Mercurial > hg > octave-jordi
view src/DLD-FUNCTIONS/conv2.cc @ 8151:3725f819b5b3
urlwrite.cc (Furlwrite): delete files we create if download fails
author | John W. Eaton <jwe@octave.org> |
---|---|
date | Fri, 26 Sep 2008 13:16:42 -0400 |
parents | 87865ed7405f |
children | eb63fbe60fab |
line wrap: on
line source
/* Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Andy Adler This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun-dld.h" #include "error.h" #include "oct-obj.h" #include "utils.h" #define MAX(a,b) ((a) > (b) ? (a) : (b)) enum Shape { SHAPE_FULL, SHAPE_SAME, SHAPE_VALID }; #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) extern MArray2<double> conv2 (MArray<double>&, MArray<double>&, MArray2<double>&, Shape); extern MArray2<Complex> conv2 (MArray<Complex>&, MArray<Complex>&, MArray2<Complex>&, Shape); extern MArray2<float> conv2 (MArray<float>&, MArray<float>&, MArray2<float>&, Shape); extern MArray2<FloatComplex> conv2 (MArray<FloatComplex>&, MArray<FloatComplex>&, MArray2<FloatComplex>&, Shape); #endif template <class T> MArray2<T> conv2 (MArray<T>& R, MArray<T>& C, MArray2<T>& A, Shape ishape) { octave_idx_type Rn = R.length (); octave_idx_type Cm = C.length (); octave_idx_type Am = A.rows (); octave_idx_type An = A.columns (); // Calculate the size of the output matrix: // in order to stay Matlab compatible, it is based // on the third parameter if it's separable, and the // first if it's not octave_idx_type outM = 0; octave_idx_type outN = 0; octave_idx_type edgM = 0; octave_idx_type edgN = 0; switch (ishape) { case SHAPE_FULL: outM = Am + Cm - 1; outN = An + Rn - 1; edgM = Cm - 1; edgN = Rn - 1; break; case SHAPE_SAME: outM = Am; outN = An; // Follow the Matlab convention (ie + instead of -) edgM = (Cm - 1) /2; edgN = (Rn - 1) /2; break; case SHAPE_VALID: outM = Am - Cm + 1; outN = An - Rn + 1; if (outM < 0) outM = 0; if (outN < 0) outN = 0; edgM = edgN = 0; break; default: error ("conv2: invalid value of parameter ishape"); } MArray2<T> O (outM, outN); // X accumulates the 1-D conv for each row, before calculating // the convolution in the other direction // There is no efficiency advantage to doing it in either direction // first MArray<T> X (An); for (octave_idx_type oi = 0; oi < outM; oi++) { for (octave_idx_type oj = 0; oj < An; oj++) { T sum = 0; octave_idx_type ci = Cm - 1 - MAX(0, edgM-oi); octave_idx_type ai = MAX(0, oi-edgM); const T* Ad = A.data() + ai + Am*oj; const T* Cd = C.data() + ci; for ( ; ci >= 0 && ai < Am; ci--, Cd--, ai++, Ad++) sum += (*Ad) * (*Cd); X(oj) = sum; } for (octave_idx_type oj = 0; oj < outN; oj++) { T sum = 0; octave_idx_type rj = Rn - 1 - MAX(0, edgN-oj); octave_idx_type aj = MAX(0, oj-edgN) ; const T* Xd = X.data() + aj; const T* Rd = R.data() + rj; for ( ; rj >= 0 && aj < An; rj--, Rd--, aj++, Xd++) sum += (*Xd) * (*Rd); O(oi,oj)= sum; } } return O; } #if !defined (CXX_NEW_FRIEND_TEMPLATE_DECL) extern MArray2<double> conv2 (MArray2<double>&, MArray2<double>&, Shape); extern MArray2<Complex> conv2 (MArray2<Complex>&, MArray2<Complex>&, Shape); extern MArray2<float> conv2 (MArray2<float>&, MArray2<float>&, Shape); extern MArray2<FloatComplex> conv2 (MArray2<FloatComplex>&, MArray2<FloatComplex>&, Shape); #endif template <class T> MArray2<T> conv2 (MArray2<T>&A, MArray2<T>&B, Shape ishape) { // Convolution works fastest if we choose the A matrix to be // the largest. // Here we calculate the size of the output matrix, // in order to stay Matlab compatible, it is based // on the third parameter if it's separable, and the // first if it's not // NOTE in order to be Matlab compatible, we give argueably // wrong sizes for 'valid' if the smallest matrix is first octave_idx_type Am = A.rows (); octave_idx_type An = A.columns (); octave_idx_type Bm = B.rows (); octave_idx_type Bn = B.columns (); octave_idx_type outM = 0; octave_idx_type outN = 0; octave_idx_type edgM = 0; octave_idx_type edgN = 0; switch (ishape) { case SHAPE_FULL: outM = Am + Bm - 1; outN = An + Bn - 1; edgM = Bm - 1; edgN = Bn - 1; break; case SHAPE_SAME: outM = Am; outN = An; edgM = (Bm - 1) /2; edgN = (Bn - 1) /2; break; case SHAPE_VALID: outM = Am - Bm + 1; outN = An - Bn + 1; if (outM < 0) outM = 0; if (outN < 0) outN = 0; edgM = edgN = 0; break; } MArray2<T> O (outM, outN); for (octave_idx_type oi = 0; oi < outM; oi++) { for (octave_idx_type oj = 0; oj < outN; oj++) { T sum = 0; for (octave_idx_type bj = Bn - 1 - MAX (0, edgN-oj), aj= MAX (0, oj-edgN); bj >= 0 && aj < An; bj--, aj++) { octave_idx_type bi = Bm - 1 - MAX (0, edgM-oi); octave_idx_type ai = MAX (0, oi-edgM); const T* Ad = A.data () + ai + Am*aj; const T* Bd = B.data () + bi + Bm*bj; for ( ; bi >= 0 && ai < Am; bi--, Bd--, ai++, Ad++) { sum += (*Ad) * (*Bd); // Comment: it seems to be 2.5 x faster than this: // sum+= A(ai,aj) * B(bi,bj); } } O(oi,oj) = sum; } } return O; } /* %!test %! b = [0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18]; %! assert(conv2([0,1;1,2],[1,2,3;4,5,6;7,8,9]),b); %!test %! b = single([0,1,2,3;1,8,12,12;4,20,24,21;7,22,25,18]); %! assert(conv2(single([0,1;1,2]),single([1,2,3;4,5,6;7,8,9])),b); */ DEFUN_DLD (conv2, args, , "-*- texinfo -*-\n\ @deftypefn {Loadable Function} {y =} conv2 (@var{a}, @var{b}, @var{shape})\n\ @deftypefnx {Loadable Function} {y =} conv2 (@var{v1}, @var{v2}, @var{M}, @var{shape})\n\ \n\ Returns 2D convolution of @var{a} and @var{b} where the size\n\ of @var{c} is given by\n\ \n\ @table @asis\n\ @item @var{shape}= 'full'\n\ returns full 2-D convolution\n\ @item @var{shape}= 'same'\n\ same size as a. 'central' part of convolution\n\ @item @var{shape}= 'valid'\n\ only parts which do not include zero-padded edges\n\ @end table\n\ \n\ By default @var{shape} is 'full'. When the third argument is a matrix\n\ returns the convolution of the matrix @var{M} by the vector @var{v1}\n\ in the column direction and by vector @var{v2} in the row direction\n\ @end deftypefn") { octave_value retval; octave_value tmp; int nargin = args.length (); std::string shape= "full"; //default bool separable= false; Shape ishape; if (nargin < 2) { print_usage (); return retval; } else if (nargin == 3) { if (args(2).is_string ()) shape = args(2).string_value (); else separable = true; } else if (nargin >= 4) { separable = true; shape = args(3).string_value (); } if (shape == "full") ishape = SHAPE_FULL; else if (shape == "same") ishape = SHAPE_SAME; else if (shape == "valid") ishape = SHAPE_VALID; else { error ("conv2: shape type not valid"); print_usage (); return retval; } if (separable) { // If user requests separable, check first two params are vectors if (! (1 == args(0).rows () || 1 == args(0).columns ()) || ! (1 == args(1).rows () || 1 == args(1).columns ())) { print_usage (); return retval; } if (args(0).is_single_type () || args(1).is_single_type () || args(2).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type () || args(2).is_complex_type ()) { FloatComplexColumnVector v1 (args(0).float_complex_vector_value ()); FloatComplexColumnVector v2 (args(1).float_complex_vector_value ()); FloatComplexMatrix a (args(2).float_complex_matrix_value ()); FloatComplexMatrix c (conv2 (v1, v2, a, ishape)); if (! error_state) retval = c; } else { FloatColumnVector v1 (args(0).float_vector_value ()); FloatColumnVector v2 (args(1).float_vector_value ()); FloatMatrix a (args(2).float_matrix_value ()); FloatMatrix c (conv2 (v1, v2, a, ishape)); if (! error_state) retval = c; } } else { if (args(0).is_complex_type () || args(1).is_complex_type () || args(2).is_complex_type ()) { ComplexColumnVector v1 (args(0).complex_vector_value ()); ComplexColumnVector v2 (args(1).complex_vector_value ()); ComplexMatrix a (args(2).complex_matrix_value ()); ComplexMatrix c (conv2 (v1, v2, a, ishape)); if (! error_state) retval = c; } else { ColumnVector v1 (args(0).vector_value ()); ColumnVector v2 (args(1).vector_value ()); Matrix a (args(2).matrix_value ()); Matrix c (conv2 (v1, v2, a, ishape)); if (! error_state) retval = c; } } } // if (separable) else { if (args(0).is_single_type () || args(1).is_single_type ()) { if (args(0).is_complex_type () || args(1).is_complex_type ()) { FloatComplexMatrix a (args(0).float_complex_matrix_value ()); FloatComplexMatrix b (args(1).float_complex_matrix_value ()); FloatComplexMatrix c (conv2 (a, b, ishape)); if (! error_state) retval = c; } else { FloatMatrix a (args(0).float_matrix_value ()); FloatMatrix b (args(1).float_matrix_value ()); FloatMatrix c (conv2 (a, b, ishape)); if (! error_state) retval = c; } } else { if (args(0).is_complex_type () || args(1).is_complex_type ()) { ComplexMatrix a (args(0).complex_matrix_value ()); ComplexMatrix b (args(1).complex_matrix_value ()); ComplexMatrix c (conv2 (a, b, ishape)); if (! error_state) retval = c; } else { Matrix a (args(0).matrix_value ()); Matrix b (args(1).matrix_value ()); Matrix c (conv2 (a, b, ishape)); if (! error_state) retval = c; } } } // if (separable) return retval; } template MArray2<double> conv2 (MArray<double>&, MArray<double>&, MArray2<double>&, Shape); template MArray2<double> conv2 (MArray2<double>&, MArray2<double>&, Shape); template MArray2<Complex> conv2 (MArray<Complex>&, MArray<Complex>&, MArray2<Complex>&, Shape); template MArray2<Complex> conv2 (MArray2<Complex>&, MArray2<Complex>&, Shape); /* ;;; Local Variables: *** ;;; mode: C++ *** ;;; End: *** */