view libinterp/dldfcn/qr.cc @ 20938:b17fda023ca6

maint: Use new C++ archetype in more files. Place input validation first in files. Move declaration of retval down in function to be closer to point of usage. Eliminate else clause after if () error. Use "return ovl()" where it makes sense. * find.cc, gammainc.cc, gcd.cc, getgrent.cc, getpwent.cc, givens.cc, graphics.cc, help.cc, hess.cc, hex2num.cc, input.cc, kron.cc, load-path.cc, load-save.cc, lookup.cc, mappers.cc, matrix_type.cc, mgorth.cc, nproc.cc, ordschur.cc, pager.cc, pinv.cc, pr-output.cc, profiler.cc, psi.cc, quad.cc, rcond.cc, regexp.cc, schur.cc, sighandlers.cc, sparse.cc, str2double.cc, strfind.cc, strfns.cc, sub2ind.cc, svd.cc, sylvester.cc, symtab.cc, syscalls.cc, sysdep.cc, time.cc, toplev.cc, tril.cc, tsearch.cc, typecast.cc, urlwrite.cc, utils.cc, variables.cc, __delaunayn__.cc, __eigs__.cc, __glpk__.cc, __magick_read__.cc, __osmesa_print__.cc, __voronoi__.cc, amd.cc, audiodevinfo.cc, audioread.cc, chol.cc, colamd.cc, dmperm.cc, fftw.cc, qr.cc, symbfact.cc, symrcm.cc, ov-bool-mat.cc, ov-cell.cc, ov-class.cc, ov-classdef.cc, ov-fcn-handle.cc, ov-fcn-inline.cc, ov-flt-re-mat.cc, ov-java.cc, ov-null-mat.cc, ov-oncleanup.cc, ov-re-mat.cc, ov-struct.cc, ov-typeinfo.cc, ov-usr-fcn.cc, ov.cc, octave.cc: Use new C++ archetype in more files.
author Rik <rik@octave.org>
date Fri, 18 Dec 2015 15:37:22 -0800
parents 03e4ddd49396
children 48b2ad5ee801
line wrap: on
line source

/*

Copyright (C) 1996-2015 John W. Eaton
Copyright (C) 2008-2009 Jaroslav Hajek
Copyright (C) 2008-2009 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include "CmplxQR.h"
#include "CmplxQRP.h"
#include "dbleQR.h"
#include "dbleQRP.h"
#include "fCmplxQR.h"
#include "fCmplxQRP.h"
#include "floatQR.h"
#include "floatQRP.h"
#include "SparseQR.h"
#include "SparseCmplxQR.h"


#include "defun-dld.h"
#include "error.h"
#include "gripes.h"
#include "oct-obj.h"
#include "utils.h"

template <class MT>
static octave_value
get_qr_r (const base_qr<MT>& fact)
{
  MT R = fact.R ();
  if (R.is_square () && fact.regular ())
    return octave_value (R, MatrixType (MatrixType::Upper));
  else
    return R;
}

// [Q, R] = qr (X):      form Q unitary and R upper triangular such
//                        that Q * R = X
//
// [Q, R] = qr (X, 0):    form the economy decomposition such that if X is
//                        m by n then only the first n columns of Q are
//                        computed.
//
// [Q, R, P] = qr (X):    form QRP factorization of X where
//                        P is a permutation matrix such that
//                        A * P = Q * R
//
// [Q, R, P] = qr (X, 0): form the economy decomposition with
//                        permutation vector P such that Q * R = X (:, P)
//
// qr (X) alone returns the output of the LAPACK routine dgeqrf, such
// that R = triu (qr (X))

DEFUN_DLD (qr, args, nargout,
           "-*- texinfo -*-\n\
@deftypefn  {} {[@var{Q}, @var{R}, @var{P}] =} qr (@var{A})\n\
@deftypefnx {} {[@var{Q}, @var{R}, @var{P}] =} qr (@var{A}, '0')\n\
@deftypefnx {} {[@var{C}, @var{R}] =} qr (@var{A}, @var{B})\n\
@deftypefnx {} {[@var{C}, @var{R}] =} qr (@var{A}, @var{B}, '0')\n\
@cindex QR factorization\n\
Compute the QR@tie{}factorization of @var{A}, using standard @sc{lapack}\n\
subroutines.\n\
\n\
For example, given the matrix @code{@var{A} = [1, 2; 3, 4]},\n\
\n\
@example\n\
[@var{Q}, @var{R}] = qr (@var{A})\n\
@end example\n\
\n\
@noindent\n\
returns\n\
\n\
@example\n\
@group\n\
@var{Q} =\n\
\n\
  -0.31623  -0.94868\n\
  -0.94868   0.31623\n\
\n\
@var{R} =\n\
\n\
  -3.16228  -4.42719\n\
   0.00000  -0.63246\n\
@end group\n\
@end example\n\
\n\
The @code{qr} factorization has applications in the solution of least\n\
squares problems\n\
@tex\n\
$$\n\
\\min_x \\left\\Vert A x - b \\right\\Vert_2\n\
$$\n\
@end tex\n\
@ifnottex\n\
\n\
@example\n\
min norm(A x - b)\n\
@end example\n\
\n\
@end ifnottex\n\
for overdetermined systems of equations (i.e.,\n\
@tex\n\
$A$\n\
@end tex\n\
@ifnottex\n\
@var{A}\n\
@end ifnottex\n\
is a tall, thin matrix).  The QR@tie{}factorization is\n\
@tex\n\
$QR = A$ where $Q$ is an orthogonal matrix and $R$ is upper triangular.\n\
@end tex\n\
@ifnottex\n\
@code{@var{Q} * @var{R} = @var{A}} where @var{Q} is an orthogonal matrix and\n\
@var{R} is upper triangular.\n\
@end ifnottex\n\
\n\
If given a second argument of @qcode{'0'}, @code{qr} returns an economy-sized\n\
QR@tie{}factorization, omitting zero rows of @var{R} and the corresponding\n\
columns of @var{Q}.\n\
\n\
If the matrix @var{A} is full, the permuted QR@tie{}factorization\n\
@code{[@var{Q}, @var{R}, @var{P}] = qr (@var{A})} forms the\n\
QR@tie{}factorization such that the diagonal entries of @var{R} are\n\
decreasing in magnitude order.  For example, given the matrix\n\
@code{a = [1, 2; 3, 4]},\n\
\n\
@example\n\
[@var{Q}, @var{R}, @var{P}] = qr (@var{A})\n\
@end example\n\
\n\
@noindent\n\
returns\n\
\n\
@example\n\
@group\n\
@var{Q} =\n\
\n\
  -0.44721  -0.89443\n\
  -0.89443   0.44721\n\
\n\
@var{R} =\n\
\n\
  -4.47214  -3.13050\n\
   0.00000   0.44721\n\
\n\
@var{P} =\n\
\n\
   0  1\n\
   1  0\n\
@end group\n\
@end example\n\
\n\
The permuted @code{qr} factorization\n\
@code{[@var{Q}, @var{R}, @var{P}] = qr (@var{A})} factorization allows the\n\
construction of an orthogonal basis of @code{span (A)}.\n\
\n\
If the matrix @var{A} is sparse, then compute the sparse\n\
QR@tie{}factorization of @var{A}, using @sc{CSparse}.  As the matrix @var{Q}\n\
is in general a full matrix, this function returns the @var{Q}-less\n\
factorization @var{R} of @var{A}, such that\n\
@code{@var{R} = chol (@var{A}' * @var{A})}.\n\
\n\
If the final argument is the scalar @code{0} and the number of rows is\n\
larger than the number of columns, then an economy factorization is\n\
returned.  That is @var{R} will have only @code{size (@var{A},1)} rows.\n\
\n\
If an additional matrix @var{B} is supplied, then @code{qr} returns\n\
@var{C}, where @code{@var{C} = @var{Q}' * @var{B}}.  This allows the\n\
least squares approximation of @code{@var{A} \\ @var{B}} to be calculated\n\
as\n\
\n\
@example\n\
@group\n\
[@var{C}, @var{R}] = qr (@var{A}, @var{B})\n\
x = @var{R} \\ @var{C}\n\
@end group\n\
@end example\n\
@seealso{chol, hess, lu, qz, schur, svd, qrupdate, qrinsert, qrdelete, qrshift}\n\
@end deftypefn")
{
  int nargin = args.length ();

