Mercurial > hg > octave-jordi
view libinterp/corefcn/det.cc @ 18328:b522d04382cf stable
Return all nargout from urlread if requested (bug #41260).
* urlwrite.cc (Furlread): Assign all outputs to retval when nargout > 0.
author | Rik <rik@octave.org> |
---|---|
date | Wed, 22 Jan 2014 10:37:35 -0800 |
parents | 175b392e91fe |
children | 446c46af4b42 |
line wrap: on
line source
/* Copyright (C) 1996-2013 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "DET.h" #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" #include "ops.h" #include "ov-re-mat.h" #include "ov-cx-mat.h" #include "ov-flt-re-mat.h" #include "ov-flt-cx-mat.h" #include "ov-re-diag.h" #include "ov-cx-diag.h" #include "ov-flt-re-diag.h" #include "ov-flt-cx-diag.h" #include "ov-perm.h" #define MAYBE_CAST(VAR, CLASS) \ const CLASS *VAR = arg.type_id () == CLASS::static_type_id () ? \ dynamic_cast<const CLASS *> (&arg.get_rep ()) : 0 DEFUN (det, args, nargout, "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {} det (@var{A})\n\ @deftypefnx {Built-in Function} {[@var{d}, @var{rcond}] =} det (@var{A})\n\ Compute the determinant of @var{A}.\n\ \n\ Return an estimate of the reciprocal condition number if requested.\n\ \n\ Routines from @sc{lapack} are used for full matrices and code from\n\ @sc{umfpack} is used for sparse matrices.\n\ \n\ The determinant should not be used to check a matrix for singularity.\n\ For that, use any of the condition number functions: @code{cond},\n\ @code{condest}, @code{rcond}.\n\ @seealso{cond, condest, rcond}\n\ @end deftypefn") { octave_value_list retval; int nargin = args.length (); if (nargin != 1) { print_usage (); return retval; } octave_value arg = args(0); octave_idx_type nr = arg.rows (); octave_idx_type nc = arg.columns (); if (nr == 0 && nc == 0) { retval(0) = 1.0; return retval; } int arg_is_empty = empty_arg ("det", nr, nc); if (arg_is_empty < 0) return retval; if (arg_is_empty > 0) return octave_value (Matrix (1, 1, 1.0)); if (nr != nc) { gripe_square_matrix_required ("det"); return retval; } bool isfloat = arg.is_single_type (); if (arg.is_diag_matrix ()) { if (arg.is_complex_type ()) { if (isfloat) { retval(0) = arg.float_complex_diag_matrix_value () .determinant ().value (); if (nargout > 1) retval(1) = arg.float_complex_diag_matrix_value ().rcond (); } else { retval(0) = arg.complex_diag_matrix_value () .determinant ().value (); if (nargout > 1) retval(1) = arg.complex_diag_matrix_value ().rcond (); } } else { if (isfloat) { retval(0) = arg.float_diag_matrix_value () .determinant ().value (); if (nargout > 1) retval(1) = arg.float_diag_matrix_value ().rcond (); } else { retval(0) = arg.diag_matrix_value ().determinant ().value (); if (nargout > 1) retval(1) = arg.diag_matrix_value ().rcond (); } } } else if (arg.is_perm_matrix ()) { retval(0) = static_cast<double> (arg.perm_matrix_value ().determinant ()); if (nargout > 1) retval(1) = 1.0; } else if (arg.is_single_type ()) { if (arg.is_real_type ()) { octave_idx_type info; float rcond = 0.0; // Always compute rcond, so we can detect numerically // singular matrices. FloatMatrix m = arg.float_matrix_value (); if (! error_state) { MAYBE_CAST (rep, octave_float_matrix); MatrixType mtype = rep ? rep -> matrix_type () : MatrixType (); FloatDET det = m.determinant (mtype, info, rcond); retval(1) = rcond; retval(0) = info == -1 ? static_cast<float>(0.0) : det.value (); if (rep) rep->matrix_type (mtype); } } else if (arg.is_complex_type ()) { octave_idx_type info; float rcond = 0.0; // Always compute rcond, so we can detect numerically // singular matrices. FloatComplexMatrix m = arg.float_complex_matrix_value (); if (! error_state) { MAYBE_CAST (rep, octave_float_complex_matrix); MatrixType mtype = rep ? rep -> matrix_type () : MatrixType (); FloatComplexDET det = m.determinant (mtype, info, rcond); retval(1) = rcond; retval(0) = info == -1 ? FloatComplex (0.0) : det.value (); if (rep) rep->matrix_type (mtype); } } } else { if (arg.is_real_type ()) { octave_idx_type info; double rcond = 0.0; // Always compute rcond, so we can detect numerically // singular matrices. if (arg.is_sparse_type ()) { SparseMatrix m = arg.sparse_matrix_value (); if (! error_state) { DET det = m.determinant (info, rcond); retval(1) = rcond; retval(0) = info == -1 ? 0.0 : det.value (); } } else { Matrix m = arg.matrix_value (); if (! error_state) { MAYBE_CAST (rep, octave_matrix); MatrixType mtype = rep ? rep -> matrix_type () : MatrixType (); DET det = m.determinant (mtype, info, rcond); retval(1) = rcond; retval(0) = info == -1 ? 0.0 : det.value (); if (rep) rep->matrix_type (mtype); } } } else if (arg.is_complex_type ()) { octave_idx_type info; double rcond = 0.0; // Always compute rcond, so we can detect numerically // singular matrices. if (arg.is_sparse_type ()) { SparseComplexMatrix m = arg.sparse_complex_matrix_value (); if (! error_state) { ComplexDET det = m.determinant (info, rcond); retval(1) = rcond; retval(0) = info == -1 ? Complex (0.0) : det.value (); } } else { ComplexMatrix m = arg.complex_matrix_value (); if (! error_state) { MAYBE_CAST (rep, octave_complex_matrix); MatrixType mtype = rep ? rep -> matrix_type () : MatrixType (); ComplexDET det = m.determinant (mtype, info, rcond); retval(1) = rcond; retval(0) = info == -1 ? Complex (0.0) : det.value (); if (rep) rep->matrix_type (mtype); } } } else gripe_wrong_type_arg ("det", arg); } return retval; } /* %!assert (det ([1, 2; 3, 4]), -2, 10*eps) %!assert (det (single ([1, 2; 3, 4])), single (-2), 10*eps ("single")) %!error det () %!error det (1, 2) %!error <argument must be a square matrix> det ([1, 2; 3, 4; 5, 6]) */