Mercurial > hg > octave-jordi
view scripts/special-matrix/wilkinson.m @ 12639:4d777e05d47c stable
doc: Review and update documentation for "Matrix Manipulation" chapter.
* matrix.txi, arrayfun.m, blkdiag.m, fliplr.m, flipud.m, logspace.m,
postpad.m, prepad.m, randi.m, repmat.m, rot90.m, rotdim.m, shiftdim.m,
sortrows.m, vech.m, xor.m, hadamard.m, hankel.m, hilb.m, invhilb.m, magic.m,
pascal.m, rosser.m, sylvester_matrix.m, toeplitz.m, vander.m, wilkinson.m,
bsxfun.cc, find.cc, lookup.cc, rand.cc, tril.cc, data.cc, arrayfun.m,
blkdiag.m, fliplr.m, flipud.m, logspace.m, postpad.m, prepad.m, randi.m,
repmat.m, rot90.m, rotdim.m, shiftdim.m, sortrows.m, vech.m, xor.m, hadamard.m,
hankel.m, hilb.m, invhilb.m, magic.m, pascal.m, rosser.m, sylvester_matrix.m,
toeplitz.m, vander.m, wilkinson.m, bsxfun.cc (bsxfun), find.cc (find),
lookup.cc (lookup), rand.cc (rand, randn, rande, randg, randp),
tril.cc (triu), data.cc (all, any, horzcat, vertcat, cat, permute, ipermute,
ones, zeros, eye, linspace, resize, reshape, issorted, diff):
Improve docstrings
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 01 May 2011 08:55:15 -0700 |
parents | e4a1ede4e832 |
children | 3a2f28c08fbd |
line wrap: on
line source
## Copyright (C) 1999-2011 Peter Ekberg ## ## This file is part of Octave. ## ## Octave is free software; you can redistribute it and/or modify it ## under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 3 of the License, or (at ## your option) any later version. ## ## Octave is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Octave; see the file COPYING. If not, see ## <http://www.gnu.org/licenses/>. ## -*- texinfo -*- ## @deftypefn {Function File} {} wilkinson (@var{n}) ## Return the Wilkinson matrix of order @var{n}. Wilkinson matrices are ## symmetric and tridiagonal with pairs of nearly, but not exactly, equal ## eigenvalues. They are useful in testing the behavior and performance ## of eigenvalue solvers. ## ## @seealso{rosser, eig} ## @end deftypefn ## Author: Peter Ekberg ## (peda) function retval = wilkinson (n) if (nargin != 1) print_usage (); endif if (! (isscalar (n) && (n == fix (n)) && n >= 0)) error ("wilkinson: N must be a non-negative integer"); endif side = ones (n-1, 1); center = abs (-(n-1)/2:(n-1)/2); retval = diag (side, -1) + diag (center) + diag (side, 1); endfunction %!assert (wilkinson(0), []) %!assert (wilkinson(1), 0) %!assert (wilkinson(2), [0.5,1;1,0.5]) %!assert (wilkinson(3), [1,1,0;1,0,1;0,1,1]) %!assert (wilkinson(4), [1.5,1,0,0;1,0.5,1,0;0,1,0.5,1;0,0,1,1.5]) %!error (wilkinson()) %!error (wilkinson(1,2))