  if (nargin < 1 || nargin > (args(0).is_sparse_type () ? 3 : 2))
    print_usage ();

  octave_value_list retval;

  octave_value arg = args(0);

  int arg_is_empty = empty_arg ("qr", arg.rows (), arg.columns ());

  if (arg_is_empty < 0)
    return retval;

  if (arg.is_sparse_type ())
    {
      bool economy = false;
      bool is_cmplx = false;
      int have_b = 0;

      if (arg.is_complex_type ())
        is_cmplx = true;
      if (nargin > 1)
        {
          have_b = 1;
          if (args(nargin-1).is_scalar_type ())
            {
              int val = args(nargin-1).int_value ();
              if (val == 0)
                {
                  economy = true;
                  have_b = (nargin > 2 ? 2 : 0);
                }
            }
          if (have_b > 0 && args(have_b).is_complex_type ())
            is_cmplx = true;
        }

      if (is_cmplx)
        {
          SparseComplexQR q (arg.sparse_complex_matrix_value ());

          if (have_b > 0)
            {
              retval = ovl (q.C (args(have_b).complex_matrix_value ()),
                            q.R (economy));
              if (arg.rows () < arg.columns ())
                warning ("qr: non minimum norm solution for under-determined problem");
            }
          else if (nargout > 1)
            retval = ovl (q.Q (), q.R (economy));
          else
            retval = ovl (q.R (economy));
        }
      else
        {
          SparseQR q (arg.sparse_matrix_value ());

          if (have_b > 0)
            {
              retval = ovl (q.C (args(have_b).matrix_value ()), q.R (economy));
              if (args(0).rows () < args(0).columns ())
                warning ("qr: non minimum norm solution for under-determined problem");
            }
          else if (nargout > 1)
            retval = ovl (q.Q (), q.R (economy));
          else
            retval = ovl (q.R (economy));
        }
    }
  else
    {
      QR::type type = (nargout == 0 || nargout == 1) ? QR::raw
                                                     : nargin == 2
                                                       ? QR::economy : QR::std;

      if (arg.is_single_type ())
        {
          if (arg.is_real_type ())
            {
              FloatMatrix m = arg.float_matrix_value ();

              switch (nargout)
                {
                case 0:
                case 1:
                  {
                    FloatQR fact (m, type);
                    retval = ovl (fact.R ());
                  }
                  break;

                case 2:
                  {
                    FloatQR fact (m, type);
                    retval = ovl (fact.Q (), get_qr_r (fact));
                  }
                  break;

                default:
                  {
                    FloatQRP fact (m, type);

                    if (type == QR::economy)
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.Pvec ());
                    else
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.P ());
                  }
                  break;
                }
            }
          else if (arg.is_complex_type ())
            {
              FloatComplexMatrix m = arg.float_complex_matrix_value ();

              switch (nargout)
                {
                case 0:
                case 1:
                  {
                    FloatComplexQR fact (m, type);
                    retval = ovl (fact.R ());
                  }
                  break;

                case 2:
                  {
                    FloatComplexQR fact (m, type);
                    retval = ovl (fact.Q (), get_qr_r (fact));
                  }
                  break;

                default:
                  {
                    FloatComplexQRP fact (m, type);
                    if (type == QR::economy)
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.Pvec ());
                    else
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.P ());
                  }
                  break;
                }
            }
        }
      else
        {
          if (arg.is_real_type ())
            {
              Matrix m = arg.matrix_value ();

              switch (nargout)
                {
                case 0:
                case 1:
                  {
                    QR fact (m, type);
                    retval = ovl (fact.R ());
                  }
                  break;

                case 2:
                  {
                    QR fact (m, type);
                    retval = ovl (fact.Q (), get_qr_r (fact));
                  }
                  break;

                default:
                  {
                    QRP fact (m, type);
                    if (type == QR::economy)
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.Pvec ());
                    else
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.P ());
                  }
                  break;
                }
            }
          else if (arg.is_complex_type ())
            {
              ComplexMatrix m = arg.complex_matrix_value ();

              switch (nargout)
                {
                case 0:
                case 1:
                  {
                    ComplexQR fact (m, type);
                    retval = ovl (fact.R ());
                  }
                  break;

                case 2:
                  {
                    ComplexQR fact (m, type);
                    retval = ovl (fact.Q (), get_qr_r (fact));
                  }
                  break;

                default:
                  {
                    ComplexQRP fact (m, type);
                    if (type == QR::economy)
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.Pvec ());
                    else
                      retval = ovl (fact.Q (), get_qr_r (fact), fact.P ());
                  }
                  break;
                }
            }
          else
            gripe_wrong_type_arg ("qr", arg);
        }
    }

  return retval;
}

/*
%!test
%! a = [0, 2, 1; 2, 1, 2];
%!
%! [q, r] = qr (a);
%! [qe, re] = qr (a, 0);
%!
%! assert (q * r, a, sqrt (eps));
%! assert (qe * re, a, sqrt (eps));

