Mercurial > hg > octave-jordi
view src/DLD-FUNCTIONS/gammainc.cc @ 10315:57a59eae83cc
untabify src C++ source files
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Thu, 11 Feb 2010 12:41:46 -0500 |
parents | d0ce5e973937 |
children | fa00ccf7b1f9 |
line wrap: on
line source
/* Copyright (C) 1997, 1999, 2000, 2004, 2005, 2006, 2007, 2008, 2009 John W. Eaton This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "lo-specfun.h" #include "defun-dld.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN_DLD (gammainc, args, , "-*- texinfo -*-\n\ @deftypefn {Mapping Function} {} gammainc (@var{x}, @var{a})\n\ Compute the normalized incomplete gamma function,\n\ @tex\n\ $$\n\ \\gamma (x, a) = {\\displaystyle\\int_0^x e^{-t} t^{a-1} dt \\over \\Gamma (a)}\n\ $$\n\ @end tex\n\ @ifnottex\n\ \n\ @smallexample\n\ x\n\ 1 /\n\ gammainc (x, a) = --------- | exp (-t) t^(a-1) dt\n\ gamma (a) /\n\ t=0\n\ @end smallexample\n\ \n\ @end ifnottex\n\ with the limiting value of 1 as @var{x} approaches infinity.\n\ The standard notation is @math{P(a,x)}, e.g., Abramowitz and Stegun (6.5.1).\n\ \n\ If @var{a} is scalar, then @code{gammainc (@var{x}, @var{a})} is returned\n\ for each element of @var{x} and vice versa.\n\ \n\ If neither @var{x} nor @var{a} is scalar, the sizes of @var{x} and\n\ @var{a} must agree, and @var{gammainc} is applied element-by-element.\n\ @seealso{gamma, lgamma}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin == 2) { octave_value x_arg = args(0); octave_value a_arg = args(1); // FIXME Can we make a template version of the duplicated code below if (x_arg.is_single_type () || a_arg.is_single_type ()) { if (x_arg.is_scalar_type ()) { float x = x_arg.float_value (); if (! error_state) { if (a_arg.is_scalar_type ()) { float a = a_arg.float_value (); if (! error_state) retval = gammainc (x, a); } else { FloatNDArray a = a_arg.float_array_value (); if (! error_state) retval = gammainc (x, a); } } } else { FloatNDArray x = x_arg.float_array_value (); if (! error_state) { if (a_arg.is_scalar_type ()) { float a = a_arg.float_value (); if (! error_state) retval = gammainc (x, a); } else { FloatNDArray a = a_arg.float_array_value (); if (! error_state) retval = gammainc (x, a); } } } } else { if (x_arg.is_scalar_type ()) { double x = x_arg.double_value (); if (! error_state) { if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (! error_state) retval = gammainc (x, a); } else { NDArray a = a_arg.array_value (); if (! error_state) retval = gammainc (x, a); } } } else { NDArray x = x_arg.array_value (); if (! error_state) { if (a_arg.is_scalar_type ()) { double a = a_arg.double_value (); if (! error_state) retval = gammainc (x, a); } else { NDArray a = a_arg.array_value (); if (! error_state) retval = gammainc (x, a); } } } } } else print_usage (); return retval; } /* %!test %! a = [.5 .5 .5 .5 .5]; %! x = [0 1 2 3 4]; %! v1 = sqrt(pi)*erf(x)./gamma(a); %! v3 = gammainc(x.*x,a); %! assert(v1, v3, sqrt(eps)); %!test %! a = single ([.5 .5 .5 .5 .5]); %! x = single([0 1 2 3 4]); %! v1 = sqrt(pi('single'))*erf(x)./gamma(a); %! v3 = gammainc(x.*x,a); %! assert(v1, v3, sqrt(eps('single'))); */