process_partial_block; | |
2863 | 163 } |
164 | |
165 /* Process buffer with BLOCKSIZE bytes. Note that | |
166 BLOCKSIZE % 64 == 0 | |
167 */ | |
168 sha_process_block (buffer, BLOCKSIZE, &ctx); | |
169 } | |
170 | |
4557 | 171 process_partial_block:; |
172 | |
173 /* Process any remaining bytes. */ | |
2863 | 174 if (sum > 0) |
175 sha_process_bytes (buffer, sum, &ctx); | |
176 | |
177 /* Construct result in desired memory. */ | |
178 sha_finish_ctx (&ctx, resblock); | |
179 return 0; | |
180 } | |
181 | |
182 /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The | |
183 result is always in little endian byte order, so that a byte-wise | |
184 output yields to the wanted ASCII representation of the message | |
185 digest. */ | |
186 void * | |
187 sha_buffer (const char *buffer, size_t len, void *resblock) | |
188 { | |
189 struct sha_ctx ctx; | |
190 | |
191 /* Initialize the computation context. */ | |
192 sha_init_ctx (&ctx); | |
193 | |
194 /* Process whole buffer but last len % 64 bytes. */ | |
195 sha_process_bytes (buffer, len, &ctx); | |
196 | |
197 /* Put result in desired memory area. */ | |
198 return sha_finish_ctx (&ctx, resblock); | |
199 } | |
200 | |
201 void | |
202 sha_process_bytes (const void *buffer, size_t len, struct sha_ctx *ctx) | |
203 { | |
204 /* When we already have some bits in our internal buffer concatenate | |
205 both inputs first. */ | |
206 if (ctx->buflen != 0) | |
207 { | |
208 size_t left_over = ctx->buflen; | |
209 size_t add = 128 - left_over > len ? len : 128 - left_over; | |
210 | |
211 memcpy (&ctx->buffer[left_over], buffer, add); | |
212 ctx->buflen += add; | |
213 | |
4557 | 214 if (ctx->buflen > 64) |
2863 | 215 { |
4557 | 216 sha_process_block (ctx->buffer, ctx->buflen & ~63, ctx); |
217 | |
218 ctx->buflen &= 63; | |
2863 | 219 /* The regions in the following copy operation cannot overlap. */ |
220 memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63], | |
4557 | 221 ctx->buflen); |
2863 | 222 } |
223 | |
224 buffer = (const char *) buffer + add; | |
225 len -= add; | |
226 } | |
227 | |
228 /* Process available complete blocks. */ | |
4557 | 229 if (len >= 64) |
2863 | 230 { |
4557 | 231 #if !_STRING_ARCH_unaligned |
232 /* To check alignment gcc has an appropriate operator. Other | |
233 compilers don't. */ | |
234 # if __GNUC__ >= 2 | |
235 # define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0) | |
236 # else | |
237 # define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0) | |
238 # endif | |
239 if (UNALIGNED_P (buffer)) | |
240 while (len > 64) | |
241 { | |
242 sha_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | |
243 buffer = (const char *) buffer + 64; | |
244 len -= 64; | |
245 } | |
246 else | |
247 #endif | |
248 { | |
249 sha_process_block (buffer, len & ~63, ctx); | |
250 buffer = (const char *) buffer + (len & ~63); | |
251 len &= 63; | |
252 } | |
2863 | 253 } |
254 | |
255 /* Move remaining bytes in internal buffer. */ | |
256 if (len > 0) | |
257 { | |
4557 | 258 size_t left_over = ctx->buflen; |
259 | |
260 memcpy (&ctx->buffer[left_over], buffer, len); | |
261 left_over += len; | |
262 if (left_over >= 64) | |
263 { | |
264 sha_process_block (ctx->buffer, 64, ctx); | |
265 left_over -= 64; | |
266 memcpy (ctx->buffer, &ctx->buffer[64], left_over); | |
267 } | |
268 ctx->buflen = left_over; | |
2863 | 269 } |
270 } | |
271 | |
272 /* --- Code below is the primary difference between md5.c and sha.c --- */ | |
273 | |
274 /* SHA1 round constants */ | |
275 #define K1 0x5a827999L | |
276 #define K2 0x6ed9eba1L | |
277 #define K3 0x8f1bbcdcL | |
278 #define K4 0xca62c1d6L | |
279 | |
2868 | 280 /* Round functions. Note that F2 is the same as F4. */ |
2864
26d60ac2d2ee
moving to gnupg's version of sha1.c
Jim Meyering <jim@meyering.net>
parents:
2863
diff
changeset
|
281 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) |
26d60ac2d2ee
moving to gnupg's version of sha1.c
Jim Meyering <jim@meyering.net>
parents:
2863
diff
changeset
|
282 #define F2(B,C,D) (B ^ C ^ D) |
26d60ac2d2ee
moving to gnupg's version of sha1.c
Jim Meyering <jim@meyering.net>
parents:
2863
diff
changeset
|
283 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) |
2868 | 284 #define F4(B,C,D) (B ^ C ^ D) |
2863 | 285 |
286 /* Process LEN bytes of BUFFER, accumulating context into CTX. | |
2878
53969d50efee
Give credit (GnuPG) where due.