%!test
%! a = [0, 2, 1; 2, 1, 2];
%!
%! [q, r, p] = qr (a);  # FIXME: not giving right dimensions.
%! [qe, re, pe] = qr (a, 0);
%!
%! assert (q * r, a * p, sqrt (eps));
%! assert (qe * re, a(:, pe), sqrt (eps));

%!test
%! a = [0, 2; 2, 1; 1, 2];
%!
%! [q, r] = qr (a);
%! [qe, re] = qr (a, 0);
%!
%! assert (q * r, a, sqrt (eps));
%! assert (qe * re, a, sqrt (eps));

%!test
%! a = [0, 2; 2, 1; 1, 2];
%!
%! [q, r, p] = qr (a);
%! [qe, re, pe] = qr (a, 0);
%!
%! assert (q * r, a * p, sqrt (eps));
%! assert (qe * re, a(:, pe), sqrt (eps));

%!error qr ()
%!error qr ([1, 2; 3, 4], 0, 2)

%!function retval = __testqr (q, r, a, p)
%!  tol = 100*eps (class (q));
%!  retval = 0;
%!  if (nargin == 3)
%!    n1 = norm (q*r - a);
%!    n2 = norm (q'*q - eye (columns (q)));
%!    retval = (n1 < tol && n2 < tol);
%!  else
%!    n1 = norm (q'*q - eye (columns (q)));
%!    retval = (n1 < tol);
%!    if (isvector (p))
%!      n2 = norm (q*r - a(:,p));
%!      retval = (retval && n2 < tol);
%!    else
%!      n2 = norm (q*r - a*p);
%!      retval = (retval && n2 < tol);
%!    endif
%!  endif
%!endfunction

%!test
%! t = ones (24, 1);
%! j = 1;
%!
%! if (false)  # eliminate big matrix tests
%!   a = rand (5000, 20);
%!   [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%!   [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%!   [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%!   [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a', p);
%!
%!   a = a+1i*eps;
%!   [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%!   [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%!   [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%!   [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a', p);
%! endif
%!
%! a = [ ones(1,15); sqrt(eps)*eye(15) ];
%! [q,r]   = qr (a);   t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a');  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a);   t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a');  t(j++) = __testqr (q, r, a', p);
%!
%! a = a+1i*eps;
%! [q,r]   = qr (a);   t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a');  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a);   t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a');  t(j++) = __testqr (q, r, a', p);
%!
%! a = [ ones(1,15); sqrt(eps)*eye(15) ];
%! [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a', p);
%!
%! a = a+1i*eps;
%! [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a', p);
%!
%! a = [ 611   196  -192   407    -8   -52   -49    29
%!       196   899   113  -192   -71   -43    -8   -44
%!      -192   113   899   196    61    49     8    52
%!       407  -192   196   611     8    44    59   -23
%!        -8   -71    61     8   411  -599   208   208
%!       -52   -43    49    44  -599   411   208   208
%!       -49    -8     8    59   208   208    99  -911
%!        29   -44    52   -23   208   208  -911    99 ];
%! [q,r] = qr (a);
%!
%! assert (all (t) && norm (q*r - a) < 5000*eps);

%!test
%! a = single ([0, 2, 1; 2, 1, 2]);
%!
%! [q, r] = qr (a);
%! [qe, re] = qr (a, 0);
%!
%! assert (q * r, a, sqrt (eps ("single")));
%! assert (qe * re, a, sqrt (eps ("single")));

%!test
%! a = single ([0, 2, 1; 2, 1, 2]);
%!
%! [q, r, p] = qr (a);  # FIXME: not giving right dimensions.
%! [qe, re, pe] = qr (a, 0);
%!
%! assert (q * r, a * p, sqrt (eps ("single")));
%! assert (qe * re, a(:, pe), sqrt (eps ("single")));

%!test
%! a = single ([0, 2; 2, 1; 1, 2]);
%!
%! [q, r] = qr (a);
%! [qe, re] = qr (a, 0);
%!
%! assert (q * r, a, sqrt (eps ("single")));
%! assert (qe * re, a, sqrt (eps ("single")));

%!test
%! a = single ([0, 2; 2, 1; 1, 2]);
%!
%! [q, r, p] = qr (a);
%! [qe, re, pe] = qr (a, 0);
%!
%! assert (q * r, a * p, sqrt (eps ("single")));
%! assert (qe * re, a(:, pe), sqrt (eps ("single")));

%!error qr ()
%!error qr ([1, 2; 3, 4], 0, 2)

