Mercurial > hg > octave-jordi
diff src/DLD-FUNCTIONS/symbfact.cc @ 11553:01f703952eff
Improve docstrings for functions in DLD-FUNCTIONS directory.
Use same variable names in error() strings and in documentation.
author | Rik <octave@nomad.inbox5.com> |
---|---|
date | Sun, 16 Jan 2011 22:13:23 -0800 (2011-01-17) |
parents | fd0a3ac60b0e |
children | 12df7854fa7c |
line wrap: on
line diff
--- a/src/DLD-FUNCTIONS/symbfact.cc +++ b/src/DLD-FUNCTIONS/symbfact.cc @@ -41,35 +41,37 @@ DEFUN_DLD (symbfact, args, nargout, "-*- texinfo -*-\n\ -@deftypefn {Loadable Function} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{r}] =} symbfact (@var{s}, @var{typ}, @var{mode})\n\ +@deftypefn {Loadable Function} {[@var{count}, @var{h}, @var{parent}, @var{post}, @var{r}] =} symbfact (@var{S})\n\ +@deftypefnx {Loadable Function} {[@dots{}] =} symbfact (@var{S}, @var{typ})\n\ +@deftypefnx {Loadable Function} {[@dots{}] =} symbfact (@var{S}, @var{typ}, @var{mode})\n\ \n\ -Performs a symbolic factorization analysis on the sparse matrix @var{s}.\n\ +Perform a symbolic factorization analysis on the sparse matrix @var{S}.\n\ Where\n\ \n\ -@table @asis\n\ -@item @var{s}\n\ -@var{s} is a complex or real sparse matrix.\n\ +@table @var\n\ +@item S\n\ +@var{S} is a complex or real sparse matrix.\n\ \n\ -@item @var{typ}\n\ +@item typ\n\ Is the type of the factorization and can be one of\n\ \n\ -@table @code\n\ +@table @samp\n\ @item sym\n\ -Factorize @var{s}. This is the default.\n\ +Factorize @var{S}. This is the default.\n\ \n\ @item col\n\ -Factorize @code{@var{s}' * @var{s}}.\n\ +Factorize @code{@var{S}' * @var{S}}.\n\ \n\ @item row\n\ -Factorize @code{@var{s} * @var{s}'}.\n\ +Factorize @code{@var{S} * @var{S}'}.\n\ \n\ @item lo\n\ -Factorize @code{@var{s}'}\n\ +Factorize @code{@var{S}'}\n\ @end table\n\ \n\ -@item @var{mode}\n\ -The default is to return the Cholesky factorization for @var{r}, and if\n\ -@var{mode} is 'L', the conjugate transpose of the Cholesky factorization\n\ +@item mode\n\ +The default is to return the Cholesky@tie{}factorization for @var{r}, and if\n\ +@var{mode} is 'L', the conjugate transpose of the Cholesky@tie{}factorization\n\ is returned. The conjugate transpose version is faster and uses less\n\ memory, but returns the same values for @var{count}, @var{h}, @var{parent}\n\ and @var{post} outputs.\n\ @@ -77,17 +79,17 @@ \n\ The output variables are\n\ \n\ -@table @asis\n\ -@item @var{count}\n\ -The row counts of the Cholesky factorization as determined by @var{typ}.\n\ +@table @var\n\ +@item count\n\ +The row counts of the Cholesky@tie{}factorization as determined by @var{typ}.\n\ \n\ -@item @var{h}\n\ +@item h\n\ The height of the elimination tree.\n\ \n\ -@item @var{parent}\n\ +@item parent\n\ The elimination tree itself.\n\ \n\ -@item @var{post}\n\ +@item post\n\ A sparse boolean matrix whose structure is that of the Cholesky\n\ factorization as determined by @var{typ}.\n\ @end table\n\ @@ -189,11 +191,11 @@ else if (ch == 's') A->stype = -1; else - error ("Unrecognized typ in symbolic factorization"); + error ("symbfact: unrecognized TYP in symbolic factorization"); } if (A->stype && A->nrow != A->ncol) - error ("Matrix must be square"); + error ("symbfact: S must be a square matrix"); if (!error_state) {