Jim Meyering <jim@meyering.net>
parents:
2869
diff
changeset
|
287 It is assumed that LEN % 64 == 0. |
53969d50efee
Give credit (GnuPG) where due.
Jim Meyering <jim@meyering.net>
parents:
2869
diff
changeset
|
288 Most of this code comes from GnuPG's cipher/sha1.c. */ |
2863 | 289 |
290 void | |
291 sha_process_block (const void *buffer, size_t len, struct sha_ctx *ctx) | |
292 { | |
293 const md5_uint32 *words = buffer; | |
294 size_t nwords = len / sizeof (md5_uint32); | |
295 const md5_uint32 *endp = words + nwords; | |
2869
2a75d54dda8b
shrink tmp array length from 80 to 16.
Jim Meyering <jim@meyering.net>
parents:
2868
diff
changeset
|
296 md5_uint32 x[16]; |
2867 | 297 md5_uint32 a = ctx->A; |
298 md5_uint32 b = ctx->B; | |
299 md5_uint32 c = ctx->C; | |
300 md5_uint32 d = ctx->D; | |
301 md5_uint32 e = ctx->E; | |
2863 | 302 |
303 /* First increment the byte count. RFC 1321 specifies the possible | |
304 length of the file up to 2^64 bits. Here we only compute the | |
305 number of bytes. Do a double word increment. */ | |
306 ctx->total[0] += len; | |
307 if (ctx->total[0] < len) | |
308 ++ctx->total[1]; | |
309 | |
2868 | 310 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ |
311 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | |
2878
53969d50efee
Give credit (GnuPG) where due.
Jim Meyering <jim@meyering.net>
parents:
2869
diff
changeset
|
312 , (x[I&0x0f] = rol(tm, 1)) ) |
2867 | 313 |
2868 | 314 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ |
315 + F( B, C, D ) \ | |
316 + K \ | |
317 + M; \ | |
318 B = rol( B, 30 ); \ | |
2867 | 319 } while(0) |
320 | |
2863 | 321 while (words < endp) |
322 { | |
2868 | 323 md5_uint32 tm; |
2863 | 324 int t; |
2878
53969d50efee
Give credit (GnuPG) where due.
Jim Meyering <jim@meyering.net>
parents:
2869
diff
changeset
|
325 /* FIXME: see sha1.c for a better implementation. */ |
2863 | 326 for (t = 0; t < 16; t++) |
327 { | |
2867 | 328 x[t] = NOTSWAP (*words); |
2863 | 329 words++; |
330 } | |
331 | |
2868 | 332 R( a, b, c, d, e, F1, K1, x[ 0] ); |
333 R( e, a, b, c, d, F1, K1, x[ 1] ); | |
334 R( d, e, a, b, c, F1, K1, x[ 2] ); | |
335 R( c, d, e, a, b, F1, K1, x[ 3] ); | |
336 R( b, c, d, e, a, F1, K1, x[ 4] ); | |
337 R( a, b, c, d, e, F1, K1, x[ 5] ); | |
338 R( e, a, b, c, d, F1, K1, x[ 6] ); | |
339 R( d, e, a, b, c, F1, K1, x[ 7] ); | |
340 R( c, d, e, a, b, F1, K1, x[ 8] ); | |
341 R( b, c, d, e, a, F1, K1, x[ 9] ); | |
342 R( a, b, c, d, e, F1, K1, x[10] ); | |
343 R( e, a, b, c, d, F1, K1, x[11] ); | |
344 R( d, e, a, b, c, F1, K1, x[12] ); | |
345 R( c, d, e, a, b, F1, K1, x[13] ); | |
346 R( b, c, d, e, a, F1, K1, x[14] ); | |
347 R( a, b, c, d, e, F1, K1, x[15] ); | |
348 R( e, a, b, c, d, F1, K1, M(16) ); | |
349 R( d, e, a, b, c, F1, K1, M(17) ); | |
350 R( c, d, e, a, b, F1, K1, M(18) ); | |