%!test
%! t = ones (24, 1);
%! j = 1;
%!
%! if (false)  # eliminate big matrix tests
%!   a = rand (5000,20);
%!   [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%!   [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%!   [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%!   [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a', p);
%!
%!   a = a+1i*eps ("single");
%!   [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%!   [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%!   [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%!   [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a', p);
%! endif
%!
%! a = [ ones(1,15); sqrt(eps("single"))*eye(15) ];
%! [q,r]   = qr (a);   t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a');  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a);   t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a');  t(j++) = __testqr (q, r, a', p);
%!
%! a = a+1i*eps ("single");
%! [q,r]   = qr (a);   t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a');  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a);   t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a');  t(j++) = __testqr (q, r, a', p);
%!
%! a = [ ones(1,15); sqrt(eps("single"))*eye(15) ];
%! [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a', p);
%!
%! a = a+1i*eps ("single");
%! [q,r]   = qr (a, 0);  t(j++) = __testqr (q, r, a);
%! [q,r]   = qr (a',0);  t(j++) = __testqr (q, r, a');
%! [q,r,p] = qr (a, 0);  t(j++) = __testqr (q, r, a, p);
%! [q,r,p] = qr (a',0);  t(j++) = __testqr (q, r, a',p);
%!
%! a = [ 611   196  -192   407    -8   -52   -49    29
%!       196   899   113  -192   -71   -43    -8   -44
%!      -192   113   899   196    61    49     8    52
%!       407  -192   196   611     8    44    59   -23
%!        -8   -71    61     8   411  -599   208   208
%!       -52   -43    49    44  -599   411   208   208
%!       -49    -8     8    59   208   208    99  -911
%!        29   -44    52   -23   208   208  -911    99 ];
%! [q,r] = qr (a);
%!
%! assert (all (t) && norm (q*r-a) < 5000*eps ("single"));

## The deactivated tests below can't be tested till rectangular back-subs is
## implemented for sparse matrices.

%!testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = sprandn (n,n,d) + speye (n,n);
%! r = qr (a);
%! assert (r'*r, a'*a, 1e-10)

%!testif HAVE_COLAMD
%! n = 20;  d = 0.2;
%! a = sprandn (n,n,d) + speye (n,n);
%! q = symamd (a);
%! a = a(q,q);
%! r = qr (a);
%! assert (r'*r, a'*a, 1e-10)

%!testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = sprandn (n,n,d) + speye (n,n);
%! [c,r] = qr (a, ones (n,1));
%! assert (r\c, full (a)\ones (n,1), 10e-10)

%!testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = sprandn (n,n,d) + speye (n,n);
%! b = randn (n,2);
%! [c,r] = qr (a, b);
%! assert (r\c, full (a)\b, 10e-10)

%% Test under-determined systems!!
%!#testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = sprandn (n,n+1,d) + speye (n,n+1);
%! b = randn (n,2);
%! [c,r] = qr (a, b);
%! assert (r\c, full (a)\b, 10e-10)

%!testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = 1i*sprandn (n,n,d) + speye (n,n);
%! r = qr (a);
%! assert (r'*r,a'*a,1e-10)

%!testif HAVE_COLAMD
%! n = 20;  d = 0.2;
%! a = 1i*sprandn (n,n,d) + speye (n,n);
%! q = symamd (a);
%! a = a(q,q);
%! r = qr (a);
%! assert (r'*r, a'*a, 1e-10)

%!testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = 1i*sprandn (n,n,d) + speye (n,n);
%! [c,r] = qr (a, ones (n,1));
%! assert (r\c, full (a)\ones (n,1), 10e-10)

%!testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = 1i*sprandn (n,n,d) + speye (n,n);
%! b = randn (n,2);
%! [c,r] = qr (a, b);
%! assert (r\c, full (a)\b, 10e-10)

%% Test under-determined systems!!
%!#testif HAVE_CXSPARSE
%! n = 20;  d = 0.2;
%! a = 1i*sprandn (n,n+1,d) + speye (n,n+1);
%! b = randn (n,2);
%! [c,r] = qr (a, b);
%! assert (r\c, full (a)\b, 10e-10)

*/

static
bool check_qr_dims (const octave_value& q, const octave_value& r,
                    bool allow_ecf = false)
{
  octave_idx_type m = q.rows ();
  octave_idx_type k = r.rows ();
  octave_idx_type n = r.columns ();
  return ((q.ndims () == 2 && r.ndims () == 2 && k == q.columns ())
          && (m == k || (allow_ecf && k == n && k < m)));
}

static
bool check_index (const octave_value& i, bool vector_allowed = false)
{
  return ((i.is_real_type () || i.is_integer_type ())
          && (i.is_scalar_type () || vector_allowed));
}

DEFUN_DLD (qrupdate, args, ,
           "-*- texinfo -*-\n\
@deftypefn {} {[@var{Q1}, @var{R1}] =} qrupdate (@var{Q}, @var{R}, @var{u}, @var{v})\n\
Given a QR@tie{}factorization of a real or complex matrix\n\
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and\n\
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization of\n\
@w{@var{A} + @var{u}*@var{v}'}, where @var{u} and @var{v} are column vectors\n\
(rank-1 update) or matrices with equal number of columns\n\
(rank-k update).  Notice that the latter case is done as a sequence of rank-1\n\
updates; thus, for k large enough, it will be both faster and more accurate\n\
to recompute the factorization from scratch.\n\
\n\
The QR@tie{}factorization supplied may be either full (Q is square) or\n\
economized (R is square).\n\
\n\
@seealso{qr, qrinsert, qrdelete, qrshift}\n\
@end deftypefn")
{
  octave_value_list retval;

  if (args.length () != 4)
    print_usage ();

  octave_value argq = args(0);
  octave_value argr = args(1);
  octave_value argu = args(2);
  octave_value argv = args(3);

  if (! argq.is_numeric_type () || ! argr.is_numeric_type ()
      || ! argu.is_numeric_type () || ! argv.is_numeric_type ())
    print_usage ();

  if (! check_qr_dims (argq, argr, true))
    error ("qrupdate: Q and R dimensions don't match");

  if (argq.is_real_type () && argr.is_real_type () && argu.is_real_type ()
      && argv.is_real_type ())
    {
      // all real case
      if (argq.is_single_type () || argr.is_single_type ()
          || argu.is_single_type () || argv.is_single_type ())
        {
          FloatMatrix Q = argq.float_matrix_value ();
          FloatMatrix R = argr.float_matrix_value ();
          FloatMatrix u = argu.float_matrix_value ();
          FloatMatrix v = argv.float_matrix_value ();

          FloatQR fact (Q, R);
          fact.update (u, v);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          Matrix Q = argq.matrix_value ();
          Matrix R = argr.matrix_value ();
          Matrix u = argu.matrix_value ();
          Matrix v = argv.matrix_value ();

          QR fact (Q, R);
          fact.update (u, v);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }
  else
    {
      // complex case
      if (argq.is_single_type () || argr.is_single_type ()
          || argu.is_single_type () || argv.is_single_type ())
        {
          FloatComplexMatrix Q = argq.float_complex_matrix_value ();
          FloatComplexMatrix R = argr.float_complex_matrix_value ();
          FloatComplexMatrix u = argu.float_complex_matrix_value ();
          FloatComplexMatrix v = argv.float_complex_matrix_value ();

