Mercurial > hg > octave-jordi
view scripts/statistics/base/gls.m @ 7016:93c65f2a5668
[project @ 2007-10-12 06:40:56 by jwe]
author | jwe |
---|---|
date | Fri, 12 Oct 2007 06:41:26 +0000 |
parents | 34f96dd5441b |
children | a1dbe9d80eee |
line wrap: on
line source
## Copyright (C) 1996, 1997 John W. Eaton ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {[@var{beta}, @var{v}, @var{r}] =} gls (@var{y}, @var{x}, @var{o}) ## Generalized least squares estimation for the multivariate model ## @iftex ## @tex ## $y = x b + e$ ## with $\bar{e} = 0$ and cov(vec($e$)) = $(s^2)o$, ## @end tex ## @end iftex ## @ifinfo ## @math{y = x b + e} with @math{mean (e) = 0} and ## @math{cov (vec (e)) = (s^2) o}, ## @end ifinfo ## where ## @iftex ## @tex ## $y$ is a $t \times p$ matrix, $x$ is a $t \times k$ matrix, $b$ is a $k ## \times p$ matrix, $e$ is a $t \times p$ matrix, and $o$ is a $tp \times ## tp$ matrix. ## @end tex ## @end iftex ## @ifinfo ## @math{y} is a @math{t} by @math{p} matrix, @math{x} is a @math{t} by ## @math{k} matrix, @math{b} is a @math{k} by @math{p} matrix, @math{e} ## is a @math{t} by @math{p} matrix, and @math{o} is a @math{t p} by ## @math{t p} matrix. ## @end ifinfo ## ## @noindent ## Each row of @var{y} and @var{x} is an observation and each column a ## variable. The return values @var{beta}, @var{v}, and @var{r} are ## defined as follows. ## ## @table @var ## @item beta ## The GLS estimator for @math{b}. ## ## @item v ## The GLS estimator for @math{s^2}. ## ## @item r ## The matrix of GLS residuals, @math{r = y - x beta}. ## @end table ## @end deftypefn ## Author: Teresa Twaroch <twaroch@ci.tuwien.ac.at> ## Created: May 1993 ## Adapted-By: jwe function [BETA, v, R] = gls (Y, X, O) if (nargin != 3) print_usage (); endif [rx, cx] = size (X); [ry, cy] = size (Y); if (rx != ry) error ("gls: incorrect matrix dimensions"); endif O = O^(-1/2); Z = kron (eye (cy), X); Z = O * Z; Y1 = O * reshape (Y, ry*cy, 1); U = Z' * Z; r = rank (U); if (r == cx*cy) B = inv (U) * Z' * Y1; else B = pinv (Z) * Y1; endif BETA = reshape (B, cx, cy); R = Y - X * BETA; v = (reshape (R, ry*cy, 1))' * (O^2) * reshape (R, ry*cy, 1) / (rx*cy - r); endfunction