351 R( b, c, d, e, a, F1, K1, M(19) ); | |
352 R( a, b, c, d, e, F2, K2, M(20) ); | |
353 R( e, a, b, c, d, F2, K2, M(21) ); | |
354 R( d, e, a, b, c, F2, K2, M(22) ); | |
355 R( c, d, e, a, b, F2, K2, M(23) ); | |
356 R( b, c, d, e, a, F2, K2, M(24) ); | |
357 R( a, b, c, d, e, F2, K2, M(25) ); | |
358 R( e, a, b, c, d, F2, K2, M(26) ); | |
359 R( d, e, a, b, c, F2, K2, M(27) ); | |
360 R( c, d, e, a, b, F2, K2, M(28) ); | |
361 R( b, c, d, e, a, F2, K2, M(29) ); | |
362 R( a, b, c, d, e, F2, K2, M(30) ); | |
363 R( e, a, b, c, d, F2, K2, M(31) ); | |
364 R( d, e, a, b, c, F2, K2, M(32) ); | |
365 R( c, d, e, a, b, F2, K2, M(33) ); | |
366 R( b, c, d, e, a, F2, K2, M(34) ); | |
367 R( a, b, c, d, e, F2, K2, M(35) ); | |
368 R( e, a, b, c, d, F2, K2, M(36) ); | |
369 R( d, e, a, b, c, F2, K2, M(37) ); | |
370 R( c, d, e, a, b, F2, K2, M(38) ); | |
371 R( b, c, d, e, a, F2, K2, M(39) ); | |
372 R( a, b, c, d, e, F3, K3, M(40) ); | |
373 R( e, a, b, c, d, F3, K3, M(41) ); | |
374 R( d, e, a, b, c, F3, K3, M(42) ); | |
375 R( c, d, e, a, b, F3, K3, M(43) ); | |
376 R( b, c, d, e, a, F3, K3, M(44) ); | |
377 R( a, b, c, d, e, F3, K3, M(45) ); | |
378 R( e, a, b, c, d, F3, K3, M(46) ); | |
379 R( d, e, a, b, c, F3, K3, M(47) ); | |
380 R( c, d, e, a, b, F3, K3, M(48) ); | |
381 R( b, c, d, e, a, F3, K3, M(49) ); | |
382 R( a, b, c, d, e, F3, K3, M(50) ); | |
383 R( e, a, b, c, d, F3, K3, M(51) ); | |
384 R( d, e, a, b, c, F3, K3, M(52) ); | |
385 R( c, d, e, a, b, F3, K3, M(53) ); | |
386 R( b, c, d, e, a, F3, K3, M(54) ); | |
387 R( a, b, c, d, e, F3, K3, M(55) ); | |
388 R( e, a, b, c, d, F3, K3, M(56) ); | |
389 R( d, e, a, b, c, F3, K3, M(57) ); | |
390 R( c, d, e, a, b, F3, K3, M(58) ); | |
391 R( b, c, d, e, a, F3, K3, M(59) ); | |
392 R( a, b, c, d, e, F4, K4, M(60) ); | |
393 R( e, a, b, c, d, F4, K4, M(61) ); | |
394 R( d, e, a, b, c, F4, K4, M(62) ); | |
395 R( c, d, e, a, b, F4, K4, M(63) ); | |
396 R( b, c, d, e, a, F4, K4, M(64) ); | |
397 R( a, b, c, d, e, F4, K4, M(65) ); | |
398 R( e, a, b, c, d, F4, K4, M(66) ); | |
399 R( d, e, a, b, c, F4, K4, M(67) ); | |
400 R( c, d, e, a, b, F4, K4, M(68) ); | |
401 R( b, c, d, e, a, F4, K4, M(69) ); | |
402 R( a, b, c, d, e, F4, K4, M(70) ); | |
403 R( e, a, b, c, d, F4, K4, M(71) ); | |
404 R( d, e, a, b, c, F4, K4, M(72) ); | |
405 R( c, d, e, a, b, F4, K4, M(73) ); | |
406 R( b, c, d, e, a, F4, K4, M(74) ); | |
407 R( a, b, c, d, e, F4, K4, M(75) ); | |
408 R( e, a, b, c, d, F4, K4, M(76) ); | |
409 R( d, e, a, b, c, F4, K4, M(77) ); | |
410 R( c, d, e, a, b, F4, K4, M(78) ); | |
411 R( b, c, d, e, a, F4, K4, M(79) ); | |
2867 | 412 |
413 a = ctx->A += a; | |
414 b = ctx->B += b; | |
415 c = ctx->C += c; | |
416 d = ctx->D += d; | |
417 e = ctx->E += e; | |
2863 | 418 } |
419 } |