Mercurial > hg > octave-jordi
view libinterp/corefcn/rcond.cc @ 17516:21656a949661
Add hook function to handle missing Octave components
* __gripe_missing_component__.m: New internal function to handle errors due
to missing Octave components.
* scripts/help/module.mk (help_FCN_FILES): Add __gripe_missing_component__.m.
* variables.cc (Vmissing_component_hook): New internal variable.
* doc.m, mkoctfile.m, configure_make.m: Call __gripe_missing_component__
if required files are not found.
* NEWS: Mention missing_component_hook.
author | Mike Miller <mtmiller@ieee.org> |
---|---|
date | Sun, 29 Sep 2013 16:06:41 -0400 |
parents | 2137f5638521 |
children | d63878346099 |
line wrap: on
line source
/* Copyright (C) 2008-2012 David Bateman This file is part of Octave. Octave is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Octave; see the file COPYING. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H #include <config.h> #endif #include "defun.h" #include "error.h" #include "gripes.h" #include "oct-obj.h" #include "utils.h" DEFUN (rcond, args, , "-*- texinfo -*-\n\ @deftypefn {Built-in Function} {@var{c} =} rcond (@var{A})\n\ Compute the 1-norm estimate of the reciprocal condition number as returned\n\ by @sc{lapack}. If the matrix is well-conditioned then @var{c} will be near\n\ 1 and if the matrix is poorly conditioned it will be close to zero.\n\ \n\ The matrix @var{A} must not be sparse. If the matrix is sparse then\n\ @code{condest (@var{A})} or @code{rcond (full (@var{A}))} should be used\n\ instead.\n\ @seealso{cond, condest}\n\ @end deftypefn") { octave_value retval; int nargin = args.length (); if (nargin != 1) print_usage (); else if (args(0).is_sparse_type ()) error ("rcond: for sparse matrices use 'rcond (full (a))' or 'condest (a)' instead"); else if (args(0).is_single_type ()) { if (args(0).is_complex_type ()) { FloatComplexMatrix m = args(0).float_complex_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } else { FloatMatrix m = args(0).float_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } } else if (args(0).is_complex_type ()) { ComplexMatrix m = args(0).complex_matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } else { Matrix m = args(0).matrix_value (); MatrixType mattyp; retval = m.rcond (mattyp); args(0).matrix_type (mattyp); } return retval; } /* %!assert (rcond (eye (2)), 1) %!assert (rcond (ones (2)), 0) %!assert (rcond ([1 1; 2 1]), 1/9) %!assert (rcond (magic (4)), 0, eps) %!shared x, sx %! x = [-5.25, -2.25; -2.25, 1] * eps () + ones (2) / 2; %! sx = [-5.25, -2.25; -2.25, 1] * eps ("single") + ones (2) / 2; %!assert (rcond (x) < eps ()); %!assert (rcond (sx) < eps ('single')); %!assert (rcond (x*i) < eps ()); %!assert (rcond (sx*i) < eps ('single')); */