          FloatComplexQR fact (Q, R);
          fact.update (u, v);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          ComplexMatrix Q = argq.complex_matrix_value ();
          ComplexMatrix R = argr.complex_matrix_value ();
          ComplexMatrix u = argu.complex_matrix_value ();
          ComplexMatrix v = argv.complex_matrix_value ();

          ComplexQR fact (Q, R);
          fact.update (u, v);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }

  return retval;
}

/*
%!shared A, u, v, Ac, uc, vc
%! A = [0.091364  0.613038  0.999083;
%!      0.594638  0.425302  0.603537;
%!      0.383594  0.291238  0.085574;
%!      0.265712  0.268003  0.238409;
%!      0.669966  0.743851  0.445057 ];
%!
%! u = [0.85082;
%!      0.76426;
%!      0.42883;
%!      0.53010;
%!      0.80683 ];
%!
%! v = [0.98810;
%!      0.24295;
%!      0.43167 ];
%!
%! Ac = [0.620405 + 0.956953i  0.480013 + 0.048806i  0.402627 + 0.338171i;
%!      0.589077 + 0.658457i  0.013205 + 0.279323i  0.229284 + 0.721929i;
%!      0.092758 + 0.345687i  0.928679 + 0.241052i  0.764536 + 0.832406i;
%!      0.912098 + 0.721024i  0.049018 + 0.269452i  0.730029 + 0.796517i;
%!      0.112849 + 0.603871i  0.486352 + 0.142337i  0.355646 + 0.151496i ];
%!
%! uc = [0.20351 + 0.05401i;
%!      0.13141 + 0.43708i;
%!      0.29808 + 0.08789i;
%!      0.69821 + 0.38844i;
%!      0.74871 + 0.25821i ];
%!
%! vc = [0.85839 + 0.29468i;
%!      0.20820 + 0.93090i;
%!      0.86184 + 0.34689i ];
%!

%!test
%! [Q,R] = qr (A);
%! [Q,R] = qrupdate (Q, R, u, v);
%! assert (norm (vec (Q'*Q - eye (5)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R)-R), Inf) == 0);
%! assert (norm (vec (Q*R - A - u*v'), Inf) < norm (A)*1e1*eps);
%!
%!test
%! [Q,R] = qr (Ac);
%! [Q,R] = qrupdate (Q, R, uc, vc);
%! assert (norm (vec (Q'*Q - eye (5)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R)-R), Inf) == 0);
%! assert (norm (vec (Q*R - Ac - uc*vc'), Inf) < norm (Ac)*1e1*eps);

%!test
%! [Q,R] = qr (single (A));
%! [Q,R] = qrupdate (Q, R, single (u), single (v));
%! assert (norm (vec (Q'*Q - eye (5,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R)-R), Inf) == 0);
%! assert (norm (vec (Q*R - single (A) - single (u)*single (v)'), Inf) < norm (single (A))*1e1*eps ("single"));
%!
%!test
%! [Q,R] = qr (single (Ac));
%! [Q,R] = qrupdate (Q, R, single (uc), single (vc));
%! assert (norm (vec (Q'*Q - eye (5,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R)-R), Inf) == 0);
%! assert (norm (vec (Q*R - single (Ac) - single (uc)*single (vc)'), Inf) < norm (single (Ac))*1e1*eps ("single"));
*/

DEFUN_DLD (qrinsert, args, ,
           "-*- texinfo -*-\n\
@deftypefn {} {[@var{Q1}, @var{R1}] =} qrinsert (@var{Q}, @var{R}, @var{j}, @var{x}, @var{orient})\n\
Given a QR@tie{}factorization of a real or complex matrix\n\
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and\n\
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization of\n\
@w{[A(:,1:j-1) x A(:,j:n)]}, where @var{u} is a column vector to be inserted\n\
into @var{A} (if @var{orient} is @qcode{\"col\"}), or the\n\
QR@tie{}factorization of @w{[A(1:j-1,:);x;A(:,j:n)]}, where @var{x} is a row\n\
vector to be inserted into @var{A} (if @var{orient} is @qcode{\"row\"}).\n\
\n\
The default value of @var{orient} is @qcode{\"col\"}.  If @var{orient} is\n\
@qcode{\"col\"}, @var{u} may be a matrix and @var{j} an index vector\n\
resulting in the QR@tie{}factorization of a matrix @var{B} such that\n\
@w{B(:,@var{j})} gives @var{u} and @w{B(:,@var{j}) = []} gives @var{A}.\n\
Notice that the latter case is done as a sequence of k insertions;\n\
thus, for k large enough, it will be both faster and more accurate to\n\
recompute the factorization from scratch.\n\
\n\
If @var{orient} is @qcode{\"col\"}, the QR@tie{}factorization supplied may\n\
be either full (Q is square) or economized (R is square).\n\
\n\
If @var{orient} is @qcode{\"row\"}, full factorization is needed.\n\
@seealso{qr, qrupdate, qrdelete, qrshift}\n\
@end deftypefn")
{
  int nargin = args.length ();

  if (nargin < 4 || nargin > 5)
    print_usage ();

  octave_value argq = args(0);
  octave_value argr = args(1);
  octave_value argj = args(2);
  octave_value argx = args(3);

  if (! argq.is_numeric_type () || ! argr.is_numeric_type ()
      || ! argx.is_numeric_type ()
      || (nargin > 4 && ! args(4).is_string ()))
    print_usage ();

  std::string orient = (nargin < 5) ? "col" : args(4).string_value ();
  bool col = (orient == "col");

  if (! col && orient != "row")
    error ("qrinsert: ORIENT must be \"col\" or \"row\"");

  if (! check_qr_dims (argq, argr, col) || (! col && argx.rows () != 1))
    error ("qrinsert: dimension mismatch");

  if (! check_index (argj, col))
    error ("qrinsert: invalid index J");

  octave_value_list retval;

