view scripts/strings/mat2str.m @ 18860:da6ffbf75edf

Simplify exist() code for recognizing command line functions. * variables.cc (symbol_exist): Short-circuit out quickly if search type is builtin and no builtin is found. Use the fact that all other cases have been checked by the end of the function to make the test for a command line function short. * variables.cc (Fexist): Expand %!tests.
author Rik <rik@octave.org>
date Wed, 25 Jun 2014 14:48:39 -0700
parents d63878346099
children 446c46af4b42
line wrap: on
line source

## Copyright (C) 2002-2013 Rolf Fabian
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING.  If not, see
## <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {@var{s} =} mat2str (@var{x}, @var{n})
## @deftypefnx {Function File} {@var{s} =} mat2str (@var{x}, @var{n}, "class")
## Format real, complex, and logical matrices as strings.  The 
## returned string may be used to reconstruct the original matrix by using
## the @code{eval} function.
##
## The precision of the values is given by @var{n}.  If @var{n} is a
## scalar then both real and imaginary parts of the matrix are printed
## to the same precision.  Otherwise @code{@var{n}(1)} defines the
## precision of the real part and @code{@var{n}(2)} defines the
## precision of the imaginary part.  The default for @var{n} is 15.
##
## If the argument @qcode{"class"} is given then the class of @var{x} is
## included in the string in such a way that @code{eval} will result in the
## construction of a matrix of the same class.
##
## @example
## @group
## mat2str ([ -1/3 + i/7; 1/3 - i/7 ], [4 2])
##      @result{} "[-0.3333+0.14i;0.3333-0.14i]"
##
## mat2str ([ -1/3 +i/7; 1/3 -i/7 ], [4 2])
##      @result{} "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"
##
## mat2str (int16 ([1 -1]), "class")
##      @result{} "int16([1 -1])"
##
## mat2str (logical (eye (2)))
##      @result{} "[true false;false true]"
##
## isequal (x, eval (mat2str (x)))
##      @result{} 1
## @end group
## @end example
##
## @seealso{sprintf, num2str, int2str}
## @end deftypefn

## Author: Rolf Fabian <fabian@tu-cottbus.de>

function s = mat2str (x, n = 15, cls = "")

  if (nargin < 1 || nargin > 3 || ! (isnumeric (x) || islogical (x)))
    print_usage ();
  elseif (ndims (x) > 2)
    error ("mat2str: X must be two dimensional");
  endif

  if (nargin == 2 && ischar (n))
    cls = n;
    n = 15;
  elseif (isempty (n))
    n = 15;   # Default precision
  endif

  x_islogical = islogical (x);
  x_iscomplex = iscomplex (x);

  if (x_iscomplex)
    if (isscalar (n))
      n = [n, n];
    endif
    fmt = sprintf ("%%.%dg%%+.%dgi", n(1), n(2));
  elseif (x_islogical)
    v = {"false", "true"};
    fmt = "%s";
  else
    fmt = sprintf ("%%.%dg", n(1));
  endif

  nel = numel (x);

  if (nel == 0)
    ## Empty, only print brackets
    s = "[]";
  elseif (nel == 1)
    ## Scalar X, don't print brackets
    if (x_iscomplex)
      s = sprintf (fmt, real (x), imag (x));
    elseif (x_islogical)
      s = v{x+1};
    else
      s = sprintf (fmt, x);
    endif
  else
    ## Non-scalar X, print brackets
    fmt = [fmt " "];
    if (x_iscomplex)
      t = x.';
      s = sprintf (fmt, [real(t(:))'; imag(t(:))']);
    elseif (x_islogical)
      t = v(x+1);
      s = cstrcat (sprintf (fmt, t{:}));
    else
      s = sprintf (fmt, x.');
    endif

    s = ["[" s];
    s(end) = "]";
    idx = strfind (s, " ");
    nc = columns (x);
    s(idx(nc:nc:end)) = ";";
  endif

  if (strcmp ("class", cls))
    s = [class(x) "(" s ")"];
  endif

endfunction


%!assert (mat2str (0.7), "0.7")
%!assert (mat2str (pi), "3.14159265358979")
%!assert (mat2str (pi, 5), "3.1416")
%!assert (mat2str (single (pi), 5, "class"), "single(3.1416)")
%!assert (mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2]), "[-0.3333+0.14i;0.3333-0.14i]")
%!assert (mat2str ([-1/3 +i/7; 1/3 -i/7], [4 2]), "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]")
%!assert (mat2str (int16 ([1 -1]), "class"), "int16([1 -1])")
%!assert (mat2str (true), "true")
%!assert (mat2str (false), "false")
%!assert (mat2str (logical (eye (2))), "[true false;false true]")

%% Test input validation
%!error mat2str ()
%!error mat2str (1,2,3,4)
%!error mat2str (["Hello"])
%!error <X must be two dimensional> mat2str (ones (3,3,2))