16676
|
1 /* Base 2 logarithm. |
17848
|
2 Copyright (C) 2012-2015 Free Software Foundation, Inc. |
16676
|
3 |
|
4 This program is free software: you can redistribute it and/or modify |
|
5 it under the terms of the GNU General Public License as published by |
|
6 the Free Software Foundation; either version 3 of the License, or |
|
7 (at your option) any later version. |
|
8 |
|
9 This program is distributed in the hope that it will be useful, |
|
10 but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
12 GNU General Public License for more details. |
|
13 |
|
14 You should have received a copy of the GNU General Public License |
|
15 along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
|
16 |
|
17 #include <config.h> |
|
18 |
|
19 /* Specification. */ |
|
20 #include <math.h> |
|
21 |
|
22 /* Best possible approximation of log(2) as a 'double'. */ |
|
23 #define LOG2 0.693147180559945309417232121458176568075 |
|
24 |
|
25 /* Best possible approximation of 1/log(2) as a 'double'. */ |
|
26 #define LOG2_INVERSE 1.44269504088896340735992468100189213743 |
|
27 |
|
28 /* sqrt(0.5). */ |
|
29 #define SQRT_HALF 0.707106781186547524400844362104849039284 |
|
30 |
|
31 double |
|
32 log2 (double x) |
|
33 { |
|
34 if (isnand (x)) |
|
35 return x; |
|
36 |
|
37 if (x <= 0.0) |
|
38 { |
|
39 if (x == 0.0) |
|
40 /* Return -Infinity. */ |
|
41 return - HUGE_VAL; |
|
42 else |
|
43 { |
|
44 /* Return NaN. */ |
|
45 #if defined _MSC_VER || (defined __sgi && !defined __GNUC__) |
|
46 static double zero; |
|
47 return zero / zero; |
|
48 #else |
|
49 return 0.0 / 0.0; |
|
50 #endif |
|
51 } |
|
52 } |
|
53 |
|
54 /* Decompose x into |
|
55 x = 2^e * y |
|
56 where |
|
57 e is an integer, |
|
58 1/2 < y < 2. |
|
59 Then log2(x) = e + log2(y) = e + log(y)/log(2). */ |
|
60 { |
|
61 int e; |
|
62 double y; |
|
63 |
|
64 y = frexp (x, &e); |
|
65 if (y < SQRT_HALF) |
|
66 { |
|
67 y = 2.0 * y; |
|
68 e = e - 1; |
|
69 } |
|
70 |
|
71 return (double) e + log (y) * LOG2_INVERSE; |
|
72 } |
|
73 } |