  MArray<octave_idx_type> j = argj.octave_idx_type_vector_value ();

  octave_idx_type one = 1;

  if (argq.is_real_type () && argr.is_real_type () && argx.is_real_type ())
    {
      // real case
      if (argq.is_single_type () || argr.is_single_type ()
          || argx.is_single_type ())
        {
          FloatMatrix Q = argq.float_matrix_value ();
          FloatMatrix R = argr.float_matrix_value ();
          FloatMatrix x = argx.float_matrix_value ();

          FloatQR fact (Q, R);

          if (col)
            fact.insert_col (x, j-one);
          else
            fact.insert_row (x.row (0), j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          Matrix Q = argq.matrix_value ();
          Matrix R = argr.matrix_value ();
          Matrix x = argx.matrix_value ();

          QR fact (Q, R);

          if (col)
            fact.insert_col (x, j-one);
          else
            fact.insert_row (x.row (0), j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }
  else
    {
      // complex case
      if (argq.is_single_type () || argr.is_single_type ()
          || argx.is_single_type ())
        {
          FloatComplexMatrix Q =
            argq.float_complex_matrix_value ();
          FloatComplexMatrix R =
            argr.float_complex_matrix_value ();
          FloatComplexMatrix x =
            argx.float_complex_matrix_value ();

          FloatComplexQR fact (Q, R);

          if (col)
            fact.insert_col (x, j-one);
          else
            fact.insert_row (x.row (0), j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          ComplexMatrix Q = argq.complex_matrix_value ();
          ComplexMatrix R = argr.complex_matrix_value ();
          ComplexMatrix x = argx.complex_matrix_value ();

          ComplexQR fact (Q, R);

          if (col)
            fact.insert_col (x, j-one);
          else
            fact.insert_row (x.row (0), j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }

  return retval;
}

/*
%!test
%! [Q,R] = qr (A);
%! [Q,R] = qrinsert (Q, R, 3, u);
%! assert (norm (vec (Q'*Q - eye (5)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [A(:,1:2) u A(:,3)]), Inf) < norm (A)*1e1*eps);
%!test
%! [Q,R] = qr (Ac);
%! [Q,R] = qrinsert (Q, R, 3, uc);
%! assert (norm (vec (Q'*Q - eye (5)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [Ac(:,1:2) uc Ac(:,3)]), Inf) < norm (Ac)*1e1*eps);
%!test
%! x = [0.85082  0.76426  0.42883 ];
%!
%! [Q,R] = qr (A);
%! [Q,R] = qrinsert (Q, R, 3, x, "row");
%! assert (norm (vec (Q'*Q - eye (6)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [A(1:2,:);x;A(3:5,:)]), Inf) < norm (A)*1e1*eps);
%!test
%! x = [0.20351 + 0.05401i  0.13141 + 0.43708i  0.29808 + 0.08789i ];
%!
%! [Q,R] = qr (Ac);
%! [Q,R] = qrinsert (Q, R, 3, x, "row");
%! assert (norm (vec (Q'*Q - eye (6)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [Ac(1:2,:);x;Ac(3:5,:)]), Inf) < norm (Ac)*1e1*eps);

%!test
%! [Q,R] = qr (single (A));
%! [Q,R] = qrinsert (Q, R, 3, single (u));
%! assert (norm (vec (Q'*Q - eye (5,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - single ([A(:,1:2) u A(:,3)])), Inf) < norm (single (A))*1e1*eps ("single"));
%!test
%! [Q,R] = qr (single (Ac));
%! [Q,R] = qrinsert (Q, R, 3, single (uc));
%! assert (norm (vec (Q'*Q - eye (5,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - single ([Ac(:,1:2) uc Ac(:,3)])), Inf) < norm (single (Ac))*1e1*eps ("single"));
%!test
%! x = single ([0.85082  0.76426  0.42883 ]);
%!
%! [Q,R] = qr (single (A));
%! [Q,R] = qrinsert (Q, R, 3, x, "row");
%! assert (norm (vec (Q'*Q - eye (6,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - single ([A(1:2,:);x;A(3:5,:)])), Inf) < norm (single (A))*1e1*eps ("single"));
%!test
%! x = single ([0.20351 + 0.05401i  0.13141 + 0.43708i  0.29808 + 0.08789i ]);
%!
%! [Q,R] = qr (single (Ac));
%! [Q,R] = qrinsert (Q, R, 3, x, "row");
%! assert (norm (vec (Q'*Q - eye (6,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - single ([Ac(1:2,:);x;Ac(3:5,:)])), Inf) < norm (single (Ac))*1e1*eps ("single"));
*/

DEFUN_DLD (qrdelete, args, ,
           "-*- texinfo -*-\n\
@deftypefn {} {[@var{Q1}, @var{R1}] =} qrdelete (@var{Q}, @var{R}, @var{j}, @var{orient})\n\
Given a QR@tie{}factorization of a real or complex matrix\n\
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and\n\
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization of\n\
@w{[A(:,1:j-1) A(:,j+1:n)]}, i.e., @var{A} with one column deleted\n\
(if @var{orient} is @qcode{\"col\"}), or the QR@tie{}factorization of\n\
@w{[A(1:j-1,:);A(j+1:n,:)]}, i.e., @var{A} with one row deleted (if\n\
@var{orient} is @qcode{\"row\"}).\n\
\n\
The default value of @var{orient} is @qcode{\"col\"}.\n\
\n\
If @var{orient} is @qcode{\"col\"}, @var{j} may be an index vector\n\
resulting in the QR@tie{}factorization of a matrix @var{B} such that\n\
@w{A(:,@var{j}) = []} gives @var{B}.  Notice that the latter case is done as\n\
a sequence of k deletions; thus, for k large enough, it will be both faster\n\
and more accurate to recompute the factorization from scratch.\n\
\n\
If @var{orient} is @qcode{\"col\"}, the QR@tie{}factorization supplied may\n\
be either full (Q is square) or economized (R is square).\n\
\n\
If @var{orient} is @qcode{\"row\"}, full factorization is needed.\n\
@seealso{qr, qrupdate, qrinsert, qrshift}\n\
@end deftypefn")
{
  int nargin = args.length ();

  if (nargin < 3 || nargin > 4)
    print_usage ();

  octave_value argq = args(0);
  octave_value argr = args(1);
  octave_value argj = args(2);

  if (! argq.is_numeric_type () || ! argr.is_numeric_type ()
      || (nargin > 3 && ! args(3).is_string ()))
    print_usage ();

  std::string orient = (nargin < 4) ? "col" : args(3).string_value ();
  bool col = orient == "col";

  if (! col && orient != "row")
    error ("qrdelete: ORIENT must be \"col\" or \"row\"");

  if (! check_qr_dims (argq, argr, col))
    error ("qrdelete: dimension mismatch");

  MArray<octave_idx_type> j = argj.octave_idx_type_vector_value ();
  if (! check_index (argj, col))
    error ("qrdelete: invalid index J");

  octave_value_list retval;

  octave_idx_type one = 1;

  if (argq.is_real_type () && argr.is_real_type ())
    {
      // real case
      if (argq.is_single_type () || argr.is_single_type ())
        {
          FloatMatrix Q = argq.float_matrix_value ();
          FloatMatrix R = argr.float_matrix_value ();

          FloatQR fact (Q, R);

          if (col)
            fact.delete_col (j-one);
          else
            fact.delete_row (j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          Matrix Q = argq.matrix_value ();
          Matrix R = argr.matrix_value ();

          QR fact (Q, R);

          if (col)
            fact.delete_col (j-one);
          else
            fact.delete_row (j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }
  else
    {
      // complex case
      if (argq.is_single_type () || argr.is_single_type ())
        {
          FloatComplexMatrix Q =
            argq.float_complex_matrix_value ();
          FloatComplexMatrix R =
            argr.float_complex_matrix_value ();

          FloatComplexQR fact (Q, R);

          if (col)
            fact.delete_col (j-one);
          else
            fact.delete_row (j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          ComplexMatrix Q = argq.complex_matrix_value ();
          ComplexMatrix R = argr.complex_matrix_value ();

          ComplexQR fact (Q, R);

          if (col)
            fact.delete_col (j-one);
          else
            fact.delete_row (j(0)-one);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }

  return retval;
}

/*
%!test
%! AA = [0.091364  0.613038  0.027504  0.999083;
%!       0.594638  0.425302  0.562834  0.603537;
%!       0.383594  0.291238  0.742073  0.085574;
%!       0.265712  0.268003  0.783553  0.238409;
%!       0.669966  0.743851  0.457255  0.445057 ];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3);
%! assert (norm (vec (Q'*Q - eye (5)), Inf) < 16*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(:,1:2) AA(:,4)]), Inf) < norm (AA)*1e1*eps);
%!
%!test
%! AA = [0.364554 + 0.993117i  0.669818 + 0.510234i  0.426568 + 0.041337i  0.847051 + 0.233291i;
%!       0.049600 + 0.242783i  0.448946 + 0.484022i  0.141155 + 0.074420i  0.446746 + 0.392706i;
%!       0.581922 + 0.657416i  0.581460 + 0.030016i  0.219909 + 0.447288i  0.201144 + 0.069132i;
%!       0.694986 + 0.000571i  0.682327 + 0.841712i  0.807537 + 0.166086i  0.192767 + 0.358098i;
%!       0.945002 + 0.066788i  0.350492 + 0.642638i  0.579629 + 0.048102i  0.600170 + 0.636938i ] * I;
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3);
%! assert (norm (vec (Q'*Q - eye (5)), Inf) < 16*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(:,1:2) AA(:,4)]), Inf) < norm (AA)*1e1*eps);
%!
%!test
%! AA = [0.091364  0.613038  0.027504  0.999083;
%!       0.594638  0.425302  0.562834  0.603537;
%!       0.383594  0.291238  0.742073  0.085574;
%!       0.265712  0.268003  0.783553  0.238409;
%!       0.669966  0.743851  0.457255  0.445057 ];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3, "row");
%! assert (norm (vec (Q'*Q - eye (4)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(1:2,:);AA(4:5,:)]), Inf) < norm (AA)*1e1*eps);
%!
%!test
%! AA = [0.364554 + 0.993117i  0.669818 + 0.510234i  0.426568 + 0.041337i  0.847051 + 0.233291i;
%!       0.049600 + 0.242783i  0.448946 + 0.484022i  0.141155 + 0.074420i  0.446746 + 0.392706i;
%!       0.581922 + 0.657416i  0.581460 + 0.030016i  0.219909 + 0.447288i  0.201144 + 0.069132i;
%!       0.694986 + 0.000571i  0.682327 + 0.841712i  0.807537 + 0.166086i  0.192767 + 0.358098i;
%!       0.945002 + 0.066788i  0.350492 + 0.642638i  0.579629 + 0.048102i  0.600170 + 0.636938i ] * I;
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3, "row");
%! assert (norm (vec (Q'*Q - eye (4)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(1:2,:);AA(4:5,:)]), Inf) < norm (AA)*1e1*eps);

%!test
%! AA = single ([0.091364  0.613038  0.027504  0.999083;
%!               0.594638  0.425302  0.562834  0.603537;
%!               0.383594  0.291238  0.742073  0.085574;
%!               0.265712  0.268003  0.783553  0.238409;
%!               0.669966  0.743851  0.457255  0.445057 ]);
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3);
%! assert (norm (vec (Q'*Q - eye (5,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(:,1:2) AA(:,4)]), Inf) < norm (AA)*1e1*eps ("single"));
%!
%!test
%! AA = single ([0.364554 + 0.993117i  0.669818 + 0.510234i  0.426568 + 0.041337i  0.847051 + 0.233291i;
%!               0.049600 + 0.242783i  0.448946 + 0.484022i  0.141155 + 0.074420i  0.446746 + 0.392706i;
%!               0.581922 + 0.657416i  0.581460 + 0.030016i  0.219909 + 0.447288i  0.201144 + 0.069132i;
%!               0.694986 + 0.000571i  0.682327 + 0.841712i  0.807537 + 0.166086i  0.192767 + 0.358098i;
%!               0.945002 + 0.066788i  0.350492 + 0.642638i  0.579629 + 0.048102i  0.600170 + 0.636938i ]) * I;
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3);
%! assert (norm (vec (Q'*Q - eye (5,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(:,1:2) AA(:,4)]), Inf) < norm (AA)*1e1*eps ("single"));
%!
%!test
%! AA = single ([0.091364  0.613038  0.027504  0.999083;
%!               0.594638  0.425302  0.562834  0.603537;
%!               0.383594  0.291238  0.742073  0.085574;
%!               0.265712  0.268003  0.783553  0.238409;
%!               0.669966  0.743851  0.457255  0.445057 ]);
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3, "row");
%! assert (norm (vec (Q'*Q - eye (4,"single")), Inf) < 1.5e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(1:2,:);AA(4:5,:)]), Inf) < norm (AA)*1e1*eps ("single"));
%!testif HAVE_QRUPDATE
%! ## Same test as above but with more precicision
%! AA = single ([0.091364  0.613038  0.027504  0.999083;
%!               0.594638  0.425302  0.562834  0.603537;
%!               0.383594  0.291238  0.742073  0.085574;
%!               0.265712  0.268003  0.783553  0.238409;
%!               0.669966  0.743851  0.457255  0.445057 ]);
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3, "row");
%! assert (norm (vec (Q'*Q - eye (4,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(1:2,:);AA(4:5,:)]), Inf) < norm (AA)*1e1*eps ("single"));
%!
%!test
%! AA = single ([0.364554 + 0.993117i  0.669818 + 0.510234i  0.426568 + 0.041337i  0.847051 + 0.233291i;
%!              0.049600 + 0.242783i  0.448946 + 0.484022i  0.141155 + 0.074420i  0.446746 + 0.392706i;
%!              0.581922 + 0.657416i  0.581460 + 0.030016i  0.219909 + 0.447288i  0.201144 + 0.069132i;
%!              0.694986 + 0.000571i  0.682327 + 0.841712i  0.807537 + 0.166086i  0.192767 + 0.358098i;
%!              0.945002 + 0.066788i  0.350492 + 0.642638i  0.579629 + 0.048102i  0.600170 + 0.636938i ]) * I;
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrdelete (Q, R, 3, "row");
%! assert (norm (vec (Q'*Q - eye (4,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - [AA(1:2,:);AA(4:5,:)]), Inf) < norm (AA)*1e1*eps ("single"));
*/

DEFUN_DLD (qrshift, args, ,
           "-*- texinfo -*-\n\
@deftypefn {} {[@var{Q1}, @var{R1}] =} qrshift (@var{Q}, @var{R}, @var{i}, @var{j})\n\
Given a QR@tie{}factorization of a real or complex matrix\n\
@w{@var{A} = @var{Q}*@var{R}}, @var{Q}@tie{}unitary and\n\
@var{R}@tie{}upper trapezoidal, return the QR@tie{}factorization\n\
of @w{@var{A}(:,p)}, where @w{p} is the permutation @*\n\
@code{p = [1:i-1, shift(i:j, 1), j+1:n]} if @w{@var{i} < @var{j}} @*\n\
 or @*\n\
@code{p = [1:j-1, shift(j:i,-1), i+1:n]} if @w{@var{j} < @var{i}}.  @*\n\
\n\
@seealso{qr, qrupdate, qrinsert, qrdelete}\n\
@end deftypefn")
{
  if (args.length () != 4)
    print_usage ();

  octave_value argq = args(0);
  octave_value argr = args(1);
  octave_value argi = args(2);
  octave_value argj = args(3);

  if (! argq.is_numeric_type () || ! argr.is_numeric_type ())
    print_usage ();

  if (! check_qr_dims (argq, argr, true))
    error ("qrshift: dimensions mismatch");

  octave_idx_type i = argi.int_value ();
  octave_idx_type j = argj.int_value ();

  if (! check_index (argi) || ! check_index (argj))
    error ("qrshift: invalid index I or J");

  octave_value_list retval;

  if (argq.is_real_type () && argr.is_real_type ())
    {
      // all real case
      if (argq.is_single_type ()
          && argr.is_single_type ())
        {
          FloatMatrix Q = argq.float_matrix_value ();
          FloatMatrix R = argr.float_matrix_value ();

          FloatQR fact (Q, R);
          fact.shift_cols (i-1, j-1);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          Matrix Q = argq.matrix_value ();
          Matrix R = argr.matrix_value ();

          QR fact (Q, R);
          fact.shift_cols (i-1, j-1);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }
  else
    {
      // complex case
      if (argq.is_single_type ()
          && argr.is_single_type ())
        {
          FloatComplexMatrix Q = argq.float_complex_matrix_value ();
          FloatComplexMatrix R = argr.float_complex_matrix_value ();

          FloatComplexQR fact (Q, R);
          fact.shift_cols (i-1, j-1);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
      else
        {
          ComplexMatrix Q = argq.complex_matrix_value ();
          ComplexMatrix R = argr.complex_matrix_value ();

          ComplexQR fact (Q, R);
          fact.shift_cols (i-1, j-1);

          retval = ovl (fact.Q (), get_qr_r (fact));
        }
    }

  return retval;
}

/*
%!test
%! AA = A.';
%! i = 2;  j = 4;  p = [1:i-1, shift(i:j,-1), j+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps);
%!
%! j = 2;  i = 4;  p = [1:j-1, shift(j:i,+1), i+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps);
%!
%!test
%! AA = Ac.';
%! i = 2;  j = 4;  p = [1:i-1, shift(i:j,-1), j+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps);
%!
%! j = 2;  i = 4;  p = [1:j-1, shift(j:i,+1), i+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3)), Inf) < 1e1*eps);
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps);

%!test
%! AA = single (A).';
%! i = 2;  j = 4;  p = [1:i-1, shift(i:j,-1), j+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps ("single"));
%!
%! j = 2;  i = 4;  p = [1:j-1, shift(j:i,+1), i+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps ("single"));
%!
%!test
%! AA = single (Ac).';
%! i = 2;  j = 4;  p = [1:i-1, shift(i:j,-1), j+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps ("single"));
%!
%! j = 2;  i = 4;  p = [1:j-1, shift(j:i,+1), i+1:5];
%!
%! [Q,R] = qr (AA);
%! [Q,R] = qrshift (Q, R, i, j);
%! assert (norm (vec (Q'*Q - eye (3,"single")), Inf) < 1e1*eps ("single"));
%! assert (norm (vec (triu (R) - R), Inf) == 0);
%! assert (norm (vec (Q*R - AA(:,p)), Inf) < norm (AA)*1e1*eps ("single"));
*/